TinyProlog: Logic programming language
How logic programming works

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
[]]

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Logic programming

Declarative style - specify what, but not how
Programs consists of facts and rules
—valuation by clever inference engine

© © j,

Prolog, Datalog and basis of other systems
@z Origins in Al and natural language

From inference to programming

Type inference Logic programming

e Program analysis e Program evaluation

e Generated constraints e Handwritten programs

e Unification of types e Unification of terms

e Infer type assignment e Infer variable assignment
e Unification + substitution e Unification + substitution

A bit of history

Natural language
processing in the late
19600s & early 19/0s

SHRDLU, PLANNER

'Find a block which is

taller than the one you
are holding and put it

iNto the box.

Prolog then and now

Alain Colmerauer, Marseilles (1972)

e Natural language processing
e Automatic theorem proving

Fifth generation systems (1980s)

e 10 year initiative in Japan
e Epoch-making knowledge processing

Prolog and Datalog today

e Used in real-world in specialized domains
e Basis of many reasoning & solving systems

Prolog "Hello world"

I:a m | |y tree q U e ryl n g The line of succession

e Simple database guerying

e Search for data patterns

e Grandparent (parent of a parent)
Father (parent who is male)

List processing
e | inked lists with ‘cons’ and nil’

e Matching lists with patterns
e Many functions become multi-purpose

Demo
—amily tree and lists

15

. 6
/
Gy
>IN
3/ N\ @
A AS AY

A

AT

10y

iy

Magic squares

Naive method
enerate & test
all permutations

Better approaches
Try adding only
reasonable options

Naive is fine for us!

Demo
Generating magic squares

TinyProlog: Logic programming language
Structure, unification, resolution

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
[]]

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Model of knowledge

Closed world assumption

e Only declared facts are true
e No unknown children exist!
e Shapes the semantics of Prolog

Negation in Prolog

e Yes means provably true
e NO means not provably true
e False only ina closed world

[Fovw stvacrave)
o
human(socrates).
>) Pved{caﬁe
1 y) '
mor‘tal(XE - humay(_).
Vaviable

Wm\\u wm stvactdve |

human(socrates).]——— facr

‘mortal(X) :- Euman(Xl.]- vale
| |
ek \/QoJﬂ

TinyProlog
programs

Program is a list of
clauses which are:

1) Rules (head + body)
2) Facts (head)

A term can be:

1) Variable
2) Atom
3) Predicate

Theory behind resolution

Prolog programs as logic clauses

e Hornclause: A« BiABy,A...\B,
e Fquivalent AV -ByV =By V...V B,

THE LOGIC THEORY MACHINE
w ORMATION PROCESS

SLD resolution in Prolog

e Sound and refutation-complete
resolution for Horn clauses
o Will prove false if possible

Variables in Prolog clauses

Universally quantified over formula, existentially over body
VaxVy(grandparent(x,y) < Jz(parent(x, z) A parent(z,y)))
Transformed using standard logical operations

VaVy(grandparent(x,y) V ~3z(parent(x, z) N parent(z,y
VaVy(grandparent(x,y) V Vz—(parent(x, z) A parent(z,y
VaVyVz(grandparent(z,y) V —parent(z, z) V —parent(z,y))

We need to use free variables when applying rule!

Prolog resolution logic

Q

L4

Q M

Start with user query as the goal
Single (or multiple) term(s) with unbound variables

Find applicable rule/tfact by matching its head
Unification to check if the rule can be appliec

Generate substitution from the matching
Substitution generated by unification process

Add goals based on the rule body
Apply substitution and repeat until all goals solvec

Sketch
How resolution works

Numbers
Calculating inside Prolog

Pl Peano arithmetic encoded as zero & successor
¥ Constraint Logic Programming (CLP) extensions
CLP(Z) adds a specialized solver for integers
CLP(B), CLP(Q), CLP(R) and more

\((

Cyclic terms and occurs check

Occurs check

e Avoid terms of the form A = f(A)
e Supports rational trees (cyclic terms)
e Not checking is faster, but not right

Practical Prolog

e SOme operations can fail:
A=1+ A, B 1is A.

e Checks can be turned on:
set_prolog_flag(occurs_check, true).

Demo
—nabling occurs check

TinyProlog: Logic programming language
FH# tricks and step-by-step guide

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
[]]

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Advanced F# features

Active patterns

e Custom patterns for use in match
e Match number with 0dd or Even %
e Recognize special forms of terms

e Complete or partial patterns

Sequence expressions

e Write code that generates a seguence of items
e Comprehensions (Haskell), generators (JS), ...
e | azyseq {..}oreager[..]orarrays[]..]]

