TinyProlog: Logic programming language
Structure, unification, resolution

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
[]]

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Model of knowledge

Closed world assumption

e Only declared facts are true
e No unknown children exist!
e Shapes the semantics of Prolog

Negation in Prolog

e Yes means provably true
e NO means not provably true
e False only ina closed world

[Fovw stvacrave)
o
human(socrates).
>) Pved{caﬁe
1 y) '
mor‘tal(XE - humay(_).
Vaviable

Wm\\u wm stvactdve |

human(socrates).]——— facr

‘mortal(X) :- Euman(Xl.]- vale
| |
ek \/QoJﬂ

TinyProlog
programs

Program is a list of
clauses which are:

1) Rules (head + body)
2) Facts (head)

A term can be:

1) Variable
2) Atom
3) Predicate

Theory behind resolution

Prolog programs as logic clauses

e Hornclause: A« BiABy,A...\B,
e Fquivalent AV -ByV =By V...V B,

THE LOGIC THEORY MACHINE
w ORMATION PROCESS

SLD resolution in Prolog

e Sound and refutation-complete
resolution for Horn clauses
o Will prove false if possible

Variables in Prolog clauses

Universally quantified over formula, existentially over body
VaxVy(grandparent(x,y) < Jz(parent(x, z) A parent(z,y)))
Transformed using standard logical operations

VaVy(grandparent(x,y) V ~3z(parent(x, z) N parent(z,y
VaVy(grandparent(x,y) V Vz—(parent(x, z) A parent(z,y
VaVyVz(grandparent(z,y) V —parent(z, z) V —parent(z,y))

We need to use free variables when applying rule!

Prolog resolution logic

Q

L4

Q M

Start with user query as the goal
Single (or multiple) term(s) with unbound variables

Find applicable rule/tfact by matching its head
Unification to check if the rule can be appliec

Generate substitution from the matching
Substitution generated by unification process

Add goals based on the rule body
Apply substitution and repeat until all goals solvec

Sketch
How resolution works

Numbers
Calculating inside Prolog

Pl Peano arithmetic encoded as zero & successor
¥ Constraint Logic Programming (CLP) extensions
CLP(Z) adds a specialized solver for integers
CLP(B), CLP(Q), CLP(R) and more

\((

Cyclic terms and occurs check

Occurs check

e Avoid terms of the form A = f(A)
e Supports rational trees (cyclic terms)
e Not checking is faster, but not right

Practical Prolog

e SOme operations can fail:
A=1+ A, B 1is A.

e Checks can be turned on:
set_prolog_flag(occurs_check, true).

Demo
—nabling occurs check

