
1

Embedded and Real-time Systems

Basics of Embedded Programming

Exercise 1 – Preparing your work environment
There is an installation of the work environment for use in the unix-labs. The installation contains the
following:

(i) Eclipse with CDT and OpenOCD plugin,
(ii) ARM cross-compiler [1],
(iii) OpenOCD.

To setup the work environment, you have to type the following (note the dot at the beginning!):

. /afs/ms/u/b/bures/ers-labs/setenv.sh

This will set the paths to the tools mentioned above. Please note that this has to be executed for each
opened terminal (unless you put it to your .bashrc or .profile). Also note that you must execute Eclipse
from the command line (not from the menu).

The recommended IDE (if you want to use one) for the labs is Eclipse. You may launch it by typing:

eclipse

Upon startup, Eclipse looks for a directory called 'workspace'. It keeps all projects inside. If it does not
exist yet, it will create it. When Eclipse asks you for this directory either confirm or point it to the place
you want to have the workspace directory.

Exercise 2 – Compiling
There is an example at GitHub https://github.com/d3scomp/stm32f4-blink. Clone it to your directory
and if you are using Eclipse, import it to your workspace. To import it, choose
File->Import->General->Existing Projects into Workspace. Select the stm32f4-blink folder and confirm
OK. Check the Copy projects into workspace check-box and confirm OK. You should see a project blink
in the left pane.

The example project is compiled via Makefile. You can do so by running

make

on the command line or by selecting the project (in the left pane) in Eclipse and using the context-
menu (option Build Project) to build the project.

Exercise 3 – Flashing the Image
The compilation step creates an image for the embedded device. The image is named blink.elf. To
upload the image to the embedded device, connect the board via USB and execute

https://github.com/d3scomp/stm32f4-blink

2

make flash

The Makefile uses OpenOCD to connect to the board and flash it.

Note: If you are going to use your own machine you will need to make some changes to your openOCD
installation, since it doesn’t support the latest revision of the stm32f4 board yet. To do this you need
to get the file located at

http://d3s.mff.cuni.cz/teaching/embedded_realtime_systems/files/labs/stm32f4discovery-v2.1.cfg

and put it into your openOCD installation (openocd /share/openocd/scripts/board/). Then change
your Makefile accordingly to use this new configuration.

Exercise 4 – Connecting to the Board via JTAG
The embedded board comes with an embedded JTAG debugger. This allows you to connect to the
board, inspect/modify the memory, and debug the application. You can do this from Eclipse as follows:

• Right-click on file blink.launch. Though a bit counter-intuitive, this loads the launch
configuration to Eclipse

• Select Debug As->blink

Eclipse will start OpenOCD, gdbserver and show you a debug session, where you can pause the
execution, place breakpoints, inspect variable, memory, etc.

Warning: Sometimes, the first start does not succeed. You will find this out in the Console view where
the gdb just exits. If this happens, try again. The second run typically works.

Connect to the board this way, try to step through your program.

Exercise 5 – Using ramlog
As the very basic logging facility, the blink example uses a circular memory buffer as a target of all
messages produced by printf. The buffer is located in hardware/syscalls.c. You can look it up there and
inspect the contents of the array in the debugger.

Alternatively, you can look up the address of the ramlog array in blink.map. Then use the Memory
view under Window->Show View and add the address you want to inspect.

Note that in order to see the memory dump, the application has to be paused (on breakpoint or via
the Pause button in the toolbar).

Exercise 6 – Using SWO console
You may have noticed ITM_SendChar calls in _write function used for writing to ramlog. This call
enables listening to output console using OpenOCD. There is a make target called SWO set for this
purpose.

make swo

http://d3s.mff.cuni.cz/teaching/embedded_realtime_systems/files/labs/stm32f4discovery-v2.1.cfg

3

Exercise 7 – Using LEDs
Use the 4 LEDs to blink in a cycle: green, orange, red, blue (or similar).

Exercise 8 – Using the button
Hook to the button press to change the blink pattern: clockwise, counter-clockwise, all blinking
together. Do it in such a way that any subsequent button presses after the first press are ignored for
50 ms.

Exercise 9 – Using peripherals
The board comprises a number of peripherals – the GPIO used to turn on/off the LEDs and read the
button is just one of them. The resources you may need for understanding follows. Note that they are
to be used only for reference in case you have to study a certain aspect or procedure related to the
system. You are not expected to study them in full.

The board you are working on is a combination of several things:

• System on chip, which comprises various peripherals and the processor
• Embedded board, which comprises the system on chip, power module, LEDs, buttons and

generally pinout of the processor signals.
• Specification of the embedded board (STM32F4-DISCOVERY) [2,3]
• Specification of the system on chip (STM32F407VG) [4,5]
• Specification of the processor and programming manual (interrupts, instructions, etc.) [6,7]

Firmware and examples (including examples for STM32F4-DISCOVERY) [8]. Link for download is on
the bottom of the page. The downloaded package contains documentation to the API you should use
when programming the board. Link to documentation PDF is [9].

Take a look at the reference documentation and try to see what steps are taken by the sample code to
initialize the board and operate the LEDs. Try to see where this is described in the reference manuals
and in the API documentation.

Exercise 10 – UART
UART is a standard way of serial communication [10]. The board provides several UART channels which
can be used. You are provided USB to Serial cable. Connect it to the UART2 pinout on the board. This
allows you to connect the board to a PC via USB and establish a 2-way communication – or at least you
can show data coming from the device on a PC using a serial terminal (e.g. moserial or minicom).
Write your own driver for UART (transmit from the board is enough). Then use it in the implementation
of _write in syscalls.c. Once you do this, you can use printf in the embedded code to display messages
on the PC.

