
TinyProlog: Logic programming language
Structure, unification, resolution

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Model of knowledge
Closed world assumption

Only declared facts are true
No unknown children exist!
Shapes the semantics of Prolog

Negation in Prolog

Yes means provably true
No means not provably true
False only in a closed world

TinyProlog
programs
Program is a list of
clauses which are:

1) Rules (head + body)
2) Facts (head)

A term can be:

1) Variable
2) Atom
3) Predicate

Theory behind resolution
Prolog programs as logic clauses

Horn clause:

Equivalent:

A ← B ​ ∧1 B ​ ∧2 … ∧ B ​n

A ∨ ¬B ​ ∨1 ¬B ​ ∨2 … ∨ ¬B ​n

SLD resolution in Prolog

Sound and refutation-complete
resolution for Horn clauses
Will prove 'false' if possible

Variables in Prolog clauses
Universally quantified over formula, existentially over body

∀x∀y(grandparent(x, y) ← ∃z(parent(x, z) ∧ parent(z, y)))

Transformed using standard logical operations

∀x∀y(grandparent(x, y) ∨ ¬∃z(parent(x, z) ∧ parent(z, y)))
∀x∀y(grandparent(x, y) ∨ ∀z¬(parent(x, z) ∧ parent(z, y)))
∀x∀y∀z(grandparent(x, y) ∨ ¬parent(x, z) ∨ ¬parent(z, y))

We need to use free variables when applying rule!

Prolog resolution logic
 Start with user query as the goal

Single (or multiple) term(s) with unbound variables

 Find applicable rule/fact by matching its head
Unification to check if the rule can be applied

 Generate substitution from the matching
Substitution generated by unification process

 Add goals based on the rule body
Apply substitution and repeat until all goals solved

Sketch
How resolution works

Numbers
Calculating inside Prolog

 Peano arithmetic encoded as zero & successor

 Constraint Logic Programming (CLP) extensions

 CLP(Z) adds a specialized solver for integers

 CLP(B), CLP(Q), CLP(R) and more

Cyclic terms and occurs check
Occurs check

Avoid terms of the form A = f(A)
Supports rational trees (cyclic terms)
Not checking is faster, but not right

Practical Prolog

Some operations can fail:
A = 1 + A, B is A.
Checks can be turned on:
set_prolog_flag(occurs_check, true).`

Demo
Enabling occurs check

