
1

Inovace tohoto kurzu byla v roce 2011/12 podpořena projektem
CZ.2.17/3.1.00/33274 financovaným Evropským sociálním fondem

a Magistrátem hl. m. Prahy.

Evropský sociální fond
Praha & EU: Investujeme do vaší budoucnosti

CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

Faculty of Mathematics and Physics

Embedded and Real-time
Systems

Periodic Task Scheduling

Tomáš Bureš
<bures@d3s.mff.cuni.cz>

3

Periodic tasks

Periodic tasks – A type of task that consists of a
sequence of identical instances, activated at
regular intervals.

Examples
Speed regulation
Monitoring sensors
Audio/video sampling

4

Periodic tasks scheduling

5

Assumptions

Tasks assumptions:
A1 – instance of a periodic task 𝜏𝜏𝑖𝑖 are regularly activated
A2 – all instances 𝜏𝜏𝑖𝑖 have the same 𝐶𝐶𝑖𝑖
A3 – all instances 𝜏𝜏𝑖𝑖 have the same 𝐷𝐷𝑖𝑖 which is equal to 𝑇𝑇𝑖𝑖
A4 – All tasks are independent (no precedence relations, no resource
constraints)

Implicit assumptions:
No task can suspend itself (e.g. on I/O oper.)
All tasks are fully preemptable
All overheads in kernel are assumed to be zero

A1, A2 – OK (reflects reality)
A3, A4 – too tight for practical applications

Will be relaxed in future

6

Notation

Γ – task set
𝜏𝜏𝑖𝑖 – a generic periodic task
𝑇𝑇𝑖𝑖 – period of the task 𝜏𝜏𝑖𝑖
𝐶𝐶𝑖𝑖 – execution time within a period
𝐷𝐷𝑖𝑖 – relative deadline of 𝜏𝜏𝑖𝑖
𝜏𝜏𝑖𝑖 ,𝑗𝑗 – 𝑗𝑗𝑡𝑡𝑡 instance of the task 𝜏𝜏𝑖𝑖
𝑟𝑟𝑖𝑖,𝑗𝑗 – release time of 𝜏𝜏𝑖𝑖,𝑗𝑗
𝑠𝑠𝑖𝑖 ,𝑗𝑗 – start time of 𝜏𝜏𝑖𝑖 ,𝑗𝑗
𝑓𝑓𝑖𝑖,𝑗𝑗 – finishing (completion) time of 𝜏𝜏𝑖𝑖,𝑗𝑗
𝑑𝑑𝑖𝑖,𝑗𝑗 – absolute deadline of 𝜏𝜏𝑖𝑖,𝑗𝑗

7

Periodic tasks

For each periodic task, guarantee that:
each job 𝜏𝜏𝑖𝑖𝑖𝑖 is activated at 𝑟𝑟𝑖𝑖𝑖𝑖 = 𝑘𝑘 − 1 𝑇𝑇𝑖𝑖
each job 𝜏𝜏𝑖𝑖𝑖𝑖 completes within

𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑖𝑖 + 𝐷𝐷𝑖𝑖 = 𝑟𝑟𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑖𝑖 = 𝑘𝑘𝑇𝑇𝑖𝑖

8

Timeline Scheduling (Cyclic Scheduling)

It has been used for 30 years in military systems, navigation, and
monitoring systems

Examples:
Air traffic control
Space Shuttle
Boeing 777

9

Timeline Scheduling

Method
The time axis is divided in intervals of equal length
(time slots)
Each task is statically (offline) allocated in a slot in
order to meet the desired request rate.
The execution in each slot is activated by a timer.