Demo
Advanced F# features

TinyProlog
Code structure

(* Recursive term definition ¥*) TInVPrOIOg
type Term =
| Atom of string Programs
| Variable of string
| Predicate of
string * Term list
| Call of Term * Term list

—ncoded as F# types!

Atom vs. variable
(* Facts have empty Body *)

type Clause = Atom is a single data
{ Head : Term , , ,
Body : Term list } tem, thing that exists.
(* Create a fact clause *) \/ar|ab|e |S 3 p|ace_
let fact p =
{ Head = p; Body = []) nolder that we want to

assign a term to.

(* Create a rule clause *)
let rule p b =
{ Head = p; Body = b }

The unification process

Tiny implementation

e Similar to our type inference code! =
e unify and unifyLists functions @arem>(@arles> Gillian

e (Senerate substitution for variables

Used in Prolog context

e Same 2 uses of substitution

e Occurs check done optionally

e Use fresh set of variables when
reusing rules from program database!

let rec unifylLists 11 12

match 11, 12 with
I P B e
(* empty substitution¥)
| hl::tl, h2::t2 ->
match unify hl h2 with
| Some(s) -> (*
1. substitution 's' to
unify 'hl' and 'h2'
2. now unifiy 'tl' and 't2'

recursively & compose

Unification logic
Split into two functions
for better readability

unify matches terms

unifyLists matches

3. 1f not possible, fail *) , _

| _ - (% fail *) two lists using unify

| => (* fail ¥*)
and unify tl t2 =

match tl, t2 with
| Atom(al), Atom(az2) -> (* does 'al' match 'az2'? *)
| Variable(v), t | t, Variable(v) ->

(* return a substitution ¥*)
| Predicate(pl, argsl), Predicate(p2, args2) ->

(* 1f pl = p2, unify arguments recursively ¥*) xds

| -> None

Charles
University

% Number: O
Zero

% Number: 1
one = s(zero)

% Number: 5
five = s(s(s(s(s(zero)))))

% Empty list
empty

$ List [1]
cons (one, empty)

% List [1l; 5]
cons (one, cons (five, empty))

Adding support for
numbers and lists

Nothing extra is needed!

Good enough for a tiny
implementation.

Terribly inefficient and
imited if you want to
calculate anything!

Lab overview
TinyProlog system step-by-step

TinyProlog - Basic tasks

1. Implementing basic unification of terms
Recursively match atoms, variables and predicates

2. Composing and applying substitutions
To handle multiple occurrences of a variable correctly

3. Searching clauses & variable renaming
Find applicable rules and relevant facts in program

4. Generating and proving goals recursively
The key trick! Generate and solve goals in a loop

5. Adding numbers to TinyProlog
Representing, calculating and pretty printing

TinyProlog - Bonus and super tasks

1. Lazy search and support for lists
Refactoring for readability and more pretty printing

2. Generating magic squares in TinyProlog
'n which we find out how slow our implementation is -)

3. Implementing call and functional maplist
Adding special predicate for higher-order programming

4. Adding support for occurs checks
T you want to make it slower and more correct

5. Implementing Prolog-style cut operator
super-bonus if you are into Prolog programming...

Lessons learned
A tiny logic programming language

— Remarkably similar to ML type inference!

@ Thisis not a coincidence...

Q, Evaluation as search, not a sequence of steps
B Much work needed to make this practical

Nttp://alain.colmerauer.free.fr/alcol/ArchivesPublications/PrologHi:
nttps.//www.metalevel at/prolog/clpz
nttps://github.com/Naereen/ Tiny-Prolog-in-OCaml/
Nttps.//yanniss.github.io/next-paradigm-onward19.pdf

nttps.//tgifernando.files.wordpress.com/2013/071/sld_resolution-
4spp.pdf

http://alain.colmerauer.free.fr/alcol/ArchivesPublications/PrologHistory/19november92.pdf
https://www.metalevel.at/prolog/clpz
https://github.com/Naereen/Tiny-Prolog-in-OCaml/
https://yanniss.github.io/next-paradigm-onward19.pdf
https://tgifernando.files.wordpress.com/2013/01/sld_resolution-4spp.pdf
https://tgifernando.files.wordpress.com/2013/01/sld_resolution-4spp.pdf

