
TinySelf: Tiny object-oriented language
History and foundations

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Object-orientation
Dynamic lookup - object
chooses how to respond

Abstraction - object state
can be hidden from user

Subtyping - any compatible
object can be used

Inheritance - reuse to
implement a new object

1960s-70s

Algol-based and
scientific Simula

Tools for thought
and messaging in
Smalltalk

Brief history
1980s

Rigorous Eiffel
and "serious" C++

Prototypes and
materialized
objects in Self

1990s-2000s

Class-based safe
Java and C#

Prototypes in
JavaScript and
typed TypeScript

Why TinySelf?
"Pure" object-orientation

Simple, uniform system
Everything is an object (for real)
Simpler than class-based Smalltalk

Shows the potential of objects

Not Java-style organization of code
Objects for code, state and execution!
Objects with introspection and debugging!
Objects and graphical interfaces!

Self & Morphic user
interface framework
Visual programming

Programming by
graphically manipulating
objects on screen

Direct programming

Objects on screen are
objects in the system

Demo
(Not so) Tiny Smalltalk

TinySelf
Scope of the implementation

 Prototype-based multiple inheritance

 Explaining basic runtime structures

 Methods with simple interpreted code

 Inaccurate interpreter in "Self style"

TinySelf: Tiny object-oriented language
Using the Self programming system

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Everything is an object
Really everything

Objects, methods, lambdas,
expressions, activation records

What is an object

Object has a list of slots and
optionally contains code

Object = slots* + code?

Data object has just slots
Method object has code
Closure has code and slots!
Data object has methods as slots

// Object consists of zero or more
// slots and optionally code
type Objekt =
 { mutable Code : Objekt option
 mutable Slots : Slot list }

// A slot has name and contents;
// Some slots are parents
and Slot =
 { Name : string
 Contents : Objekt
 IsParent : bool }

TinySelf objects
Object consists of zero
or more slots and
optional code!

In Self parent slot
names end with *

TinySelf objects can
also be special things

Prototypes and slots
Message send looks at
target object first, then
searches parents

cheshire name // OK
cheshire book // OK

larry name // OK
larry book // Fail

Message send fail if none
or multiple slots found

Demo
Representing cats in Self

"""Data object with name"""
(| book = 'Alice in Wonderland' |)

"""Method with some code"""
(self name printLine)

"""Data object with parent
 slot and a 'speak' method"""
(| parent* = cat
 name = 'Cheshire Cat'
 speak = (
 self sound printLine
)
|)

"""Data access or method call"""
cheshire name
cheshire speak

Message sending
Lookup slot with a
matching name, then:

Assignment slots and
special calls differ...

If it contains data
object, it is returned
If it contains method,
the method is called

Demo
Hello world and traits

The power of simplicity...
Simplicity and uniformity

All objects can be opened!
Activation records for debugging
Self-sustainable system

Morphic framework

Things on screen are objects!
Object with a morph prototype can draw itself
User interface is just morphs - no special code!

Demo
Morphic and graphical objects

TinySelf: Tiny object-oriented language
Working with mutable data in F#

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Mutable records in F#
Defining mutable objects

Records with mutable fields
We could use classes too

Equality and records

Still use structural equality by default
Not if records (can) contain functions!
ReferenceEquality attribute to override

type Person =
 { mutable Name : string
 mutable Book : string option }

let setName n p =
 p.Name <- n
let setBook b p =
 p.Book <- Some b

let x = { Name = "Bill"; k = None }
x |> setName "William"
x |> setBook "Alice in Wonderland"

match x with
| { Book = Some book } ->
 printfn "%s likes %s" x.Name book
| _ ->
 printfn "%s is sad :-(" x.Name

Mutable records
Helper functions
Make code a bit nicer
Can support |> pipe

Pattern matching
Same as immutable
Nice data extraction!

Demo
Working with mutable records

Different than before!

Everything is an Objekt
Type definition stays
We change what we put in!

Uniformity has drawbacks
Everything type checks!

TinySelf programming style

Demo
TinySelf object visualizer

Different than before!

Everything is an Objekt
Type definition stays
We change what we put in!

Uniformity has drawbacks
Everything type checks!