Order is determinate in advance
Based on major cycle

10

Example

Guarantee:
𝐶𝐶𝑎𝑎 + 𝐶𝐶𝑏𝑏 ≤ Δ
𝐶𝐶𝑎𝑎 + 𝐶𝐶𝑐𝑐 ≤ Δ

GCD – greatest common divisor
lcm – least common multiple

11

Implementation

12

Timeline Scheduling

Advantages
Simple implementation
Low run-time overhead

No context switches
It allows jitter control

Ordering of tasks inside major cycle

Disadvantages
It is not robust during overloads
It is difficult to expand the schedule
It is not easy to handle aperiodic activities

But in fact, it suffices in many cases!

13

Problems during Overloads

Problem typical for off -line scheduling
Fragility during overload conditions

What do we do during task overruns?
Let the task continue

we can have a domino effect on all the other tasks (timeline
break)

Abort the task
the system can remain in an inconsistent state

14

Problems of Schedule Expandability

If one or more tasks need to be upgraded (C or T change),
we may have to redesign the whole schedule again.

Example:
𝐶𝐶𝑎𝑎 + 𝐶𝐶𝑏𝑏 > Δ
𝐶𝐶𝐵𝐵 is updated but

Requires division of task B into smaller tasks

15

Problems of Schedule Expandability

We have to split task B into two subtasks (𝐵𝐵1, 𝐵𝐵2)
and rebuild the schedule:

Guarantee:
𝐶𝐶𝑎𝑎 + 𝐶𝐶𝑏𝑏1 ≤ Δ
𝐶𝐶𝑎𝑎 + 𝐶𝐶𝑏𝑏2 + 𝐶𝐶𝑐𝑐 ≤ Δ

16

Problems of Schedule Expandability

If the frequency of a task is changed, the impact can
be even more significant

40 minor cycles within one major cycle!

17

Problem with aperiodic tasks

Difficult to handle aperiodic tasks
Requires on-line change in task sequence

Slot-shifting technique
Spare capacities – how much off-line tasks can be
shifted at runtime while still meeting timing constraints
At runtime deadline-base algorithm uses spare
capacities to schedule aperiodic tasks

In complex or open systems, it is better to use on-
line priority-based scheduling.

18

Priority-based Scheduling

Each task is assigned a priority based on its timing
constraints
We verify the feasibility of the schedule using
analytical techniques
Tasks are executed on a priority-based kernel

19

Rate Monotonic Scheduling (RM)

Each task is assigned a fixed priority proportional to
its rate (T)

Priorities are assigned before execution (T-based)
Preemptive

Recall of basic assumptions
A1 – 𝐶𝐶𝑖𝑖 is constant for every instance of 𝜏𝜏𝑖𝑖
A2 – 𝑇𝑇𝑖𝑖 is constant for every instance of 𝜏𝜏𝑖𝑖
A3 – For each task, 𝐷𝐷𝑖𝑖 = 𝑇𝑇𝑖𝑖
A4 – Tasks are independent:

no precedence relations
no resource constraints
no blocking I/O operations

20Figure taken from Buttazzo, G.:Task scheduling

RM Example

21

How Can We Verify Feasibility?

Each task uses the processor for a fraction of time

𝑈𝑈𝑖𝑖 =
𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖

Hence the total processor utilization is

𝑈𝑈𝑝𝑝 = �
𝑖𝑖=1

𝑛𝑛
𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖

22Figure taken from Buttazzo, G.:Task scheduling

A Necessary Condition

If 𝑈𝑈𝑝𝑝 > 1 the processor is overloaded hence the task set cannot be
schedulable
However, there are cases in which 𝑈𝑈𝑝𝑝 < 1 but the task set is not
schedulable by RM

Example: 𝑈𝑈𝑝𝑝 = 3
6

+ 4
9

= 0.944

23Figure taken from Buttazzo, G.:Task scheduling

Utilization Upper Bound

𝑈𝑈𝑢𝑢𝑢𝑢 = 3
6

+ 3
9

= 0.833

The upper bound 𝑈𝑈𝑢𝑢𝑢𝑢 depends on the specific
task set.

