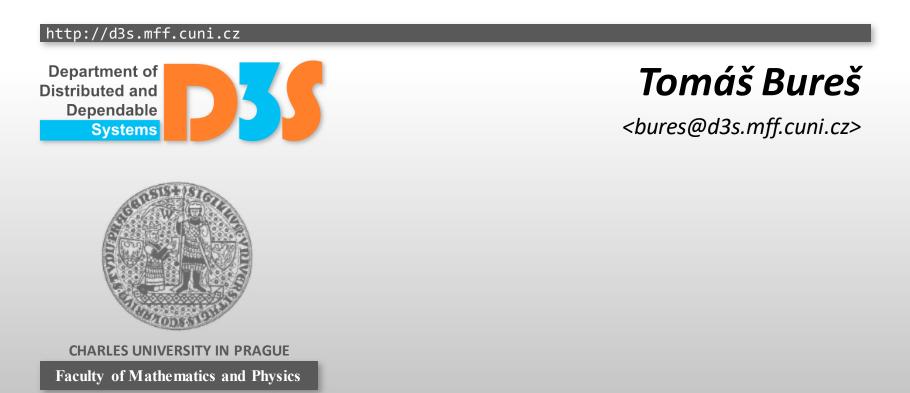
Inovace tohoto kurzu byla v roce 2011/12 podpořena projektem CZ.2.17/3.1.00/33274 financovaným Evropským sociálním fondem a Magistrátem hl. m. Prahy.

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Embedded and Real-time Systems Periodic Task Scheduling

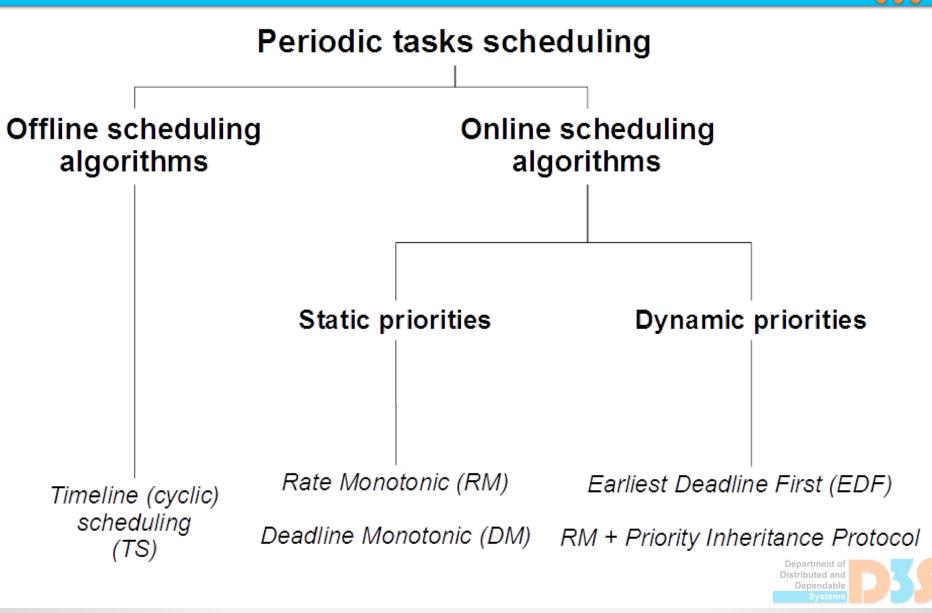


Periodic tasks

Periodic tasks – A type of task that consists of a sequence of identical instances, activated at regular intervals.

- Examples
 - Speed regulation
 - Monitoring sensors
 - Audio/video sampling

Periodic tasks scheduling



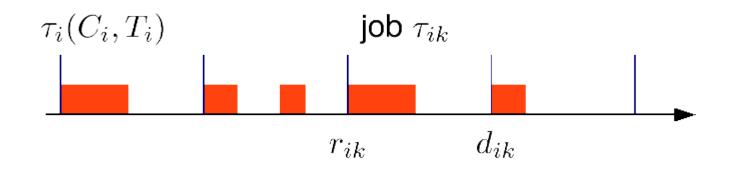
Assumptions

Tasks assumptions:

