TinyBASIC: Interactive programming system
Interpreter and step-by-step guide

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
[]]

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

type Value = (* .. *)
type Expression = (* .. *)

type Command =

(* Jumps and subroutines *)

| Goto of int

| GoSub of int

| Return

(* I/O operations *)

| Clear

| Print of Expression list

| Input of string

(* If, variables and control *)
If of Expression * Command
Assign of string * Expression
Run

|
|
|
| Stop

BASIC interpreter
structure (1/2)

Expressions evaluate to
Values and are simple

Commands contain all the
operations that modify the
program state

(* State of the interpreter stores BASIC iﬂt@l’pl’@ter

program lines as sorted list,

variables in a dictionary, StrUCture (2/2)

generator for the RND function
and stack for GOSUB/RETURN *)

e State is the program
rogram : list<int * Comman .
Variables : Map<string, Value> SQOUICE COde} \/ar|ab|es
Random : System.Random
ReturnStack : int list |} (and a few extras)

(* Evaluat mmand and then : :
S P Current line is also
until the program ends.

State -> (Fl)ntg* Cmd) -> State *) a part Of the State

let rec runCommand state (line, cmd) eijrwjtK)ﬂ arENJrTKEHt>

(* .. %)

(* Find the next line after 'line'
and run that or stop i1f none *)

and runNextlLine state line =
(* .. %)

L2

Charles
University

Demo
BASIC Hello Worla

REM You can write comments!
REM Jumping and calls

GOTO 10

GOSUB 10

RETURN

REM Printing to the screen
POKE 1024 CHRS (42)

PRINT "HELLO ";X

INPUT "ENTER A VALUE";X

REM Variables and ifs
X=10
IF (X>0) GOTO 10

REM Control
RUN
STOP

BASIC basics

GOSUB jJumps, but keeps
return location on stack
for RETURN

PRINT takes a sequence of
expressions (and we ignore
CUrsor moving)

POKE writes a byte to
memory (we will cheat)

We ignore command
chaining (:)

Demo
Flegant programs with GOSUB :-)

Lab overview
TinyBASIC system step-by-step

TinyBASIC - Basic tasks

1. Add GOTO and better PRINT for infinite loop fun!
—valuation of expressions, finding of the next line

2. Implement interactive program editing
Handle commands that edit the program code

3. Add variables, conditionals, integers and bools
Needs Map<string, Value> inthe program state

4. Random function and (not quite correct) POKE
To be able to generate random stars!

5. A few more functions and operators
As required by the Nim (subtraction) game

TinyBASIC - Bonus tasks

1. Add support for more elegant programs with GOSUB
eeds list<int> (stack of return line numbers) in state

7. Refactor our Nim code sample to use it
Dijkstra will still not be happy, but we avoid repetition

3. Implement an "Al" player for our Nim game
Wikipedia says this is a solved problem :-)

Lessons learned
Interactive programming systems

=

&
<[>

-valuation logic not that far from TinyMLI
mperative interpreter needs much more state
How exactly interactive editing worked?!

Parsing & interactive editing out of scope ~(

