
TinyHM: Hindley-Milner type inference
Peano numbers and step by step guide

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Constraint solver structure
Simplest possible example

Peano numbers: Zero, Succ(x)
Equality constraints with variables
e.g. Succ(x) = Succ(Succ(Zero))

Creating a solver

Discharge matching constraints
Fail on mismatching constraints
Generate more for matching nested
Needs to handle substitutions...

Demo
Solving numerical constraints

Remaining work
Substitution (#1)
Replace variable in
remaining constraints

Substitution (#2)
Apply substitutions
to assigned type

Occurs check (#3)
Check for unsolvable
constraints

Demo
Substitutions and occurs check

TinyHM
Code structure

(* All possible types you may
 support: type variables,
 primitives and composed *)
type Type =
 | TyVariable of string
 | TyBool
 | TyUnit
 | TyNumber
 | TyFunction of Type * Type
 | TyTuple of Type * Type
 | TyUnion of Type * Type
 | TyList of Type
 | TyForall of string * Type

(* Types of known variables *)
type TypingContext =
 Map<string, Type>

Types supported
Type variables
For constraint solving!

Primitive types
Match/mismatch

Composed types
Generate one or two
new constraints

Polymorphic type
Forall (bonus)

(* Given a list of
 constraints, produce a
 list of substitutions *)
val solve :
 list<Type * Type>
 -> list<string * Type>

(* Given a typing context
 (known variables) and
 expression, return the type
 of the expression and
 list of constraints *)
val generate :
 TypingContext
 -> Expression
 -> Type * list<Type * Type>

Type inference
operations
Constraint solving
Takes constraints
Produces substitution

Constraint generating
Takes an expression
Produces constraints
Also check variables

Lab overview
Tiny Hindley-Milner step-by-step

TinyHM - Basic tasks
1. Complete the simple numerical constraint solver

Add the two missing substitutions to make it work!

2. Solving type constraints with numbers and Booleans
Follow the same structure, but now for type constraints...

3. Type inference for binary operators and conditionals
Add constraint generation for a subset of TinyML

4. Supporting more TinyML expressions
Add let, functions, application and occurs check

5. Adding simple data types
Constraint generation for tuples

TinyHM - Bonus & super tasks
1. Supporting more TinyML data types

Add type checking for discriminated unions

2. Type inference for lists - poor method
Add recursion & units and try this on list code!

3. Adding proper support for generic lists
New type, but without explicit type declarations

4. Inferring polymorphic code for let bindings
Implementing proper Hindley-Milner let-polymorphism

5. Exploring pathological cases
Did you know HM has DEXPTIME complexity?

Lessons learned
Tiny Hindley-Milner type inference

 A remarkable quality of ML language(s)

 Types as a communication mechanism

 Nice introduction to constraint solving

 Much more can be done with this idea...