- A1 instance of a periodic task τ_i are regularly activated
- A2 all instances τ_i have the same C_i
- A3 all instances τ_i have the same D_i which is equal to T_i
- A4 All tasks are independent (no precedence relations, no resource constraints)
- Implicit assumptions:
 - No task can suspend itself (e.g. on I/O oper.)
 - All tasks are fully preemptable
 - All overheads in kernel are assumed to be zero
- A1, A2 OK (reflects reality)
- A3, A4 too tight for practical applications
 - Will be relaxed in future

Notation

- Γ task set
- τ_i a generic periodic task
- T_i period of the task τ_i
- C_i execution time within a period
- D_i relative deadline of τ_i
- $\tau_{i,j} j^{th}$ instance of the task τ_i
- $r_{i,j}$ release time of $\tau_{i,j}$
- $s_{i,j}$ start time of $\tau_{i,j}$
- $f_{i,j}$ finishing (completion) time of $\tau_{i,j}$
- $d_{i,j}$ absolute deadline of $\tau_{i,j}$



- For each periodic task, guarantee that:
 each job τ_{ik} is activated at r_{ik} = (k − 1)T_i
 - each job au_{ik} completes within

$$d_{ik} = r_{ik} + D_i = r_{ik} + T_i = kT_i$$

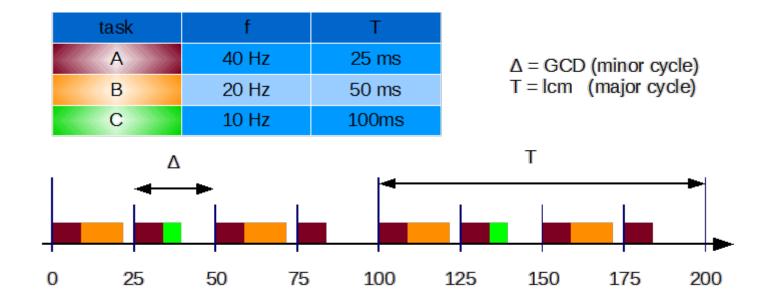
Timeline Scheduling (Cyclic Scheduling)

- It has been used for 30 years in military systems, navigation, and monitoring systems
- Examples:
 - Air traffic control
 - Space Shuttle
 - Boeing 777

Timeline Scheduling

- Method
 - The time axis is divided in intervals of equal length (time slots)
 - Each task is statically (offline) allocated in a slot in order to meet the desired request rate.
 - The execution in each slot is activated by a timer.
 - Order is determinate in advance
 - Based on major cycle

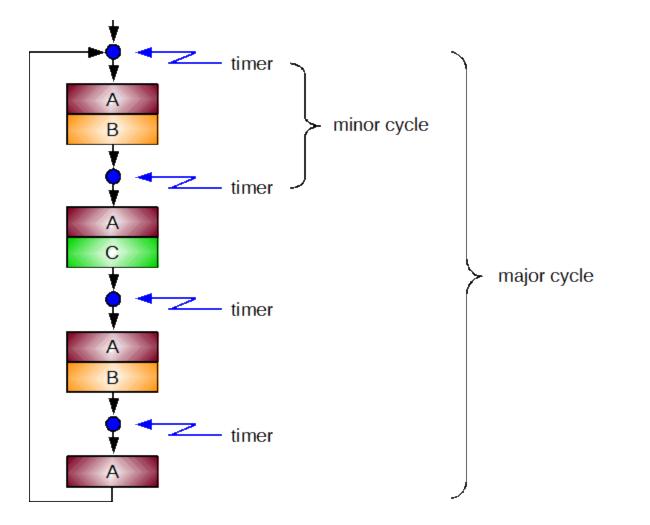
Example



GCD – greatest common divisor lcm – least common multiple

- Guarantee:
 - $C_a + C_b \leq \Delta$
 - $\Box C_a + C_c \leq \Delta$

Implementation



Timeline Scheduling

Advantages

- Simple implementation
- Low run-time overhead
 - No context switches
- It allows jitter control
 - Ordering of tasks inside major cycle
- Disadvantages
 - It is not robust during overloads
 - It is difficult to expand the schedule
 - It is not easy to handle aperiodic activities
- But in fact, it suffices in many cases!

