
TinySelf: Tiny object-oriented language
Code structure and step-by-step guide

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

How Self-like systems
put things on screen?
Escape hatch is a must
Smalltalk system calls
Self primitive calls
(primitives primitiveList)

TinySelf special objects
Primitive string values
Native F# methods

// Special TinySelf objects!
type Special =
 | String of string
 | Native of (Objekt -> Objekt)

// Optionally special object
and Objekt =
 { mutable Code : Objekt option
 mutable Special : Special option
 mutable Slots : Slot list }

// Code to clone an object
let cloneCode =
 { Slots = []; Code = None
 Special = Some(Native(fun arcd ->
 lookupSlotValue "self*" arcd
 |> cloneObject)) }

// Method with special code object
let cloneMethod =
 { Slots = []; Special = None;
 Code = Some cloneCode }

Special objects
String values

No other way to
represent strings!

Native methods

F# function taking
"activation record" and
returning the result

Used as method code

Slot lookup logic
Find a set of
matching slots

1) Search target object

2) Search parents and
union the results

3) Avoid infinite loops!

Self handbook

A normal send does a look-
up to obtain the target slot;

If the slot contains a data
object, then the data object
is simply returned.

If the slot contains a
method, an activation is
created and run.

Message sending logic
TinySelf translation

1. Find slot using lookup!
2. Check it is exactly one
3. If there is no code, return it
4. If there is code, run it...

Create activation record
Run (non-)native code

Activation record
Lookup in activation record
to get all our code needs!

Clone of method
It could have data!

Self as parent
Access target's slots!

Arguments as parent
Access arguments!

Sketch
How methods are invoked

Representing TinySelf code
AST is a tree of objects

Objects store sub-expressions etc.
Ordinary recursive F# interpreter

More object oriented?

All nodes have eval method
Becomes (a bit) too hard to implement!

Benefits and drawbacks

Both options differ from actual Self/Smalltalk
Simpler than actual compiled methods!

Simple expression
'Hello world' print

Send expression
Receiver, message,
arguments to be used

String expression
String value to be returned

Lab overview
TinySelf system step-by-step

TinySelf - Basic tasks
1. Implementing slot lookup and strings

Traversing the prototype hierarchy to find slots

2. Implementing (basic) message sending
Returning data slots and calling (native) methods

3. Adding method arguments and assignments
Creating assignment slots and revised activation records

4. Object-oriented Booleans and conditionals
Higher-order methods with blocks

5. Representing & interpreting TinySelf expressions
Creating expression objects and an interpreter

TinySelf - Bonus and super tasks
1. Arguments and sequencing of expressions

Adding more types of expressions to TinySelf

2. Revisiting Booleans and conditionals
Representing TinySelf code with conditions

3. Objects as lists and more expressions
Adding more infrastructure before the next step...

4. Creating web-based visualizers
A small step towards TinyMorphic framework

TinySelf and OO
Dynamic lookup
Find method using lookup

Abstraction
No private slots in TinySelf

Subtyping
Object with required slots

Inheritance
By setting a parent slot

What is missing
Self-sustainable
Complete basic library
Reflection capabilities

Reflection via mirrors
Mirror objects
Inspect & modify
Done in Nanospeak

Lessons learned
A tiny prototype-based OO language

 Basic logic of object-oriented languages

 Shows how to build self-sustainable system

 Different implementation - everything is object

 Hard to implement! Need debuggers, not types

