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Type systems

Typing rules

Given a typing context I, the
expression e has a type r

The problem in general

We know some of these,
want to figure out the rest




Type systems

Type checking

e Know It all. Check derivation exists!
e Easy for syntax-driven rules

Type inference

e Know expression. Figure out the typel
e |deally most general (best) type

Program synthesis
e Not very common, but interesting ideal
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Principal type
(most general)

Best type of
an expression

Any other type of the
expression Is a special
case (subtype) of it




Type inference

How Hindely-Milner type inference works?
Produces most general type (for ML)

B How Hindely-Milner type inference breaks?
ominal types with members, interfaces, etc.

© Alternative methods for type inference
Bidirectional - combines checking and inference




Hindley-Milner
Constraint generation & solving
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Two phase process

(Generate constraints
Recursively over
expression

Solve constraints
Recursively over
constraint set

In the "Algorithm W',
the two are combined.
We separate them!




(* Basic types with
type varilables *)
type Type =
| TyNumber
| TyVariable of string
| TyFunction of Type * Type
| TyList of Type

(* Constraint specifies
that one type should be
unified with another ¥*)

type Constraint =

Type * Type

What is a constraint?

A pair of types that
should be unified

Easy or impossible
int = 1int -> 1int
int list = int list
Tricky with variables
'a = int -> 'b

'a = 'c -> int




TinyHM
Constraint generation
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Generate type and constraints recursively
Generate new fresh type variables as needec
Variables with new type variables in context
Most checking done via constraints




Sketch
Generating constraints