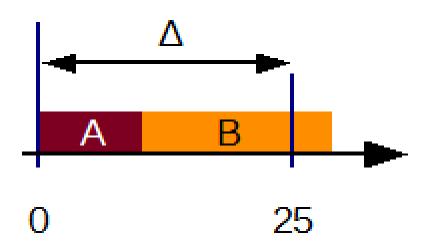
Problems during Overloads

- Problem typical for off -line scheduling
 - Fragility during overload conditions

- What do we do during task overruns?
 - Let the task continue
 - we can have a domino effect on all the other tasks (timeline break)
 - Abort the task
 - the system can remain in an inconsistent state

Problems of Schedule Expandability

- If one or more tasks need to be upgraded (C or T change), we may have to redesign the whole schedule again.
- Example:
 - $C_a + C_b > \Delta$
 - C_B is updated but

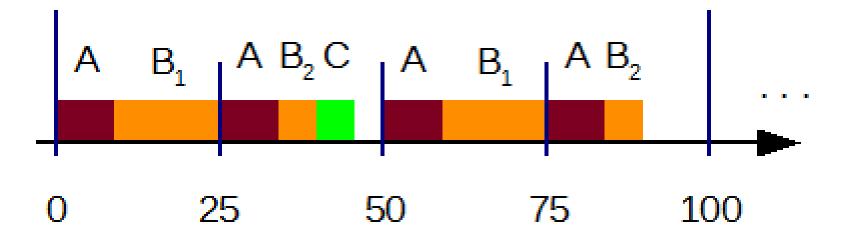


Requires division of task B into smaller tasks

stributed and

Problems of Schedule Expandability

 We have to split task B into two subtasks (B₁, B₂) and rebuild the schedule:



- Guarantee:
 - $C_a + C_{b_1} \leq \Delta$ $C_a + C_{b_2} + C_c \leq \Delta$

Problems of Schedule Expandability

 If the frequency of a task is changed, the impact can be even more significant

task	f	Т
A	40 Hz	25 ms
В	25 Hz	40 ms
С	10 Hz	100ms

before after minor cycle: $\Delta = 25$ $\Delta = 5$ major cycle: T = 100 T = 200 • 40 minor cycles within one major cycle!

Problem with aperiodic tasks

- Difficult to handle aperiodic tasks
 - Requires on-line change in task sequence

Slot-shifting technique

- Spare capacities how much off-line tasks can be shifted at runtime while still meeting timing constraints
- At runtime deadline-base algorithm uses spare capacities to schedule aperiodic tasks
- In complex or open systems, it is better to use online priority-based scheduling.

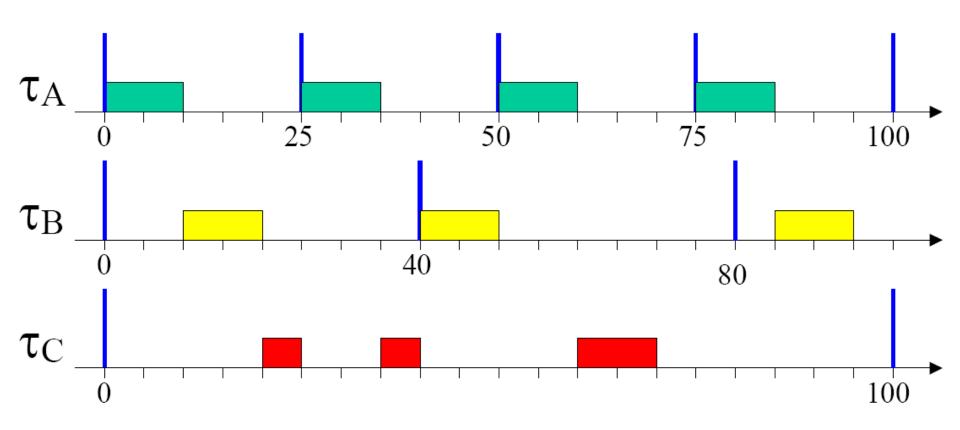
Priority-based Scheduling

- Each task is assigned a priority based on its timing constraints
- We verify the feasibility of the schedule using analytical techniques
- Tasks are executed on a priority-based kernel

Rate Monotonic Scheduling (RM)

- Each task is assigned a fixed priority proportional to its rate (T)
 - Priorities are assigned before execution (T-based)
 - Preemptive
- Recall of basic assumptions
 - A1 C_i is constant for every instance of τ_i
 - A2 T_i is constant for every instance of τ_i
 - A3 For each task, $D_i = T_i$
 - A4 Tasks are independent:
 - no precedence relations
 - no resource constraints
 - no blocking I/O operations

RM Example



0-0-6

How Can We Verify Feasibility?