24Figure taken from Buttazzo, G.:Task scheduling

The Least Upper Bound

𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙 = min
Γ
𝑈𝑈𝑢𝑢𝑢𝑢(Γ,𝐴𝐴)

25

A Sufficient Condition

If 𝑈𝑈𝑝𝑝 ≤ 𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙 the task set is certainly schedulable
with the RM algorithm

Note: If 𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙 < 𝑈𝑈𝑝𝑝 ≤ 1 we cannot say anything
about the feasibility of that task set.

26

𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for RM

In 1973, Liu and Leyland proved that for a set of n
periodic tasks scheduled by RM:

for 𝑛𝑛 → ∞: 𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙 → ln 2

𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑛𝑛(2
1
𝑛𝑛 − 1)

27Figure taken from Buttazzo, G.:Task scheduling

RM Schedulability

28

RM Guarantee Test

We compute the processor utilization factor as

𝑈𝑈𝑝𝑝 = �
𝑖𝑖=1

𝑛𝑛
𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖

Guarantee Test (only sufficient)

𝑈𝑈𝑝𝑝 ≤ 𝑛𝑛(2
1
𝑛𝑛 − 1)

29

RM Optimality

RM is optimal among all fixed priority algorithms:

If there exists a fixed priority assignment which leads
to a feasible schedule for Γ, then RM assignment is
feasible for Γ

If Γ is not schedulable by RM, then it cannot be
scheduled by any fixed priority assignment

30

Proof of RM Optimality

Periodic tasks vocabulary:
Response time of an instance – a time (measured from
the release time) at which the instance is terminated
𝑅𝑅𝑖𝑖,𝑘𝑘 = 𝑓𝑓𝑖𝑖,𝑘𝑘 − 𝑟𝑟𝑖𝑖,𝑘𝑘

Critical instant of a task – a time at which the
release of a task will produce the largest response
time

31

Proof of RM Optimality

First, we show that a critical instant for any task
occurs whenever the task is released
simultaneously with all higher-priority tasks.

Let Γ = 𝜏𝜏1, … , 𝜏𝜏𝑛𝑛 be the set of periodic tasks
ordered by increasing periods, with 𝜏𝜏𝑛𝑛 being the
task with the longest period. According to RM, 𝜏𝜏𝑛𝑛
will be the task with the lowest priority.

32Figure from Buttazzo, G.:Hard RT Comp. Systems

Critical Instant

33

Proof of RM Optimality

Schedulability of a task can be checked at the
critical instant

If each of the tasks is schedulable at its critical instant,
the whole task set is schedulable

RM optimality is justified by showing that if a task
set is schedulable by an arbitrary priority
assignment, then it is also schedulable by RM.

34Figure from Buttazzo, G.:Hard RT Comp. Systems

Proof of RM Optimality

Consider a set of two periodic tasks 𝜏𝜏1 and 𝜏𝜏2,
with 𝑇𝑇1 < 𝑇𝑇2. If the priorities are not according to
RM, then task 𝜏𝜏2 will receive greater priority.

The schedule is feasible if:
𝐶𝐶1 + 𝐶𝐶2 ≤ 𝑇𝑇1 #1

35Figure from Buttazzo, G.:Hard RT Comp. Systems

Proof of RM Optimality

Let 𝐹𝐹 = ⁄𝑇𝑇2 𝑇𝑇1 be the number of periods of 𝜏𝜏1
entirely contained in 𝑇𝑇2. We distinguish two cases

36Figure from Buttazzo, G.:Hard RT Comp. Systems

Proof of RM Optimality – Case 1

Case 1
The computation time 𝐶𝐶1 is short enough that all
requests of 𝜏𝜏1 within the critical time zone of 𝜏𝜏2 are
completed before the second request of 𝜏𝜏2. That is,
𝐶𝐶1 < 𝑇𝑇2 − 𝐹𝐹𝑇𝑇1