Hints:

• Consult the API of firmware to see how to use it to initialize and operate the UART
• The steps you will need to perform in initialization are the following:

o Enable GPIO module. This powers on the respective part of the chip.
 __HAL_RCC_GPIOA_CLK_ENABLE() [9]

o Create a structure to define the desired function of the correct pins and fill it with
the right values

4

 GPIO_InitTypeDef [9]
o Initialize the pins using the structure above

 HAL_GPIO_Init for GPIOA [9]
o Enable UART2

 __HAL_RCC_USART2_CLK_ENABLE [9]
o Create UART handle and fill it with the proper values

 UART_HandleTypeDef [9]
o Initialize the UART handle

 HAL_UART_Init [9]

Example of values for GPIO pins

Pin GPIO_PIN_2 |
GPIO_PIN_3

Mode GPIO_MODE_AF_PP
Pull GPIO_PULLUP
Speed GPIO_SPEED_HIGH
Alternate GPIO_AF7_USART2

Example of values for UART handle

Instance USART2
BaudRate 921600
WordLength UART_WORDLENGTH_8B
StopBits UART_STOPBITS_1
Parity UART_PARITY_NONE
Mode UART_MODE_TX_RX
HwFlowCtl UART_HWCONTROL_NONE
OverSampling UART_OVERSAMPLING_16

When configuring the serial terminal remember to use the same values as on the board.

The pinout is as follows: black – GND, green – RX, white – TX.

Exercise 11 – Interrupts
Extend the UART driver to offer an “echo” mode. In this mode, it transmits back whatever it receives
from the PC. Use UART interrupt for handling the reception.

Hints:

• You need to provide a correctly named function (to stm32f4xx_it.h and stm32f4xx_it.cpp)
which will serve as the UART handler. Look into hardware/startup_stm32f4xx.s – the
interrupt handler symbols are defined there.

• You have to configure UART to send you interrupts for events you are interested in:
__HAL_UART_ENABLE_IT [9]

• In order to make the interrupt work it is also necessary to enable it on the interrupt
controller: HAL_NVIC_EnableIRQ [9]

• You may also need to set the interrupt priority: HAL_NVIC_SetPriority [9]
• When configuring the serial terminal, make sure you switch off any handshake / control flow.

Exercise 12 – Watchdog
The board comes with a device (called watchdog), which resets the board if the watchdog does not
receive a periodic notification.

Create a driver for the watchdog and configure it to expect a notification every 1s. Update the systick
handler to provide the notification.

Test the watchdog as follows:

5

• Configure the priority of the button interrupt to be higher than the one of the systick.
• When the button is pressed, enter an endless loop within the button handler.
• The watchdog should reset the device to up to 1s after the button is pressed.

Hints:

• There are two watchdogs on the board – independent and window watchdog. It does not
matter which you use. However, independent watchdog (IWDG) may be possibly a slightly
better fit for you.

(Optional) Exercise 13 – Play with a sensor
On the board there is integrated 3-axis accelerometer. Use it and read the data it provides.

6

References
1. ARM cross-compiler:

https://launchpad.net/gcc-arm-embedded/
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

2. STM32F4 DISCOVERY:
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419?sc=internet/ev
alboard/product/252419.jsp

3. Discovery kit with STM32F407VG MCU, User manual:
http://www.st.com/st-web-
ui/static/active/en/resource/technical/document/user_manual/DM00039084.pdf

4. STM32F407VG:
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN11/PF252140

5. RM0090 Reference manual:
http://www.st.com/st-web-
ui/static/active/en/resource/technical/document/reference_manual/DM00031020.pdf

6. STM32F4 Series instructions:
http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577

7. PM0214 Programming manual:
http://www.st.com/web/en/resource/technical/document/programming_manual/DM00
046982.pdf

8. STM32F4 cube:
http://www.st.com/web/en/catalog/tools/PF259243

9. Description of STM32F4xx HAL drivers:
http://www.st.com/st-web-
ui/static/active/en/resource/technical/document/user_manual/DM00105879.pdf

10. Universal asynchronous receiver/transmitter:
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter

11. SHT1x click:
http://www.mikroe.com/click/sht1x/

https://launchpad.net/gcc-arm-embedded/
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419?sc=internet/evalboard/product/252419.jsp
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419?sc=internet/evalboard/product/252419.jsp
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00039084.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00039084.pdf
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN11/PF252140
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/reference_manual/DM00031020.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/reference_manual/DM00031020.pdf
http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577
http://www.st.com/web/en/resource/technical/document/programming_manual/DM00046982.pdf
http://www.st.com/web/en/resource/technical/document/programming_manual/DM00046982.pdf
http://www.st.com/web/en/catalog/tools/PF259243
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00105879.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00105879.pdf
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
http://www.mikroe.com/click/sht1x/

	Embedded and Real-time Systems
	Basics of Embedded Programming
	Exercise 1 – Preparing your work environment
	Exercise 2 – Compiling
	Exercise 3 – Flashing the Image
	Exercise 4 – Connecting to the Board via JTAG
	Exercise 5 – Using ramlog
	Exercise 6 – Using SWO console
	Exercise 7 – Using LEDs
	Exercise 8 – Using the button
	Exercise 9 – Using peripherals
	Exercise 10 – UART
	Exercise 11 – Interrupts
	Exercise 12 – Watchdog
	(Optional) Exercise 13 – Play with a sensor

	References

