TinyProlog: Logic programming language
FH# tricks and step-by-step guide

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
[]]

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Advanced F# features

Active patterns

e Custom patterns for use in match
e Match number with 0dd or Even %
e Recognize special forms of terms

e Complete or partial patterns

Sequence expressions

e Write code that generates a seguence of items
e Comprehensions (Haskell), generators (JS), ...
e | azyseq {..}oreager[..]orarrays[]..]]

Demo
Advanced F# features

TinyProlog
Code structure

(* Recursive term definition ¥*) TInVPrOIOg
type Term =
| Atom of string Programs
| Variable of string
| Predicate of
string * Term list
| Call of Term * Term list

—ncoded as F# types!

Atom vs. variable
(* Facts have empty Body *)

type Clause = Atom is a single data
{ Head : Term , , ,
Body : Term list } tem, thing that exists.
(* Create a fact clause *) \/ar|ab|e |S 3 p|ace_
let fact p =
{ Head = p; Body = []) nolder that we want to

assign a term to.

(* Create a rule clause *)
let rule p b =
{ Head = p; Body = b }

The unification process

Tiny implementation

e Similar to our type inference code! =
e unify and unifyLists functions @arem>(@arles> Gillian

e (Senerate substitution for variables

Used in Prolog context

e Same 2 uses of substitution

e Occurs check done optionally

e Use fresh set of variables when
reusing rules from program database!

let rec unifylLists 11 12

match 11, 12 with
I P B e
(* empty substitution¥)
| hl::tl, h2::t2 ->
match unify hl h2 with
| Some(s) -> (*
1. substitution 's' to
unify 'hl' and 'h2'
2. now unifiy 'tl' and 't2'

recursively & compose

Unification logic
Split into two functions
for better readability

unify matches terms

unifyLists matches

3. 1f not possible, fail *) , _

| _ - (% fail *) two lists using unify

| => (* fail ¥*)
and unify tl t2 =

match tl, t2 with
| Atom(al), Atom(az2) -> (* does 'al' match 'az2'? *)
| Variable(v), t | t, Variable(v) ->

(* return a substitution ¥*)
| Predicate(pl, argsl), Predicate(p2, args2) ->

(* 1f pl = p2, unify arguments recursively ¥*) xds

| -> None

Charles
University

% Number: O
Zero

% Number: 1
one = s(zero)

% Number: 5
five = s(s(s(s(s(zero)))))

% Empty list
empty

$ List [1]
cons (one, empty)

% List [1l; 5]
cons (one, cons (five, empty))

Adding support for
numbers and lists

Nothing extra is needed!

Good enough for a tiny
implementation.

Terribly inefficient and
imited if you want to
calculate anything!

Lab overview
TinyProlog system step-by-step

TinyProlog - Basic tasks

1. Implementing basic unification of terms
Recursively match atoms, variables and predicates

2. Composing and applying substitutions
To handle multiple occurrences of a variable correctly

3. Searching clauses & variable renaming
Find applicable rules and relevant facts in program

4. Generating and proving goals recursively
The key trick! Generate and solve goals in a loop

5. Adding numbers to TinyProlog
Representing, calculating and pretty printing

TinyProlog - Bonus and super tasks

1. Lazy search and support for lists
Refactoring for readability and more pretty printing

2. Generating magic squares in TinyProlog
'n which we find out how slow our implementation is -)

3. Implementing call and functional maplist
Adding special predicate for higher-order programming

4. Adding support for occurs checks
T you want to make it slower and more correct

5. Implementing Prolog-style cut operator
super-bonus if you are into Prolog programming...

Lessons learned
A tiny logic programming language

— Remarkably similar to ML type inference!

@ Thisis not a coincidence...

Q, Evaluation as search, not a sequence of steps
B Much work needed to make this practical

