TinySelt: Tiny object-oriented language
Code structure and step-by-step guide

Tomas Petricek, Charles University

¥ (Omas@tomasp.net

¥ (Wtomasp.net

& Nitps/tomasp.net

& hitps//d3s mff.cuni.cz/teaching/nprg0/7/



mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

How Self-like systems
put things on screen?

Escape hatch is a must
. Smalltalk system calls
e Self primitive calls

(primitives primitivelist)

TinySelf special objects
Primitive string values
Native F# methods




// Special TinySelf objects!
type Special =

| String of string

| Native of (Objekt -> Objekt)

// Optionally special object
and Objekt =
{ mutable Code : Objekt option
mutable Special : Special option
mutable Slots : Slot list }

// Code to clone an object
let cloneCode =

{ Slots = []; Code = None
Special = Some (Native (fun arcd ->
lookupSlotValue "self*" arcd
|> cloneObject )) 1}

// Method with special code object
let cloneMethod =
{ Slots = []; Special = None;
Code = Some cloneCode }

Special objects

String values

No other way to
represent strings!

Native methods

~1# function taking
‘activation record” anc
returning the result

Used as method code

L2

Charles
University




Input:

obj, the object being searched for matching slots
sel, the message selector
V, the set of objects already visited along this path

Output:
M, the set of matching slots

Algorithm:

if obj e V
then M « ¢
else M ¢« {s € obj | s.name = sel}
if M = &g then M « parent_lookup(obj, sel, V) end
end
return M

Where parent_lookup(obj, sel, V) is defined as follows:

P < {s € obj | s.isParent}
M < v lookup(s.contents, sel, V v {obj})
sepP

return M

Slot lookup logic

Find a set of
matching slots

1) Search target object

2) Search parents and
Union the results

3) Avoid infinite loops!

L2

Charles
University




Message sending logic

Self handbook TinySelf translation

A normal send does a look- 1. Find slot using lookup!

up to obtain the target slot, 2. Check it is exactly one
3. If there is no code, return it

A | thereis code, runit...
o Create activation record
o Run (non-)native code

If the slot contains a data
object, then the data object
IS simply returned.

If the slot contains a
method, an activation is
created and run.




@ o

rearing = *Hello!

Qveet = ‘

\

(SQU' gv&ﬂms fvint,
nwe pvl\M—

v prine )

|

@ Wello gqreet: 'werGo3?'

nawe = ‘NPRGO}?

]

ﬁ

Vecaivew :/
[\ Qs

nawme  print,

"N oprive )

(sdb qveeting pria,

|

Activation record

Lookup In activation record
to get all our code needs!

Clone of method
't could have datal

Self as parent
Access target's slots!

Arguments as parent
AcCcess arguments!




Sketch
How methods are invoked




Representing TinySelf code

AST is a tree of objects

e (Objects store sub-expressions etc.
e Ordinary recursive F# interpreter

(st aveeting fving,
nawme  prine,

V' priwr )

More object oriented?

e All nodes have eval method
e Becomes (a bit) too hard to implement!

Benefits and drawbacks

e Both options differ from actual Self/Smalltalk

e Simpler than actual compiled methods!




\(\\MK = \ft-e.va\‘

volue = 'Mello would'

qm& - sewd' )
tavdet -

Wessage = 'pvint'

'&VQVWQVH‘S = @
Y ~_ |

Simple expression

'Hello world" print

Send expression
Recelver, message,
arguments to be used

String expression
String value to be returned




Lab overview
TinySelf system step-by-step




TinySelf - Basic tasks

1. Implementing slot lookup and strings
Traversing the prototype hierarchy to find slots

7. Implementing (basic) message sending
Returning data slots and calling (native) methods

3. Adding method arguments and assignments
Creating assignment slots and revised activation records

4. Object-oriented Booleans and conditionals
Higher-order methods with blocks

5. Representing & interpreting TinySelf expressions
Creating expression objects and an interpreter




TinySelf - Bonus and super tasks

1. Arguments and sequencing of expressions
Adding more types of expressions to TinySelf

2. Revisiting Booleans and conditionals
Representing TinySelf code with conditions

3. Objects as lists and more expressions
Adding more infrastructure before the next step...

4. Creating web-based visualizers
A small step towards TinyMorphic framework




CONCEPTS IN
PROGRAMMING
LANGUAGES

John C. Mitchell

TinySelf and 00

Dynamic lookup
~ind method using lookup

Abstraction
No private slots in TinySelf

Subtyping
Object with required slots

Inheritance
By setting a parent slot




Class: Class (open)
Slots

enclosing (open)
methods (open)
name (open)
parent (open)

print ['Hello worldI"x| + X

Workspace
Code
prin il worias] -

Output

Hello world!
Commands
Run!
x0=
<0<l
x0=
xte{fa] el ﬁ L + | reflectObject b » | getClass + |+ " getNarme + |
hirml - £
. oy
x3=|[2x] link get_p + X| reflectObject +X getClass + X|+ A
]
html ['div"x ;d&: +
X x X
<1e| i el ﬁ .
.
<O-frame x
<L
x2=(7x] html @ E get_p + X reflectObject +X| getSlots ."‘ map ([ name value ||[7x] html @ x2:[2 link X

3"
.

What is missing

Self-sustainable
Complete basic library
Reflection capabllities

Reflection via mirrors
Irror objects

nspect & modify

Done In Nanospeak

L2

Charles
University




Lessons learned
A tiny prototype-based OO language

ea DBasic logic of object-oriented languages

& Shows how to build self-sustainable system
=] Different implementation - everything is object
@ Hard to implement! Need debuggers, not types