Each task uses the processor for a fraction of time

$$U_i = \frac{C_i}{T_i}$$

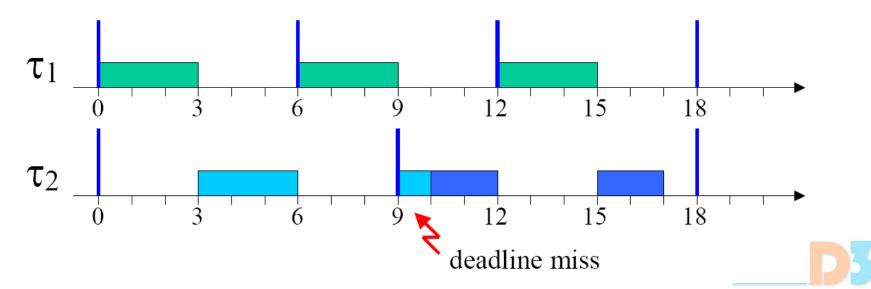
Hence the total processor utilization is

$$U_p = \sum_{i=1}^n \frac{C_i}{T_i}$$

A Necessary Condition

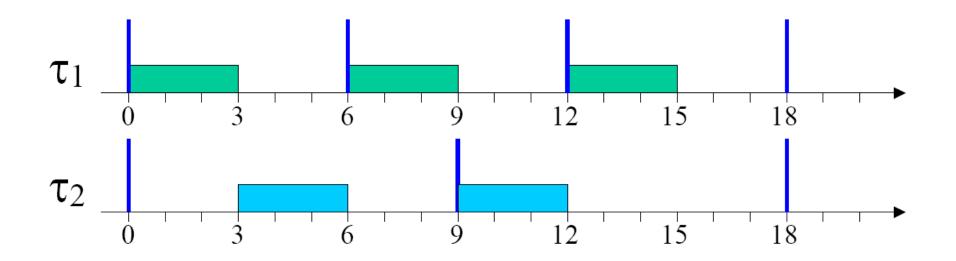
- If $U_p > 1$ the processor is overloaded hence the task set cannot be schedulable
- However, there are cases in which $U_p < 1 \mbox{ but the task set is not schedulable by RM}$

• Example:
$$U_p = \frac{3}{6} + \frac{4}{9} = 0.944$$



Utilization Upper Bound

•
$$U_{ub} = \frac{3}{6} + \frac{3}{9} = 0.833$$



• The upper bound U_{ub} depends on the specific task set.

The Least Upper Bound

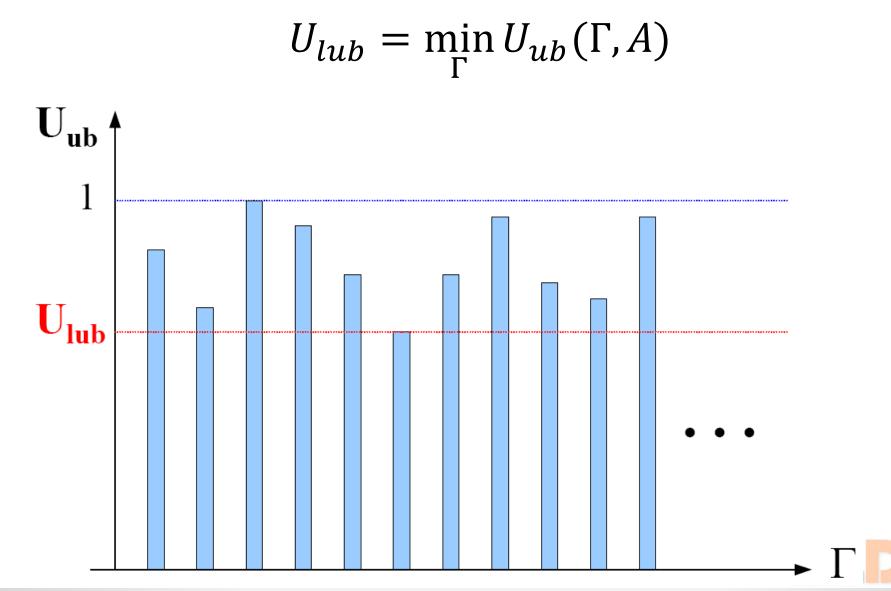


Figure taken from Buttazzo, G.:Task scheduling

A Sufficient Condition

• If $U_p \leq U_{lub}$ the task set is certainly schedulable with the RM algorithm

• Note: If $U_{lub} < U_p \le 1$ we cannot say anything about the feasibility of that task set.

