
TinySelf: Tiny object-oriented language
Working with mutable data in F#

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Mutable records in F#
Defining mutable objects

Records with mutable fields
We could use classes too

Equality and records

Still use structural equality by default
Not if records (can) contain functions!
ReferenceEquality attribute to override

type Person =
 { mutable Name : string
 mutable Book : string option }

let setName n p =
 p.Name <- n
let setBook b p =
 p.Book <- Some b

let x = { Name = "Bill"; k = None }
x |> setName "William"
x |> setBook "Alice in Wonderland"

match x with
| { Book = Some book } ->
 printfn "%s likes %s" x.Name book
| _ ->
 printfn "%s is sad :-(" x.Name

Mutable records
Helper functions
Make code a bit nicer
Can support |> pipe

Pattern matching
Same as immutable
Nice data extraction!

Demo
Working with mutable records

Different than before!

Everything is an Objekt
Type definition stays
We change what we put in!

Uniformity has drawbacks
Everything type checks!

TinySelf programming style

Demo
TinySelf object visualizer

Different than before!

Everything is an Objekt
Type definition stays
We change what we put in!

Uniformity has drawbacks
Everything type checks!

TinySelf programming style
Helper methods

Simplify object construction

let makeString s =
 makeDataObject [
 makeParentSlot "parent*"
 stringPrototype
 makeSlot "value"
 (makeSpecial(String s))
 makeAssignmentSlot "value"
]