37

Proof of RM Optimality – Case 1

The task set is schedulable if
𝐹𝐹 + 1 𝐶𝐶1 + 𝐶𝐶2 ≤ 𝑇𝑇2

We show how #1 implies #2
𝐹𝐹𝐶𝐶1 + 𝐹𝐹𝐶𝐶2 ≤ 𝐹𝐹𝑇𝑇1

Since 𝐹𝐹 ≥ 1, we can write:
𝐹𝐹𝐶𝐶1 + 𝐶𝐶2 ≤ 𝐹𝐹𝐶𝐶1 + 𝐹𝐹𝐶𝐶2 ≤ 𝐹𝐹𝑇𝑇1
𝐹𝐹 + 1 𝐶𝐶1 + 𝐶𝐶2 ≤ 𝐹𝐹𝑇𝑇1 + 𝐶𝐶1

Since 𝐶𝐶1 ≤ 𝑇𝑇2 − 𝐹𝐹𝑇𝑇1, we have:
𝐹𝐹 + 1 𝐶𝐶1 + 𝐶𝐶2 ≤ 𝐹𝐹𝑇𝑇1 + 𝐶𝐶1 ≤ 𝑇𝑇2

#2

38Figure from Buttazzo, G.:Hard RT Comp. Systems

Proof of RM Optimality – Case 2

Case 2
The execution of the last request of 𝜏𝜏𝑖𝑖 in the critical
time zone of 𝜏𝜏2 overlaps the second request of 𝜏𝜏2. That
is, 𝐶𝐶1 ≥ 𝑇𝑇2 − 𝐹𝐹𝑇𝑇1.

39

Proof of RM Optimality – Case 2

The task set is schedulable if 𝐹𝐹𝐶𝐶1 + 𝐶𝐶2 ≤ 𝐹𝐹𝑇𝑇1.

We show how #1 implies #3
𝐹𝐹𝐶𝐶1 + 𝐹𝐹𝐶𝐶2 ≤ 𝐹𝐹𝑇𝑇1

Since 𝐹𝐹 ≥ 1, we can write:
𝐹𝐹𝐶𝐶1 + 𝐶𝐶2 ≤ 𝐹𝐹𝐶𝐶1 + 𝐹𝐹𝐶𝐶2 ≤ 𝐹𝐹𝑇𝑇1

This can be generalized to 𝑛𝑛 tasks

#3

40

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for two tasks

Two periodic tasks 𝜏𝜏1 and 𝜏𝜏2 with 𝑇𝑇1 < 𝑇𝑇2
We have to

Assign priorities to tasks according to RM, so that 𝜏𝜏1 is the
task with the highest priority;
Compute the upper bound 𝑈𝑈𝑢𝑢𝑢𝑢 for the set by setting tasks'
computation times to fully utilize the processor;
Minimize the upper bound 𝑈𝑈𝑢𝑢𝑢𝑢 with respect to all other
task parameters.

As before, let 𝐹𝐹 = ⁄𝑇𝑇2 𝑇𝑇1 be the number of periods
of 𝜏𝜏1 entirely contained in 𝑇𝑇2. Without loss of
generality, the computation time 𝐶𝐶2 is adjusted to
fully utilize the processor.

41Figure from Buttazzo, G.:Hard RT Comp. Systems

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for two tasks

Two cases must be considered:

42Figure from Buttazzo, G.:Hard RT Comp. Systems

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for two tasks – Case 1

The computation time 𝐶𝐶1 is short enough that all
requests of 𝜏𝜏1 within the critical time zone of 𝜏𝜏2
are completed before the second request of 𝜏𝜏2.
That is, 𝐶𝐶1 ≤ 𝑇𝑇2 − 𝐹𝐹𝑇𝑇1.
In this situation, the largest possible value of 𝐶𝐶2 is
𝐶𝐶2 = 𝑇𝑇2 − 𝐶𝐶1(𝐹𝐹 + 1)