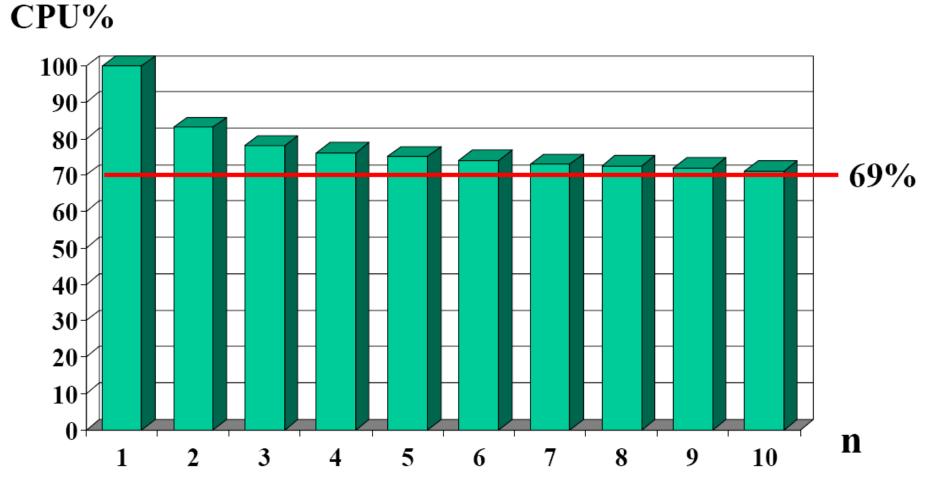
U_{lub} for RM

In 1973, Liu and Leyland proved that for a set of n periodic tasks scheduled by RM:

$$U_{lub} = n(2^{\frac{1}{n}} - 1)$$

• for $n \to \infty$: $U_{lub} \to \ln 2$

RM Schedulability



Department of Distributed and Dependable Systems

RM Guarantee Test

We compute the processor utilization factor as

$$U_p = \sum_{i=1}^n \frac{C_i}{T_i}$$

• Guarantee Test (only sufficient) $U_p \le n(2^{\frac{1}{n}} - 1)$

RM Optimality

• RM is optimal among all fixed priority algorithms:

If there exists a fixed priority assignment which leads to a feasible schedule for Γ, then RM assignment is feasible for Γ

If Γ is not schedulable by RM, then it cannot be scheduled by any fixed priority assignment

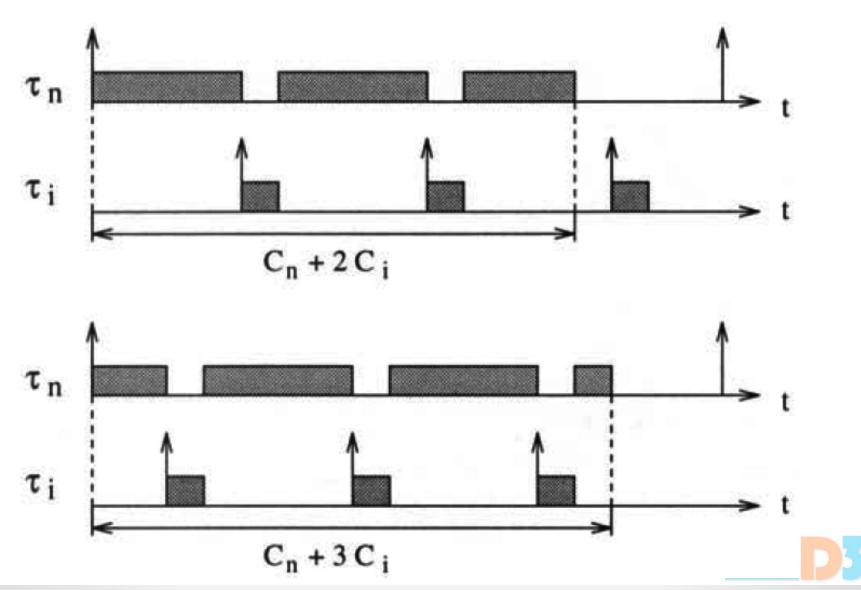
- Periodic tasks vocabulary:
 - Response time of an instance a time (measured from the release time) at which the instance is terminated
 R_{i,k} = f_{i,k} r_{i,k}

 Critical instant of a task – a time at which the release of a task will produce the largest response time

 First, we show that a critical instant for any task occurs whenever the task is released simultaneously with all higher-priority tasks.

