TinySelt: Tiny object-oriented language
History and foundations

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
[]]

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

CONCEPTS IN
PROGRAMMING
LANGUAGES

John C. Mitchell

Object-orientation

Dynamic lookup - object
chooses how to respond

Abstraction - object state
can be hidden from user

Subtyping - any compatible
object can be used

Inheritance - reuse to
implement a new object

Brief history

1 9603 703 1980s

EIFFEL

BERTRAND MEYER

Algol-based and Rigorous Eiffel
scientific Simula and 'serious’ C++

Tools for thought Prototypes and
and messaging in - materializec
Smalltalk objects in Self

1990s-2000s

Ken Arnold « James Gosling

The Java"
Programming

Class-based safe
Java and C#

Prototypes in
JavaScript anc
typed TypeScript

Why TinySelf?

"‘Pure” object-orientation

e Simple, uniform system
o Everything is an object (for real) Self

e Simpler than class-based Smalltalk

Shows the potential of objects

e Not Java-style organization of code
Objects for code, state and execution!
Objects with introspection and debugging!
Objects and graphical interfaces!

-
4 an atom
“parent* irags @om =
“center a poited68=(2393481) 1
“radins i3

velnut:,i' apomz-:4ﬂd:-{—5@4j:

Energy > 10 ifTrue: [
stop Eesi paint named: “red”
1 False: [

palnt named: “gray”

B Ras i Moy ph Stxe
B fling 0w

Figure 9. The user has selected one atom on which to experiment. The user
changes the “rawColor” slot from a computed to a stored value by editing direct-
ly in the atom’s outliner.

Self & Morphic user
interface framework
Visual programming

Programming by
graphically manipulating
objects on screen

Direct programming

Objects on screen are
opjects in the system

Demo
(Not so) Tiny Smalltalk

TinySelf
Scope of the implementation

Prototype-based multiple inheritance
—xplaining basic runtime structures
\Vethods with simple interpreted code

& Vi]

naccurate interpreter in "Self style’

TinySelt: Tiny object-oriented language
Using the Self programming system

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
[]]

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Everything is an object

Really everything

Objects, methods, lambdas,
expressions, activation records

What is an object

Object has a list of slots and
optionally contains code

Object = slots* + code?

e Data object has just slots

e Method object has code

e Closure has code and slots!

e Data object has methods as slots

WWWWWW

storeStringNeeds random(57836) =

nultiplier

Module:

wwwww

juluss mo
Multipliers mul
Displacement: disp

Hultiplier: mul
Displacement: disp

EEEEE

// Object consists of zero or more
// slots and optionally code
type Objekt =
{ mutable Code : Objekt option
mutable Slots : Slot list }

// A slot has name and contents;
// Some slots are parents
and Slot =
{ Name : string
Contents : Objekt
IsParent : bool }

TinySelf objects

Object consists of zero
or more slots and
optional code!

In Self parent slot
names end with *

TinySelf objects can
also be special things

MOG’S

Family of &g
Cats '

) 7Lt
|
W - i
4 _’“
R o e fi = 3
— ol &

Judith Kerr

b

Charles
University

|

N

PA‘(Q\M: X = o

wWM=JLqu//////”

\
SO\L\MX = Meow | ‘

P‘&\re.vw* = ./
. *
{’\'dr\OV\%-\ = o/

\ .
nawme = Chehive cat!

M

book = 'Alice. W
Woudevleud'

Prototypes and slots

Message send looks at
target object first, then
searches parents

cheshire name // OK
cheshire book // OK

larry name // OK
larry book // Fail

Message send fail if none
or multiple slots found

Demo
Representing cats in Self

"""Data object with name"""
(| book = '"Alice in Wonderland'

"""Method with some code"""
(self name printLine)

"""Data object with parent
slot and a 'speak' method"""

(| parent* = cat
name = 'Cheshire Cat'
speak = (

self sound printLine

)
)

"""Data access or method call"""

cheshire name
cheshire speak

)

Message sending

Lookup slot with a
matching name, then:

e [f |t contains data
opject, it is returned

o |T it contains method,
the method is called

Assignment slots and
special calls aiffer...

Demo
Hello world and traits

The power of simplicity...