43

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for two tasks – Case 1

The corresponding upper bound 𝑈𝑈𝑢𝑢𝑢𝑢 is thus

𝑈𝑈𝑢𝑢𝑢𝑢 =
𝐶𝐶1
𝑇𝑇1

+
𝐶𝐶2
𝑇𝑇2

=
𝐶𝐶1
𝑇𝑇1

+
𝑇𝑇2 − 𝐶𝐶1(𝐹𝐹 + 1)

𝑇𝑇2

= 1 +
C1
T1
−

C1
T2

F + 1 = 1 +
C1
T2

T2
T1
− F + 1

Since the quantity in the square brackets is
negative, 𝑈𝑈𝑢𝑢𝑢𝑢 is monotonically decreasing in 𝐶𝐶1,
and, being 𝐶𝐶1 ≤ 𝑇𝑇2 − 𝐹𝐹𝑇𝑇1, the minimum of 𝑈𝑈𝑢𝑢𝑢𝑢
occurs for

𝐶𝐶1 = 𝑇𝑇2 − 𝐹𝐹𝑇𝑇1

44Figure from Buttazzo, G.:Hard RT Comp. Systems

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for two tasks – Case 2

The execution of the last request of 𝜏𝜏1 in the
critical time zone of 𝜏𝜏2 overlaps the second
request of 𝜏𝜏2. That is, 𝐶𝐶1 ≥ 𝑇𝑇2 − 𝐹𝐹𝑇𝑇1
In this situation, the largest possible value of 𝐶𝐶2 is
𝐶𝐶2 = T1 − C1 F

45

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for two tasks – Case 2

The corresponding upper bound 𝑈𝑈𝑢𝑢𝑢𝑢 is thus

𝑈𝑈𝑢𝑢𝑢𝑢 =
𝐶𝐶1
𝑇𝑇1

+
𝐶𝐶2
𝑇𝑇2

=
𝐶𝐶1
𝑇𝑇1

+
𝑇𝑇1 − 𝐶𝐶1 𝐹𝐹

𝑇𝑇2
=
𝑇𝑇1
𝑇𝑇2
𝐹𝐹 +

𝐶𝐶1
𝑇𝑇1
−
𝐶𝐶1
𝑇𝑇2
𝐹𝐹

=
𝑇𝑇1
𝑇𝑇2
𝐹𝐹 +

𝐶𝐶1
𝑇𝑇2

𝑇𝑇2
𝑇𝑇1
− 𝐹𝐹

Since the quantity in the square brackets is
positive, 𝑈𝑈𝑢𝑢𝑢𝑢 is monotonically increasing in 𝐶𝐶1,
and, being 𝐶𝐶1 ≥ 𝑇𝑇2 − 𝐹𝐹𝑇𝑇1, the minimum of 𝑈𝑈𝑢𝑢𝑢𝑢
occurs for

𝐶𝐶1 = 𝑇𝑇2 − 𝐹𝐹𝑇𝑇1

46

Calculation of Ulub for two tasks

In both cases, the minimum value of 𝑈𝑈𝑢𝑢𝑢𝑢 occurs for
𝐶𝐶1 = 𝑇𝑇2 − 𝑇𝑇1𝐹𝐹
Using the minimal value of 𝐶𝐶1, we have:

𝑈𝑈 =
𝑇𝑇1
𝑇𝑇2
𝐹𝐹 +

𝐶𝐶1
𝑇𝑇2

𝑇𝑇2
𝑇𝑇1
− 𝐹𝐹 =

𝑇𝑇1
𝑇𝑇2
𝐹𝐹 +

𝑇𝑇2 − 𝑇𝑇1𝐹𝐹
𝑇𝑇2

𝑇𝑇2
𝑇𝑇1
− 𝐹𝐹

=
𝑇𝑇1
𝑇𝑇2

𝐹𝐹 +
𝑇𝑇2
𝑇𝑇1
− 𝐹𝐹

𝑇𝑇2
𝑇𝑇1
− 𝐹𝐹

To simplify notation, let 𝐺𝐺 = ⁄𝑇𝑇2 𝑇𝑇1 − 𝐹𝐹. Thus,

𝑈𝑈 =
𝑇𝑇1
𝑇𝑇2

𝐹𝐹 + 𝐺𝐺2 =
(𝐹𝐹 + 𝐺𝐺2)

