TinyHM: Hindley-Milner type inference
How type inference in ML works

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
[ ] ]

& https//d3s.mff.cuni.cz/teaching/nprg0/7/



mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Not a programming system!?

B8 Animportant part of the ML experience
Makes ML practical and OCaml efficient

A Learn some subtle aspects of F# type inference
some discovered late through proofs and errors

g Good example of constraint solving...
lmportant technigue, used in Prolog & elsewhere




Volume I, Number 1 January, 1983

Polymorphism

The ML/LCF/Hope Newsletter o~

Contents

Letter from the editors

Robin Milner: How ML evolved

Ravi Sethi: Unambiguous syntax for ML
Luca Cardelli: The functional abstract machine
SERC ML/LCF/Hope meeting at Rutherford Labs
Addenda to the Mailing List

Origins of ML

LCF theorem prover

ML used for writing
meta-programs to
generate proofs

Types used to ensure
the validity of proofs




Hindley-Milner
A brief history of type inference

"B Hindley (1969) for Combinatory Logic

<[> Milner (1978) for ML with polymorphism

B Damas (1985) with formal analysis and proofs
4 Since then - type classes, other extensions




S]

re: Coeffects: Context-aware prog: X | +

(¢]

O B hitps//tomaspnet/coefiect @ ww oW

Practice

Choose a coeffect language from the dropdown and load a sample snippet to get started.

Dataflow language (flat) & Open sample

fun x y ->
let avg2 = funy -> (y + prev y) / 2 in
avg2 x + prev (avg2 y)

« Check snippet

In the formatted code below, you can see types of variables in a tooltip. Curried functions with multiple
parameters and function defined using let are expanded.

fun x -> fun y ->
let avg2 = funy -> (y + prev y) / 2 in
avg2 x + ) (avg2 y)

Now explore the typing derivation. Click on the judgements in the assumptions to navigate through the
typing derivation. Compare flat and structural dataflow typing for the same program!

()
uma@ 1 F (y+pr

z:nmum@1 k- funy —

(..

Demo
Coeffects
playground

Constraint solver
code on GItHUD

LT I
Charles
University



https://github.com/coeffects/coeffects-playground/blob/master/solver.fs
https://github.com/coeffects/coeffects-playground/blob/master/solver.fs

MIL type inference
How does F#f figure out the types?




Demo
Basic type inference in F




How F# type inference works

Constraint-based

e Collect & solve constraints
e NO annotations needed for ML

let twice f x = f (f x)
val twice: f: (a->'a) >x:'a->a

Full name: Inference.twice

Let polymorphism
e Infer generic type of let-bound functions

Limitations in ML and F#

e \alue restriction for generic values
e Harder to deal with NET objects




Demo
Type inference limitations in F