TinySelf programming style
Helper methods

Simplify object construction

let makeString s =
 makeDataObject [
 makeParentSlot "parent*"
 stringPrototype
 makeSlot "value"
 (makeSpecial(String s))
 makeAssignmentSlot "value"
]

TinySelf: Tiny object-oriented language
Code structure and step-by-step guide

Tomas Petricek, Charles University









tomas@tomasp.net
@tomasp.net
https://tomasp.net
https://d3s.mff.cuni.cz/teaching/nprg077

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

How Self-like systems
put things on screen?
Escape hatch is a must
Smalltalk system calls
Self primitive calls
(primitives primitiveList)

TinySelf special objects
Primitive string values
Native F# methods

// Special TinySelf objects!
type Special =
 | String of string
 | Native of (Objekt -> Objekt)

// Optionally special object
and Objekt =
 { mutable Code : Objekt option
 mutable Special : Special option
 mutable Slots : Slot list }

// Code to clone an object
let cloneCode =
 { Slots = []; Code = None
 Special = Some(Native(fun arcd ->
 lookupSlotValue "self*" arcd
 |> cloneObject)) }

// Method with special code object
let cloneMethod =
 { Slots = []; Special = None;
 Code = Some cloneCode }

Special objects
String values

No other way to
represent strings!

Native methods

F# function taking
"activation record" and
returning the result

Used as method code

Slot lookup logic
Find a set of
matching slots

1) Search target object

2) Search parents and
union the results

3) Avoid infinite loops!

Self handbook

A normal send does a look-
up to obtain the target slot;

If the slot contains a data
object, then the data object
is simply returned.

If the slot contains a
method, an activation is
created and run.

Message sending logic
TinySelf translation

1. Find slot using lookup!
2. Check it is exactly one
3. If there is no code, return it
4. If there is code, run it...

Create activation record
Run (non-)native code

Activation record
Lookup in activation record
to get all our code needs!

Clone of method
It could have data!

Self as parent
Access target's slots!

Arguments as parent
Access arguments!

Sketch
How methods are invoked

Representing TinySelf code
AST is a tree of objects

Objects store sub-expressions etc.
Ordinary recursive F# interpreter

More object oriented?

All nodes have eval method
Becomes (a bit) too hard to implement!

Benefits and drawbacks

Both options differ from actual Self/Smalltalk
Simpler than actual compiled methods!

Simple expression
'Hello world' print

Send expression
Receiver, message,
arguments to be used

String expression
String value to be returned

Lab overview
TinySelf system step-by-step

TinySelf - Basic tasks
1. Implementing slot lookup and strings

Traversing the prototype hierarchy to find slots

2. Implementing (basic) message sending
Returning data slots and calling (native) methods

3. Adding method arguments and assignments
Creating assignment slots and revised activation records

4. Object-oriented Booleans and conditionals
Higher-order methods with blocks

5. Representing & interpreting TinySelf expressions
Creating expression objects and an interpreter

TinySelf - Bonus and super tasks
1. Arguments and sequencing of expressions

Adding more types of expressions to TinySelf

2. Revisiting Booleans and conditionals
Representing TinySelf code with conditions

3. Objects as lists and more expressions
Adding more infrastructure before the next step...

4. Creating web-based visualizers
A small step towards TinyMorphic framework

TinySelf and OO
Dynamic lookup
Find method using lookup

Abstraction
No private slots in TinySelf

Subtyping
Object with required slots

Inheritance
By setting a parent slot

What is missing
Self-sustainable
Complete basic library
Reflection capabilities

Reflection via mirrors
Mirror objects
Inspect & modify
Done in Nanospeak

Lessons learned
A tiny prototype-based OO language

 Basic logic of object-oriented languages

 Shows how to build self-sustainable system

 Different implementation - everything is object

 Hard to implement! Need debuggers, not types

 ??

https://bibliography.selflanguage.org/

https://bibliography.selflanguage.org/_static/self-power.pdf

https://handbook.selflanguage.org/SelfHandbook2017.1.pdf

https://sin-ack.github.io/posts/a-tour-of-self/

https://github.com/sin-ack/zigself/

https://github.com/tpetricek/nanospeak/

https://www.cambridge.org/core/books/concepts-in-
programming-
languages/1C05841AB47B49D12C7FC48D1022F11E

http://blog.rfox.eu/en/Programming/Series_about_Self/index.html

http://blog.rfox.eu/en/Programming/tinySelf.html

https://bibliography.selflanguage.org/
https://bibliography.selflanguage.org/_static/self-power.pdf
https://handbook.selflanguage.org/SelfHandbook2017.1.pdf
https://sin-ack.github.io/posts/a-tour-of-self/
https://github.com/sin-ack/zigself/
https://github.com/tpetricek/nanospeak/
https://www.cambridge.org/core/books/concepts-in-programming-languages/1C05841AB47B49D12C7FC48D1022F11E
https://www.cambridge.org/core/books/concepts-in-programming-languages/1C05841AB47B49D12C7FC48D1022F11E
https://www.cambridge.org/core/books/concepts-in-programming-languages/1C05841AB47B49D12C7FC48D1022F11E
http://blog.rfox.eu/en/Programming/Series_about_Self/index.html
http://blog.rfox.eu/en/Programming/tinySelf.html