Simplicity and uniformity

e All objects can be opened!
e Activation records for debugging m m

e Self-sustainable system

Morphic framework

e [NINQS ON screen are objects!
e Object with a morph prototype can draw itself
e User interface is just morphs - no special codel

Demo
Morphic and graphical objects

TinySelt: Tiny object-oriented language
Working with mutable datain F

Tomas Petricek, Charles University

¥ (Omas@tomasp.net
¥ (Wtomasp.net

F/\Y

& Nttps/tomasp.net

V/\N
[]]

& https//d3s.mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

Mutable records in F#

Defining mutable objects

e Records with mutable flelds
e \\e could use classes too

Equality and records

e Still use structural equality by default
e Not If records (can) contain functions!
e ReferenceEquality attribute to override

type Person = MUtable I‘ECOI‘dS

{ mutable Name : string
mutable Book : string option } Helper fUﬂCtiOﬂS
let setName n p = Make code a bit nicer
p.Name <- n :
let setBook b p = Can SLM)DCNT > pH]e

p.Book <- Some b

| Pattern matching
let x = { Name = "Rill"; k = None }

x |> setName "William" Same as immutable
X |> setBook "Alice in Wonderland" F%KDG(jata eXiraCiKDﬂ|

match x with
| { Book = Some book } ->

printfn "%s likes %$s" x.Name book
>

printfn "%s 1is sad :—- (" x.Name

Demo
Working with mutable records

TinySelf programming style
Different than before!

Everything is an Objekt
Type definition stays
We change what we put in

Uniformity has drawbacks
Cverything type checks!

Demo
TinySelf object visualizer

TinySelf programming style

Different than before! Helper methods

Everything is an Objekt Simplify object construction
Type definition stays et nakestring o -

We change what we putint - me et et L e rent oo
Uniformity has drawbacks makeSlot Mvalun

(makeSpecial (String s))

E\/eryﬂ/“ﬂg typ@ Ch@CkS' makeAssignmentSlot "value"
]

TinySelt: Tiny object-oriented language
Code structure and step-by-step guide

Tomas Petricek, Charles University

¥ (Omas@tomasp.net

¥ (Wtomasp.net

& Nitps/tomasp.net

& hitps//d3s mff.cuni.cz/teaching/nprg0/7/

mailto:tomas@tomasp.net
https://bsky.app/profile/tomasp.net
https://tomasp.net/
https://d3s.mff.cuni.cz/teaching/nprg077

How Self-like systems
put things on screen?

Escape hatch is a must
. Smalltalk system calls
e Self primitive calls

(primitives primitivelist)

TinySelf special objects
Primitive string values
Native F# methods

// Special TinySelf objects!
type Special =

| String of string

| Native of (Objekt -> Objekt)

// Optionally special object
and Objekt =
{ mutable Code : Objekt option
mutable Special : Special option
mutable Slots : Slot list }

// Code to clone an object
let cloneCode =

{ Slots = []; Code = None
Special = Some (Native (fun arcd ->
lookupSlotValue "self*" arcd
|> cloneObject)) 1}

// Method with special code object
let cloneMethod =
{ Slots = []; Special = None;
Code = Some cloneCode }

Special objects

String values

No other way to
represent strings!

Native methods

~1# function taking
‘activation record” anc
returning the result

Used as method code

L2

Charles
University

Input:

obj, the object being searched for matching slots
sel, the message selector
V, the set of objects already visited along this path

Output:
M, the set of matching slots

Algorithm:

if obj e V
then M « ¢
else M ¢« {s € obj | s.name = sel}
if M = &g then M « parent_lookup(obj, sel, V) end
end
return M

Where parent_lookup(obj, sel, V) is defined as follows:

P < {s € obj | s.isParent}
M < v lookup(s.contents, sel, V v {obj})
sepP

return M

Slot lookup logic

Find a set of
matching slots

1) Search target object

2) Search parents and
Union the results

3) Avoid infinite loops!

L2

Charles
University

Message sending logic

Self handbook TinySelf translation

A normal send does a look- 1. Find slot using lookup!

up to obtain the target slot, 2. Check it is exactly one
3. If there is no code, return it

A | thereis code, runit...
o Create activation record
o Run (non-)native code

If the slot contains a data
object, then the data object
IS simply returned.

If the slot contains a
method, an activation is
created and run.

@ o

rearing = *Hello!

Qveet = ‘

\

(SQU' gv&ﬂms fvint,
nwe pvl\M—

v prine)

|

@ Wello gqreet: 'werGo3?'

nawe = ‘NPRGO}?

]

ﬁ

Vecaivew :/
[\ Qs

nawme print,

"N oprive)

(sdb qveeting pria,

|

Activation record

Lookup In activation record
to get all our code needs!

Clone of method
't could have datal

Self as parent
Access target's slots!

Arguments as parent
AcCcess arguments!