⁄𝑇𝑇2 𝑇𝑇1
=

(𝐹𝐹 + 𝐺𝐺2)
⁄𝑇𝑇2 𝑇𝑇1 − 𝐹𝐹 + 𝐹𝐹 =

𝐹𝐹 + 𝐺𝐺2

𝐹𝐹 + 𝐺𝐺

=
𝐹𝐹 + 𝐺𝐺 − (𝐺𝐺 − 𝐺𝐺2)

𝐹𝐹 + 𝐺𝐺 = 1 −
𝐺𝐺(1 − 𝐺𝐺)
𝐹𝐹 + 𝐺𝐺

47

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for two tasks

Since 0 ≤ 𝐹𝐹 < 1, the term 𝐺𝐺(1 −𝐺𝐺) is nonnegative.
Hence, 𝑈𝑈 is monotonically increasing with 𝐹𝐹. As a
consequence, the minimum of 𝑈𝑈 occurs for the
minimum value of 𝐹𝐹; namely, 𝐹𝐹 = 1. Thus,

𝑈𝑈 =
1 + 𝐺𝐺2

1 + 𝐺𝐺
Minimizing 𝑈𝑈 over 𝐺𝐺, we have
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
2𝐺𝐺 1 + 𝐺𝐺 − 1 + 𝐺𝐺2

1 + 𝐺𝐺 2 =
𝐺𝐺2 + 2𝐺𝐺 − 1

1 + 𝐺𝐺 2

and ⁄𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 = 0 for 𝐺𝐺2 + 2𝐺𝐺 − 1 = 0, which has
two solutions:

𝐺𝐺1 = −1 − 2 G2 = −1 + 2

48

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for two tasks

Since 0 ≤ 𝐺𝐺 < 1, the negative solution 𝐺𝐺 = 𝐺𝐺1 is
discarded. Thus, the least upper bound of 𝑈𝑈 is
given for 𝐺𝐺 = 𝐺𝐺2:

𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙 =
1 + 2 − 1

2

1 + 2 − 1
=

4 − 2 2
2

= 2 2 − 1

That is,
𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙 = 2 2 ⁄1 2 − 1 ≃ 0.83

49Figure from Buttazzo, G.:Hard RT Comp. Systems

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for two tasks

Notice that if 𝑇𝑇2 is a multiple of 𝑇𝑇1, 𝐺𝐺 = 0 and the
processor utilization factor becomes 1.
In general, the utilization factor for two tasks can be
computed as a function of the ratio 𝑘𝑘 = ⁄𝑇𝑇2 𝑇𝑇1

50

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for 𝒏𝒏 tasks

From the previous, the conditions for computing
the least upper bound were:

𝐹𝐹 = 1
𝐶𝐶1 = 𝑇𝑇2 − 𝐹𝐹𝑇𝑇1
𝐶𝐶2 = 𝑇𝑇1 − 𝐶𝐶1 𝐹𝐹

which can be rewritten as
𝑇𝑇1 < 𝑇𝑇2 < 2𝑇𝑇1
𝐶𝐶1 = 𝑇𝑇2 − 𝑇𝑇1
𝐶𝐶2 = 2𝑇𝑇1 − 𝑇𝑇2

51

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for n tasks

Generalizing for an arbitrary set of 𝑛𝑛 tasks, the
worst conditions for the schedulability of a task
set that fully utilizes the processor are

