Embedded and Real-time Systems

Basics of Embedded Programming

Exercise 1 —Preparing your work environment

There is an installation of the work environment foruse in the unix-labs. The installation contains the
following:

(i) Eclipse with CDTand OpenOCD plugin,
(i) ARM cross-compiler[1],
(iii) OpenOCD.

To setup the work environment, you have to type the following (note the dot at the beginning!):

/afs/ms/u/b/bures/ers-labs/setenv.sh

Thiswill setthe pathstothe tools mentionedabove.Please note that this has to be executed for each
opened terminal (unlessyou putitto your.bashrcor.profile). Alsonote that you must execute Eclipse
fromthe command line (not from the menu).

The recommended IDE (if you want to use one) forthe labs is Eclipse. You may launch it by typing:

Upon startup, Eclipse looks fora directory called 'workspace'. It keeps all projectsinside. If it does not
existyet, itwillcreate it. When Eclipse asks you forthis directory either confirm or pointitto the place
you want to have the workspace directory.

Exercise 2 —Compiling

There is an example at GitHub https://github.com/d3scomp/stm32f4-blink. Clone it to your directory
and if you are using Eclipse, import it to your workspace. To import it, choose
File->Import->General->Existing Projects into Workspace. Select the stm32f4-blink folder and confirm
OK. Check the Copy projects into workspace check-box and confirm OK. You should seea project blink
inthe left pane.

The example projectis compiled via Makefile. You can do so by running

on the command line or by selecting the project (in the left pane) in Eclipse and using the context-
menu (option Build Project) to build the project.

Exercise 3 —Flashing the Image

The compilation step creates an image for the embedded device. The image is named blink.elf. To
upload the image to the embedded device, connect the board via USB and execute

1

https://github.com/d3scomp/stm32f4-blink

make flash

The Makefile uses OpenOCDto connectto the board and flashiit.

Note: If you are goingto use your own machine you will need to make some changes to your openOCD
installation, since it doesn’t support the latest revision of the stm32f4 board yet. To do this you need
to getthe file located at

http://d3s.mff.cuni.cz/teaching/embedded realtime systems/files/labs/stm32f4discovery-v2.1.cfg

and put it into your openOCD installation (openocd /share/openocd/scripts/board/). Then change
your Makefile accordingly to use this new configuration.

Exercise 4 —Connecting to the Board via JTAG
The embedded board comes with an embedded JTAG debugger. This allows you to connect to the
board, inspect/modify the memory, and debug the application.You can do this from Eclipse as follows:

e Right-clickonfile blink.launch. Though a bit counter-intuitive, thisloads the launch
configurationto Eclipse
e Select DebugAs->blink

Eclipse will start OpenOCD, gdbserver and show you a debug session, where you can pause the
execution, place breakpoints,inspect variable, memory, etc.

Warning: Sometimes, the first start does notsucceed. You willfind thisoutin the Console view where
the gdb justexits. If this happens, try again. The second run typically works.

Connectto the board this way, try to step through your program.

Exercise 5-Using ramlog

As the very basic logging facility, the blink example uses a circular memory buffer as a target of all
messages producedby printf. The bufferis locatedin hardware/syscalls.c. You can look it up there and
inspectthe contents of the array inthe debugger.

Alternatively, you can look up the address of the ramlog array in blink.map. Then use the Memory
view under Window->Show View and add the address you want to inspect.

Note thatin order to see the memory dump, the application has to be paused (on breakpoint or via
the Pause buttoninthe toolbar).

Exercise 6 —Using SWO console

You may have noticed ITM_SendChar callsin _write function used for writingto ramlog. This call
enableslisteningto output console using OpenOCD. There is a make target called SWO set for this
purpose.

make swo

http://d3s.mff.cuni.cz/teaching/embedded_realtime_systems/files/labs/stm32f4discovery-v2.1.cfg

Exercise 7 —-Using LEDs

Use the 4 LEDs to blinkina cycle: green, orange, red, blue (orsimilar).