• Let $\Gamma = \{\tau_1, ..., \tau_n\}$ be the set of periodic tasks ordered by increasing periods, with τ_n being the task with the longest period. According to RM, τ_n will be the task with the lowest priority.

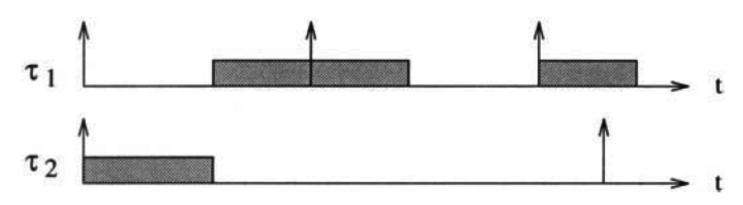
Critical Instant



- Schedulability of a task can be checked at the critical instant
 - If each of the tasks is schedulable at its critical instant, the whole task set is schedulable

 RM optimality is justified by showing that if a task set is schedulable by an arbitrary priority assignment, then it is also schedulable by RM.

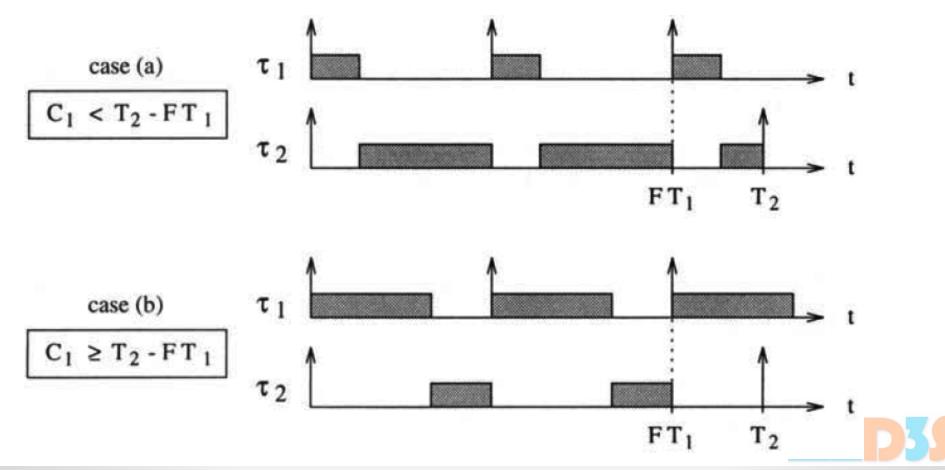
• Consider a set of two periodic tasks τ_1 and τ_2 , with $T_1 < T_2$. If the priorities are not according to RM, then task τ_2 will receive greater priority.



• The schedule is feasible if: $C_1 + C_2 \le T_1$

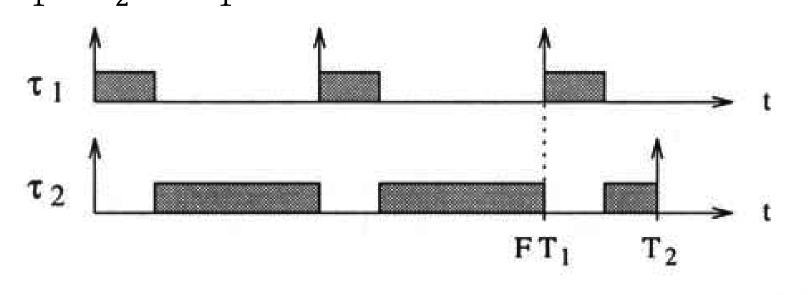
#1

• Let $F = [T_2/T_1]$ be the number of periods of τ_1 entirely contained in T_2 . We distinguish two cases



Proof of RM Optimality – Case 1

- Case 1
 - The computation time C_1 is short enough that all requests of τ_1 within the critical time zone of τ_2 are completed before the second request of τ_2 . That is, $C_1 < T_2 - FT_1$



