
TinyProlog: Logic programming language
F# tricks and step-by-step guide

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Advanced F# features
Active patterns

Custom patterns for use in match
Match number with Odd or Even
Recognize special forms of terms
Complete or partial patterns

Sequence expressions

Write code that generates a sequence of items
Comprehensions (Haskell), generators (JS), ...
Lazy seq {..} or eager [..] or arrays [|..|]

Demo
Advanced F# features

TinyProlog
Code structure

(* Recursive term definition *)
type Term =
 | Atom of string
 | Variable of string
 | Predicate of
 string * Term list
 | Call of Term * Term list

(* Facts have empty Body *)
type Clause =
 { Head : Term
 Body : Term list }

(* Create a fact clause *)
let fact p =
 { Head = p; Body = [] }

(* Create a rule clause *)
let rule p b =
 { Head = p; Body = b }

TinyProlog
programs
Encoded as F# types!

Atom vs. variable

Atom is a single data
item, thing that exists.

Variable is a place-
holder that we want to
assign a term to.

The unification process
Tiny implementation

Similar to our type inference code!
unify and unifyLists functions
Generate substitution for variables

Used in Prolog context

Same 2 uses of substitution
Occurs check done optionally
Use fresh set of variables when
reusing rules from program database!

let rec unifyLists l1 l2 =
 match l1, l2 with
 | [], [] ->
 (* empty substitution*)
 | h1::t1, h2::t2 ->
 match unify h1 h2 with
 | Some(s) -> (*
 1. substitution 's' to
 unify 'h1' and 'h2'
 2. now unifiy 't1' and 't2'
 recursively & compose
 3. if not possible, fail *)
 | _ -> (* fail *)
 | _ -> (* fail *)

and unify t1 t2 =
 match t1, t2 with
 | Atom(a1), Atom(a2) -> (* does 'a1' match 'a2'? *)
 | Variable(v), t | t, Variable(v) ->
 (* return a substitution *)
 | Predicate(p1, args1), Predicate(p2, args2) ->
 (* if p1 = p2, unify arguments recursively *)
 | _ -> None

Unification logic
Split into two functions
for better readability

unify matches terms

unifyLists matches
two lists using unify

% Number: 0
zero

% Number: 1
one = s(zero)

% Number: 5
five = s(s(s(s(s(zero)))))

% Empty list
empty

% List [1]
cons(one, empty)

% List [1; 5]
cons(one, cons(five, empty))

Adding support for
numbers and lists
Nothing extra is needed!

Good enough for a tiny
implementation.

Terribly inefficient and
limited if you want to
calculate anything!

Lab overview
TinyProlog system step-by-step

TinyProlog - Basic tasks
1. Implementing basic unification of terms

Recursively match atoms, variables and predicates

2. Composing and applying substitutions
To handle multiple occurrences of a variable correctly

3. Searching clauses & variable renaming
Find applicable rules and relevant facts in program

4. Generating and proving goals recursively
The key trick! Generate and solve goals in a loop

5. Adding numbers to TinyProlog
Representing, calculating and pretty printing

TinyProlog - Bonus and super tasks
1. Lazy search and support for lists

Refactoring for readability and more pretty printing

2. Generating magic squares in TinyProlog
In which we find out how slow our implementation is :-)

3. Implementing call and functional maplist
Adding special predicate for higher-order programming

4. Adding support for occurs checks
If you want to make it slower and more correct

5. Implementing Prolog-style cut operator
Super-bonus if you are into Prolog programming...

Lessons learned
A tiny logic programming language

 Remarkably similar to ML type inference!

 This is not a coincidence...

 Evaluation as search, not a sequence of steps

 Much work needed to make this practical