Exercise 8 —Using the button

Hook to the button press to change the blink pattern: clockwise, counter-clockwise, all blinking
together. Do it in such a way that any subsequent button presses afterthe first press are ignored for
50 ms.

Exercise 9 —Using peripherals

The board comprises a number of peripherals —the GPIO used to turn on/off the LEDs and read the
buttonisjustone of them. The resources you may need forunderstanding follows. Note that they are
to be used only for reference in case you have to study a certain aspect or procedure related to the
system. You are not expected to study themin full.

The board you are workingonis a combination of several things:

e Systemon chip, which comprisesvarious peripherals and the processor

e Embeddedboard, which comprises the system on chip, power module, LEDs, buttons and

generally pinout of the processorsignals.

e Specification of the embedded board (STM32F4-DISCOVERY) [2,3]

e Specification of the system on chip (STM32F407VG) [4,5]

e Specification of the processorand programming manual (interrupts, instructions, etc.) [6,7]
Firmware and examples (including examples for STM32F4-DISCOVERY) [8]. Link for download is on
the bottom of the page. The downloaded package contains documentationto the APl you should use
when programmingthe board. Link to documentation PDFis [9].

Take a look at the reference documentationand try to see what steps are taken by the sample code to
initialize the board and operate the LEDs. Try to see where thisis describedinthe reference manuals
and inthe APl documentation.

Exercise 10 -UART

UART is astandard way of serial communication [10]. The board providesseveral UART channels which
can be used. You are provided USBto Serial cable. Connectit to the UART2 pinouton the board. This
allows youtoconnectthe boardtoa PCvia USB and establish a2-way communication—orat least you
can show data comingfrom the device ona PCusinga serial terminal (e.g. moserial or minicom).
Write yourown driver for UART (transmitfrom the board isenough).Then useitin the implementation
of _write insyscalls.c. Once you do this, you can use printfin the embedded code to display messages
on the PC.

Hints:

e Consultthe APl of firmware to see how to use it to initialize and operate the UART
e Thestepsyou will needto performininitialization are the following:
o Enable GPIO module. This powers onthe respective part of the chip.
» _ HAL_RCC_GPIOA_CLK_ENABLE() [9]
o Create astructure to define the desired function of the correct pinsand fill it with
theright values

= GPIO_InitTypeDef[9]

o Initializethe pins usingthe structure above

* HAL_GPIO_Init for GPIOA [9]

o Enable UART2

= _ HAL_RCC_USART2_CLK_ENABLE [9]
o Create UART handle andfill it with the propervalues

= UART_HandleTypeDef[9]
o Initializethe UART handle
= HAL_UART_Init [9]

Example of values for GPIO pins

Example of values for UART handle

Pin GPIO_PIN_2 |
GPIO_PIN_3

Mode GPIO_MODE_AF_PP

Pull GPIO_PULLUP

Speed GPIO_SPEED_HIGH

Alternate GPIO_AF7 USART2

Instance USART2

BaudRate 921600

WordLength UART_WORDLENGTH_8B
StopBits UART_STOPBITS_1

Parity UART_PARITY_NONE

Mode UART_MODE_TX_RX
HwFlowCtl UART_HWCONTROL_NONE

OverSampling

UART_OVERSAMPLING_16

When configuring the serial terminal remember to use the same values as on the board.

The pinoutis as follows: black— GND, green— RX, white — TX.

Exercise 11 —Interrupts
Extend the UART driverto offeran “echo” mode. In this mode, it transmits back whateverit receives
fromthe PC. Use UART interrupt for handling the reception.

Hints:

You needto provide a correctly named function (to stm32f4xx_it.h and stm32f4xx_it.cpp)
which will serve asthe UART handler. Look into hardware/startup_stm32f4xx.s —the

interrupt handler symbols are defined there.

