
TinyBASIC: Interactive programming system
Interpreter and step-by-step guide

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

type Value = (* .. *)
type Expression = (* .. *)

type Command =
 (* Jumps and subroutines *)
 | Goto of int
 | GoSub of int
 | Return
 (* I/O operations *)
 | Clear
 | Print of Expression list
 | Input of string
 (* If, variables and control *)
 | If of Expression * Command
 | Assign of string * Expression
 | Run
 | Stop

BASIC interpreter
structure (1/2)
Expressions evaluate to
Values and are simple

Commands contain all the
operations that modify the
program state

(* State of the interpreter stores
 program lines as sorted list,
 variables in a dictionary,
 generator for the RND function
 and stack for GOSUB/RETURN *)
type State =
 { Program : list<int * Command>
 Variables : Map<string, Value>
 Random : System.Random
 ReturnStack : int list }

(* Evaluate a command and then
 run the next one (if any)
 until the program ends.
 : State -> (int * Cmd) -> State *)
let rec runCommand state (line, cmd) =
 (* ... *)

(* Find the next line after 'line'
 and run that or stop if none *)
and runNextLine state line =
 (* .. *)

BASIC interpreter
structure (2/2)
State is the program
source code, variables
(and a few extras)

Current line is also
a part of the state
(function argument)

Demo
BASIC Hello World

REM You can write comments!
REM Jumping and calls
GOTO 10
GOSUB 10
RETURN

REM Printing to the screen
POKE 1024 CHR$(42)
PRINT "HELLO ";X
INPUT "ENTER A VALUE";X

REM Variables and ifs
X=10
IF (X>0) GOTO 10

REM Control
RUN
STOP

BASIC basics
GOSUB jumps, but keeps
return location on stack
for RETURN

PRINT takes a sequence of
expressions (and we ignore
cursor moving)

POKE writes a byte to
memory (we will cheat)

We ignore command
chaining (:)

Demo
Elegant programs with GOSUB :-)

Lab overview
TinyBASIC system step-by-step

TinyBASIC - Basic tasks
1. Add GOTO and better PRINT for infinite loop fun!

Evaluation of expressions, finding of the next line

2. Implement interactive program editing
Handle commands that edit the program code

3. Add variables, conditionals, integers and bools
Needs Map<string, Value> in the program state

4. Random function and (not quite correct) POKE
To be able to generate random stars!

5. A few more functions and operators
As required by the Nim (subtraction) game

TinyBASIC - Bonus tasks
1. Add support for more elegant programs with GOSUB

Needs list<int> (stack of return line numbers) in state

2. Refactor our Nim code sample to use it
Dijkstra will still not be happy, but we avoid repetition

3. Implement an "AI" player for our Nim game
Wikipedia says this is a solved problem :-)

Lessons learned
Interactive programming systems

 Evaluation logic not that far from TinyML!

 Imperative interpreter needs much more state

 How exactly interactive editing worked?!

 Parsing & interactive editing out of scope :-(

