TinyHM: Hindley-Milner type inference
How type inference in ML works
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Not a programming system!?

B8 Animportant part of the ML experience
Makes ML practical and OCaml efficient

A Learn some subtle aspects of F# type inference
some discovered late through proofs and errors

g Good example of constraint solving...
lmportant technigue, used in Prolog & elsewhere
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Origins of ML

LCF theorem prover

ML used for writing
meta-programs to
generate proofs

Types used to ensure
the validity of proofs




Hindley-Milner
A brief history of type inference

"B Hindley (1969) for Combinatory Logic

<[> Milner (1978) for ML with polymorphism

B Damas (1985) with formal analysis and proofs
4 Since then - type classes, other extensions
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Practice

Choose a coeffect language from the dropdown and load a sample snippet to get started.

Dataflow language (flat) & Open sample

fun x y ->
let avg2 = funy -> (y + prev y) / 2 in
avg2 x + prev (avg2 y)

« Check snippet

In the formatted code below, you can see types of variables in a tooltip. Curried functions with multiple
parameters and function defined using let are expanded.

fun x -> fun y ->
let avg2 = funy -> (y + prev y) / 2 in
avg2 x + ) (avg2 y)

Now explore the typing derivation. Click on the judgements in the assumptions to navigate through the
typing derivation. Compare flat and structural dataflow typing for the same program!
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Coeffects
playground

Constraint solver
code on GItHUD
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https://github.com/coeffects/coeffects-playground/blob/master/solver.fs
https://github.com/coeffects/coeffects-playground/blob/master/solver.fs

MIL type inference
How does F#f figure out the types?




Demo
Basic type inference in F




How F# type inference works

Constraint-based

e Collect & solve constraints
e NO annotations needed for ML

let twice f x = f (f x)
val twice: f: (a->'a) >x:'a->a

Full name: Inference.twice

Let polymorphism
e Infer generic type of let-bound functions

Limitations in ML and F#

e \alue restriction for generic values
e Harder to deal with NET objects




Demo
Type inference limitations in F