You have to configure UARTto send youinterrupts foreventsyou are interestedin:

__HAL_UART_ENABLE_IT [9]

In orderto make the interrupt workitis also necessary to enable itonthe interrupt

controller: HAL_NVIC_EnablelRQ[9]

You may alsoneedtosetthe interrupt priority: HAL_NVIC_SetPriority [9]
When configuring the serial terminal, make sure you switch off any handshake / control flow.

Exercise 12 —Watchdog

The board comes with a device (called watchdog), which resets the board if the watchdog does not

receive

aperiodicnotification.

Create a driverfor the watchdog and configure it to expect a notification every 1s. Update the systick
handlerto provide the notification.

Testthe watchdogas follows:

e Configure the priority of the buttoninterruptto be higherthan the one of the systick.
o Whenthe buttonis pressed, enteran endless loop within the button handler.
e Thewatchdogshould resetthe device toupto 1s afterthe buttonis pressed.

o There are twowatchdogson the board —independent and windowwatchdog. It does not
matter which you use. However, independent watchdog (IWDG) may be possibly aslightly
betterfitforyou.

(Optional) Exercise 13 —Play with a sensor
On the board there isintegrated 3-axis accelerometer. Use itand read the data it provides.

References

1.

10.

11.

ARM cross-compiler:

https://launchpad.net/gcc-arm-embedded/
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

STM32F4 DISCOVERY:
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419?sc=internet/ev
alboard/product/252419.jsp

Discovery kit with STM32F407VG MCU, User manual:

http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/user manual/DM00039084.pdf
STM32F407VG:
http://www.st.com/web/catalog/mmc/FM141/SC1169/551577/LN11/PF252140
RMO0090 Reference manual:

http://www.st.com/st-web-
ui/static/active/en/resource/technical/document/reference manual/DM00031020.pdf
STM32F4 Seriesinstructions:
http://www.st.com/web/en/catalog/mmc/FM141/SC1169/551577

PM0214 Programming manual:
http://www.st.com/web/en/resource/technical/document/programming manual/DMO00
046982.pdf

STM32F4 cube:

http://www.st.com/web/en/catalog/tools/PF259243

Description of STM32F4xx HAL drivers:

http://www.st.com/st-web-

ui/static/active/en/resource/technical/document/user manual/DM00105879.pdf
Universal asynchronous receiver/transmitter:

https://en.wikipedia.org/wiki/Universal asynchronous receiver/transmitter

SHT1x click:

http://www.mikroe.com/click/shtlx/

https://launchpad.net/gcc-arm-embedded/
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419?sc=internet/evalboard/product/252419.jsp
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419?sc=internet/evalboard/product/252419.jsp
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00039084.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00039084.pdf
http://www.st.com/web/catalog/mmc/FM141/SC1169/SS1577/LN11/PF252140
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/reference_manual/DM00031020.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/reference_manual/DM00031020.pdf
http://www.st.com/web/en/catalog/mmc/FM141/SC1169/SS1577
http://www.st.com/web/en/resource/technical/document/programming_manual/DM00046982.pdf
http://www.st.com/web/en/resource/technical/document/programming_manual/DM00046982.pdf
http://www.st.com/web/en/catalog/tools/PF259243
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00105879.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/user_manual/DM00105879.pdf
https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
http://www.mikroe.com/click/sht1x/

	Embedded and Real-time Systems
	Basics of Embedded Programming
	Exercise 1 – Preparing your work environment
	Exercise 2 – Compiling
	Exercise 3 – Flashing the Image
	Exercise 4 – Connecting to the Board via JTAG
	Exercise 5 – Using ramlog
	Exercise 6 – Using SWO console
	Exercise 7 – Using LEDs
	Exercise 8 – Using the button
	Exercise 9 – Using peripherals
	Exercise 10 – UART
	Exercise 11 – Interrupts
	Exercise 12 – Watchdog
	(Optional) Exercise 13 – Play with a sensor

	References