𝑇𝑇1 < 𝑇𝑇𝑛𝑛 < 2𝑇𝑇1
𝐶𝐶1 = 𝑇𝑇2 − 𝑇𝑇1
𝐶𝐶2 = 𝑇𝑇3 − 𝑇𝑇2

…
𝐶𝐶𝑛𝑛−1 = 𝑇𝑇𝑛𝑛 − 𝑇𝑇𝑛𝑛 − 1

𝐶𝐶𝑛𝑛 = 𝑇𝑇1 − 𝐶𝐶1 + 𝐶𝐶2 +⋯+ 𝐶𝐶𝑛𝑛−1 = 2𝑇𝑇1 − 𝑇𝑇𝑛𝑛

52

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for 𝒏𝒏 tasks

Thus, the processor utilization factor becomes

𝑈𝑈 =
𝑇𝑇2 − 𝑇𝑇1
𝑇𝑇1

+
𝑇𝑇3 − 𝑇𝑇2
𝑇𝑇2

+ ⋯+
𝑇𝑇𝑛𝑛 − 𝑇𝑇𝑛𝑛−1
𝑇𝑇𝑛𝑛−1

+
2𝑇𝑇1 − 𝑇𝑇𝑛𝑛

𝑇𝑇𝑛𝑛
Defining 𝑅𝑅𝑖𝑖 = ⁄𝑇𝑇𝑖𝑖+1 𝑇𝑇𝑖𝑖,
and noting that 𝑅𝑅1𝑅𝑅2 …𝑅𝑅𝑛𝑛−1 = ⁄𝑇𝑇𝑛𝑛 𝑇𝑇1,
the utilization factor may be re-written as

𝑈𝑈 = �
𝑖𝑖=1

𝑛𝑛−1

𝑅𝑅𝑖𝑖 +
2

𝑅𝑅1𝑅𝑅2 … 𝑅𝑅𝑛𝑛−1
− 𝑛𝑛

53

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for 𝒏𝒏 tasks

To minimize 𝑈𝑈 over 𝑅𝑅𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑛𝑛 − 1, we have
𝜕𝜕𝜕𝜕
𝜕𝜕𝑅𝑅𝑘𝑘

= 1 −
2

𝑅𝑅𝑖𝑖
2 ∏𝑖𝑖≠𝑘𝑘

𝑛𝑛−1𝑅𝑅𝑖𝑖
Defining 𝑃𝑃 = 𝑅𝑅1𝑅𝑅2 …𝑅𝑅𝑛𝑛−1, 𝑈𝑈 is minimum when

𝑅𝑅1𝑃𝑃 = 2
𝑅𝑅2𝑃𝑃 = 2
𝑅𝑅𝑛𝑛−1𝑃𝑃 = 2

That is, when all 𝑅𝑅𝑖𝑖 have the same value:
𝑅𝑅1 = 𝑅𝑅2 = ⋯ = 𝑅𝑅𝑛𝑛−1 = 2 ⁄1 𝑛𝑛

54

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for 𝒏𝒏 tasks

Substituting the value of 𝑅𝑅𝑖𝑖 in 𝑈𝑈 we obtain

𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑛𝑛 − 1 2 ⁄1 𝑛𝑛 +
2

21− ⁄1 𝑛𝑛 − 𝑛𝑛

= 𝑛𝑛2 ⁄1 𝑛𝑛 − 2 ⁄1 𝑛𝑛 + 2 ⁄1 𝑛𝑛 − 𝑛𝑛
= 𝑛𝑛 2 ⁄1 𝑛𝑛 − 1

55

Calculation of 𝑼𝑼𝒍𝒍𝒍𝒍𝒍𝒍 for 𝒏𝒏 tasks

For high values of 𝑛𝑛, the least upper bound
converges to

This is proved using substitution 𝑦𝑦 = 2 ⁄1 𝑛𝑛 − 1 .
From that 𝑛𝑛 = ln 2

ln(𝑦𝑦+1)
. Hence

lim
𝑛𝑛→∞

𝑛𝑛 2 ⁄1 𝑛𝑛 − 1 = ln 2 lim
𝑦𝑦→0

𝑦𝑦
ln 𝑦𝑦 + 1

And using l’Hospital’s rule:

lim
𝑦𝑦→0

𝑦𝑦
ln(𝑦𝑦 + 1)

