TinyHM: Hindley-Milner type inference
Type systems and constraint solving

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

& Nitps/tomasp.net

& Nhttps/d3s.mff.cuni.cz/teaching/nprg0//

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Type systems

Typing rules

Given a typing context I, the
expression e has a type r

The problem in general

We know some of these,
want to figure out the rest

Type systems

Type checking

e Know It all. Check derivation exists!
e Easy for syntax-driven rules

Type inference

e Know expression. Figure out the typel
e |deally most general (best) type

Program synthesis
e Not very common, but interesting ideal

Dee:ny
F\-Q:q.

ISR

Tw\w— Y ot dhe wwost gevieval +ype
fou 2n erpuession @ W courexyt [
N ¢ N

Ve Theior = oy

\f

Principal type
(most general)

Best type of
an expression

Any other type of the
expression Is a special
case (subtype) of it

Type inference

How Hindely-Milner type inference works?
Produces most general type (for ML)

B How Hindely-Milner type inference breaks?
ominal types with members, interfaces, etc.

© Alternative methods for type inference
Bidirectional - combines checking and inference

Hindley-Milner
Constraint generation & solving

LEX‘@VQ&& om e

Couttvant
| > %Qv\qvah'ou,
va\shn\m\-s cs

CoMstVilut
) QO\U(\AS

'bp\(a\\.\
., LSS+ UM

} gu\St\HM\o\A J

ﬁ_:\«lQWQA HQpes

Two phase process

(Generate constraints
Recursively over
expression

Solve constraints
Recursively over
constraint set

In the "Algorithm W',
the two are combined.
We separate them!

(* Basic types with
type varilables *)
type Type =
| TyNumber
| TyVariable of string
| TyFunction of Type * Type
| TyList of Type

(* Constraint specifies
that one type should be
unified with another ¥*)

type Constraint =

Type * Type

What is a constraint?

A pair of types that
should be unified

Easy or impossible
int = 1int -> 1int
int list = int list
Tricky with variables
'a = int -> 'b

'a = 'c -> int

TinyHM
Constraint generation

L LK S m B CD
1 D:

Generate type and constraints recursively
Generate new fresh type variables as needec
Variables with new type variables in context
Most checking done via constraints

Sketch
Generating constraints

