TinyHM: Hindley-Milner type inference
Peano numbers and step by step guide

Tomas Petricek, Charles University

¥ (Omas@tomasp.net

¥ (Wtomasp.net

& Nitps/tomasp.net

& hitps//d3s mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Constraint solver structure
Simplest possible example

e Peano numbers: Zero, Succ(x) . O.
e Equality constraints with variables |

(0. Succ(x) = Succ(Succ(Zero)) l F -:
Creating a solver . .‘

e Discharge matching constraints

e Fail on mismatching constraints

e (Generate more for matching nested
e Needs to handle substitutions...

Demo
Solving numerical constraints

let rec solve constraints =
match constraints with
I [0 -> [
| (Zero, Zero)::cs -> solve cs
| (Succ nl, Succ n2)::cs -> solve ((nl, n2)::cs)
| (Zero, Succ _)::_ | (Succ _, Zero)::_ ->
failwith "cannot be unified"
| (n, Variable v)::cs | (Variable v,(:)::cs ->

let substs = solve @ #3 check

(v, (m): :substs #7 sulstitiie that 'v' does
i/{ gw\u\ a}l \v\l {ov‘}l\ " Vot %p‘oea\,

lswbsty +o ‘vt vawmiaving W

ConstrItues

Remaining work

Substitution (#1)
Replace variable in
remaining constraints

Substitution (#2)
Apply substitutions
to gssigned type

Occurs check (#3)
Check for unsolvable
constraints

Demo
Substitutions and occurs check

TinyHM
Code structure

(* All possible types you may T\Ipes SupportEd

support: type variables,
primitives and composed *)

Type variables

type Type = B . .
| TyvVariable of string —or constraint solving!
TyBool
TyUnit OriA it
TyNumber rimitive types

|
|
| .
| TyFunction of Type * Type \4atCﬂW/FFHSFYE}U3h
| TyTuple of Type * Type

|

|

|

TyUnion of Type * Type
TyList of Type CompOsed ’[ypeS
TyForall of string * Type Generate one or two
(* Types of known variables *) rWeVV<3CNWSTFaiﬂTS
type TypingContext =
Map<string, Type> Polymorphic type

Forall (bonus)

(* Given a list of
constraints, produce a
list of substitutions ¥*)

val solve :

list<Type * Type>
-> list<string * Type>

(* Given a typing context
(known wvariables) and
expression, return the type
of the expression and
list of constraints *)

val generate :

TypingContext
-> Expression
-> Type * list<Type * Type>

Type inference
operations

Constraint solving
Takes constraints
Produces substitution

Constraint generating
Takes an expression
Produces constraints
Also check variables

Lab overview
Tiny Hindley-Milner step-by-step

TinyHM - Basic tasks

1. Complete the simple numerical constraint solver
Add the two missing substitutions to make it work!

2. Solving type constrain

ts with numbers and Booleans

Follow the same structure, but now for type constraints...

3. Type inference for binary operators and conditionals
Add constraint generation for a subset of TinyML

4 Supporting more Tiny
Add let, functions, app

5. Adding simple data ty
Constraint generation

VIL expressions
ication and occurs check

DES
for tuples

TinyHM - Bonus & super tasks

1. Supporting more TinyML data types
Add type checking for discriminated unions

2. Type inference for lists - poor method
Add recursion & units and try this on list codel

3. Adding proper support for generic lists
New type, but without explicit type declarations

4. Inferring polymorphic code for let bindings
implementing proper Hindley-Milner let-polymorphism

5. Exploring pathological cases
Did you know HM has DEXPTIME complexity?

Lessons learned
Tiny Hindley-Milner type inference

A Aremarkable quality of ML language(s)
® T,pesasacommunication mechanism
Z Nice introduction to constraint solving

E Much more can be done with this idea...