= lim
𝑦𝑦→0

1
⁄1 (𝑦𝑦 + 1)

= lim
𝑦𝑦→0

𝑦𝑦 + 1 = 1

𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙 = ln 2 ≃ 0.69

56

Hyperbolic Bound

There is a tighter sufficient condition called
hyperbolic bound

Theorem: Let Γ = {𝜏𝜏1, … , 𝜏𝜏𝑛𝑛} be a set of 𝑛𝑛
periodic tasks, where each task 𝜏𝜏𝑖𝑖 is characterized
by a processor utilization 𝑈𝑈𝑖𝑖. Then Γ is
schedulable with the RM algorithm if

�
𝑖𝑖=1

𝑛𝑛

(𝑈𝑈𝑖𝑖 + 1) ≤ 2

57Figure from Buttazzo, G.:Hyperbolic bound for RM

Hyperbolic Bound

	Slide Number 1
	Embedded and Real-time Systems�Periodic Task Scheduling
	Periodic tasks
	Periodic tasks scheduling
	Assumptions
	Notation
	Periodic tasks
	Timeline Scheduling (Cyclic Scheduling)
	Timeline Scheduling
	Example
	Implementation
	Timeline Scheduling
	Problems during Overloads
	Problems of Schedule Expandability
	Problems of Schedule Expandability
	Problems of Schedule Expandability
	Problem with aperiodic tasks
	Priority-based Scheduling
	Rate Monotonic Scheduling (RM)
	RM Example
	How Can We Verify Feasibility?
	A Necessary Condition
	Utilization Upper Bound
	The Least Upper Bound
	A Sufficient Condition
	 𝑼 𝒍𝒖𝒃 for RM
	RM Schedulability
	RM Guarantee Test
	RM Optimality
	Proof of RM Optimality
	Proof of RM Optimality
	Critical Instant
	Proof of RM Optimality
	Proof of RM Optimality
	Proof of RM Optimality
	Proof of RM Optimality – Case 1
	Proof of RM Optimality – Case 1
	Proof of RM Optimality – Case 2
	Proof of RM Optimality – Case 2
	Calculation of 𝑼 𝒍𝒖𝒃 for two tasks
	Calculation of 𝑼 𝒍𝒖𝒃 for two tasks
	Calculation of 𝑼 𝒍𝒖𝒃 for two tasks – Case 1
	Calculation of 𝑼 𝒍𝒖𝒃 for two tasks – Case 1
	Calculation of 𝑼 𝒍𝒖𝒃 for two tasks – Case 2
	Calculation of 𝑼 𝒍𝒖𝒃 for two tasks – Case 2
	Calculation of Ulub for two tasks
	Calculation of 𝑼 𝒍𝒖𝒃 for two tasks
	Calculation of 𝑼 𝒍𝒖𝒃 for two tasks
	Calculation of 𝑼 𝒍𝒖𝒃 for two tasks
	Calculation of 𝑼 𝒍𝒖𝒃 for 𝒏 tasks
	Calculation of 𝑼 𝒍𝒖𝒃 for n tasks
	Calculation of 𝑼 𝒍𝒖𝒃 for 𝒏 tasks
	Calculation of 𝑼 𝒍𝒖𝒃 for 𝒏 tasks
	Calculation of 𝑼 𝒍𝒖𝒃 for 𝒏 tasks
	Calculation of 𝑼 𝒍𝒖𝒃 for 𝒏 tasks
	Hyperbolic Bound
	Hyperbolic Bound