Distributed and

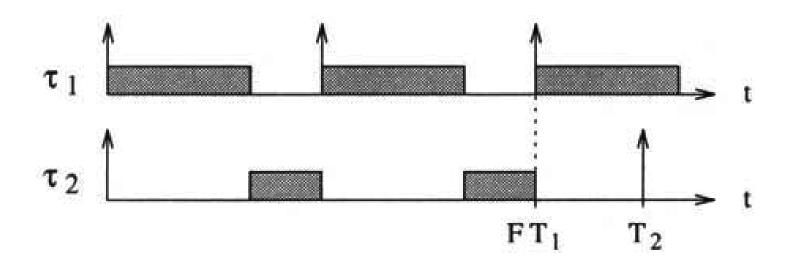
Proof of RM Optimality – Case 1

- The task set is schedulable if $(F+1)C_1 + C_2 \le T_2 \qquad \qquad \texttt{#2}$
- We show how #1 implies #2 $FC_1 + FC_2 \leq FT_1$
- Since $F \ge 1$, we can write: $FC_1 + C_2 \le FC_1 + FC_2 \le FT_1$ $(F+1)C_1 + C_2 \le FT_1 + C_1$

• Since $C_1 \leq T_2 - FT_1$, we have: $(F+1)C_1 + C_2 \leq FT_1 + C_1 \leq T_2$

Proof of RM Optimality – Case 2

- Case 2
 - The execution of the last request of τ_i in the critical time zone of τ_2 overlaps the second request of τ_2 . That is, $C_1 \ge T_2 FT_1$.



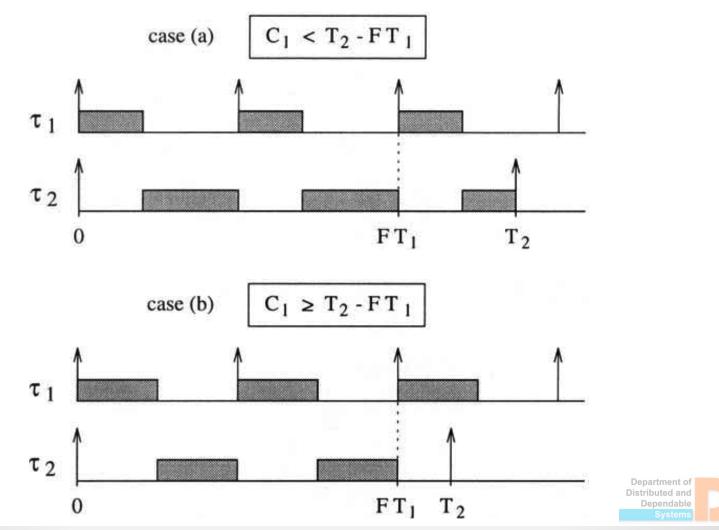
Proof of RM Optimality – Case 2

• The task set is schedulable if $FC_1 + C_2 \leq FT_1$. **#3**

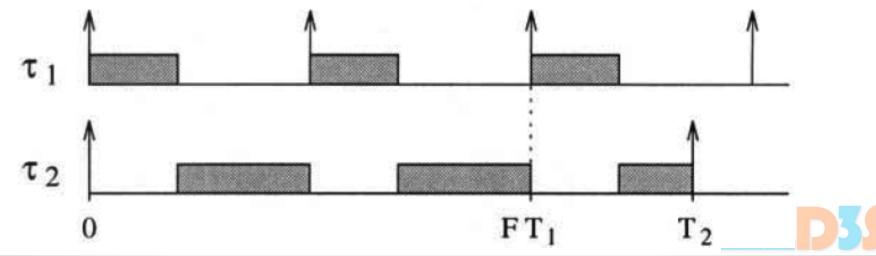
- We show how #1 implies #3 $FC_1 + FC_2 \le FT_1$
- Since $F \ge 1$, we can write: $FC_1 + C_2 \le FC_1 + FC_2 \le FT_1$
- This can be generalized to *n* tasks

- Two periodic tasks τ_1 and τ_2 with $T_1 < T_2$
- We have to
 - Assign priorities to tasks according to RM, so that τ_1 is the task with the highest priority;
 - Compute the upper bound U_{ub} for the set by setting tasks' computation times to fully utilize the processor;
 - Minimize the upper bound U_{ub} with respect to all other task parameters.
- As before, let $F = [T_2/T_1]$ be the number of periods of τ_1 entirely contained in T_2 . Without loss of generality, the computation time C_2 is adjusted to fully utilize the processor.