Sketch
How methods are invoked

Representing TinySelf code

AST is a tree of objects

e (Objects store sub-expressions etc.
e Ordinary recursive F# interpreter

(st aveeting fving,
nawme prine,

V' priwr)

More object oriented?

e All nodes have eval method
e Becomes (a bit) too hard to implement!

Benefits and drawbacks

e Both options differ from actual Self/Smalltalk

e Simpler than actual compiled methods!

\(\\MK = \ft-e.va\‘

volue = 'Mello would'

qm& - sewd')
tavdet -

Wessage = 'pvint'

'&VQVWQVH‘S = @
Y ~_ |

Simple expression

'Hello world" print

Send expression
Recelver, message,
arguments to be used

String expression
String value to be returned

Lab overview
TinySelf system step-by-step

TinySelf - Basic tasks

1. Implementing slot lookup and strings
Traversing the prototype hierarchy to find slots

7. Implementing (basic) message sending
Returning data slots and calling (native) methods

3. Adding method arguments and assignments
Creating assignment slots and revised activation records

4. Object-oriented Booleans and conditionals
Higher-order methods with blocks

5. Representing & interpreting TinySelf expressions
Creating expression objects and an interpreter

TinySelf - Bonus and super tasks

1. Arguments and sequencing of expressions
Adding more types of expressions to TinySelf

2. Revisiting Booleans and conditionals
Representing TinySelf code with conditions

3. Objects as lists and more expressions
Adding more infrastructure before the next step...

4. Creating web-based visualizers
A small step towards TinyMorphic framework

CONCEPTS IN
PROGRAMMING
LANGUAGES

John C. Mitchell

TinySelf and 00

Dynamic lookup
~ind method using lookup

Abstraction
No private slots in TinySelf

Subtyping
Object with required slots

Inheritance
By setting a parent slot

Class: Class (open)
Slots

enclosing (open)
methods (open)
name (open)
parent (open)

print ['Hello worldI"x| + X

Workspace
Code
prin il worias] -

Output

Hello world!
Commands
Run!
x0=
<0<l
x0=
xte{fa] el ﬁ L + | reflectObject b » | getClass + |+ " getNarme + |
hirml - £
. oy
x3=|[2x] link get_p + X| reflectObject +X getClass + X|+ A
]
html ['div"x ;d&: +
X x X
<1e| i el ﬁ .
.
<O-frame x
<L
x2=(7x] html @ E get_p + X reflectObject +X| getSlots ."‘ map ([name value ||[7x] html @ x2:[2 link X

3"
.

What is missing

Self-sustainable
Complete basic library
Reflection capabllities

Reflection via mirrors
Irror objects

nspect & modify

Done In Nanospeak

L2

Charles
University

Lessons learned
A tiny prototype-based OO language

ea DBasic logic of object-oriented languages

& Shows how to build self-sustainable system
=] Different implementation - everything is object
@ Hard to implement! Need debuggers, not types

Nt
Nt
N1t

nttps.//bibliography.selflanguage.org/
nttps.//bibliography.selflanguage.org/_static/self-power.pdf

Nttps.//handbook selflanguage.org/SelfHandbook201/.7.pdf
nttps.//sin-ack.github.io/posts/a-tour-of-self/

DS://github.com/sin-ack/zigself/ 77

0S.//github.com/tpetricek/nanospeak/

DS//WWw.cambridge.org/core/books/concepts-in-

orogramming-
anguages/1C0a84TAB4/B49D12C/FCASDT022F11E

Nttp://blog.rfox.eu/en/Programming/Series_about_Self fas

Nttp://blog.rfox.eu/en/Programming/tinySelf.ntm|

https://bibliography.selflanguage.org/
https://bibliography.selflanguage.org/_static/self-power.pdf
https://handbook.selflanguage.org/SelfHandbook2017.1.pdf
https://sin-ack.github.io/posts/a-tour-of-self/
https://github.com/sin-ack/zigself/
https://github.com/tpetricek/nanospeak/
https://www.cambridge.org/core/books/concepts-in-programming-languages/1C05841AB47B49D12C7FC48D1022F11E
https://www.cambridge.org/core/books/concepts-in-programming-languages/1C05841AB47B49D12C7FC48D1022F11E
https://www.cambridge.org/core/books/concepts-in-programming-languages/1C05841AB47B49D12C7FC48D1022F11E
http://blog.rfox.eu/en/Programming/Series_about_Self/index.html
http://blog.rfox.eu/en/Programming/tinySelf.html