Two cases must be considered:



- The computation time C_1 is short enough that all requests of τ_1 within the critical time zone of τ_2 are completed before the second request of τ_2 . That is, $C_1 \leq T_2 - FT_1$.
- In this situation, the largest possible value of C_2 is $C_2 = T_2 C_1(F + 1)$



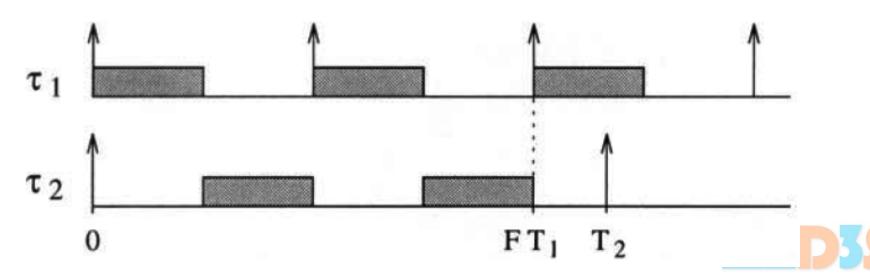
• The corresponding upper bound U_{ub} is thus

$$U_{ub} = \frac{C_1}{T_1} + \frac{C_2}{T_2} = \frac{C_1}{T_1} + \frac{T_2 - C_1(F+1)}{T_2}$$
$$= 1 + \frac{C_1}{T_1} - \frac{C_1}{T_2}(F+1) = 1 + \frac{C_1}{T_2}\left[\frac{T_2}{T_1} - (F+1)\right]$$

• Since the quantity in the square brackets is negative, U_{ub} is monotonically decreasing in C_1 , and, being $C_1 \leq T_2 - FT_1$, the minimum of U_{ub} occurs for

$$C_1 = T_2 - FT_1$$

- The execution of the last request of τ_1 in the critical time zone of τ_2 overlaps the second request of τ_2 . That is, $C_1 \ge T_2 FT_1$
- In this situation, the largest possible value of C_2 is $C_2 = (T_1 C_1)F$



• The corresponding upper bound U_{ub} is thus

$$\begin{split} U_{ub} &= \frac{C_1}{T_1} + \frac{C_2}{T_2} = \frac{C_1}{T_1} + \frac{(T_1 - C_1)F}{T_2} = \frac{T_1}{T_2}F + \frac{C_1}{T_1} - \frac{C_1}{T_2}F \\ &= \frac{T_1}{T_2}F + \frac{C_1}{T_2} \bigg[\frac{T_2}{T_1} - F \bigg] \end{split}$$

• Since the quantity in the square brackets is positive, U_{ub} is monotonically increasing in C_1 , and, being $C_1 \ge T_2 - FT_1$, the minimum of U_{ub} occurs for

$$C_1 = T_2 - FT_1$$

- In both cases, the minimum value of U_{ub} occurs for $C_1 = T_2 T_1 F$
- Using the minimal value of C_1 , we have:

$$\begin{split} U &= \frac{T_1}{T_2}F + \frac{C_1}{T_2} \left(\frac{T_2}{T_1} - F \right) = \frac{T_1}{T_2}F + \frac{(T_2 - T_1F)}{T_2} \left(\frac{T_2}{T_1} - F \right) \\ &= \frac{T_1}{T_2} \left[F + \left(\frac{T_2}{T_1} - F \right) \left(\frac{T_2}{T_1} - F \right) \right] \end{split}$$

• To simplify notation, let $G = T_2/T_1 - F$. Thus,

$$U = \frac{T_1}{T_2} (F + G^2) = \frac{(F + G^2)}{T_2/T_1} = \frac{(F + G^2)}{(T_2/T_1 - F) + F} = \frac{F + G^2}{F + G}$$
$$= \frac{(F + G) - (G - G^2)}{F + G} = 1 - \frac{G(1 - G)}{F + G}$$

• Since $0 \le F < 1$, the term G(1 - G) is nonnegative. Hence, U is monotonically increasing with F. As a consequence, the minimum of U occurs for the minimum value of F; namely, F = 1. Thus, $1 + G^2$

$$U = \frac{1+G^2}{1+G}$$

• Minimizing U over G, we have

$$\frac{dU}{dG} = \frac{2G(1+G) - (1+G^2)}{(1+G)^2} = \frac{G^2 + 2G - 1}{(1+G)^2}$$

and $\frac{dU}{dG} = 0$ for $G^2 + 2G = 1 - 0$ which has

• and dU/dG = 0 for $G^2 + 2G - 1 = 0$, which has two solutions:

$$G_1 = -1 - \sqrt{2}$$
 $G_2 = -1 + \sqrt{2}$

istributed and Dependable

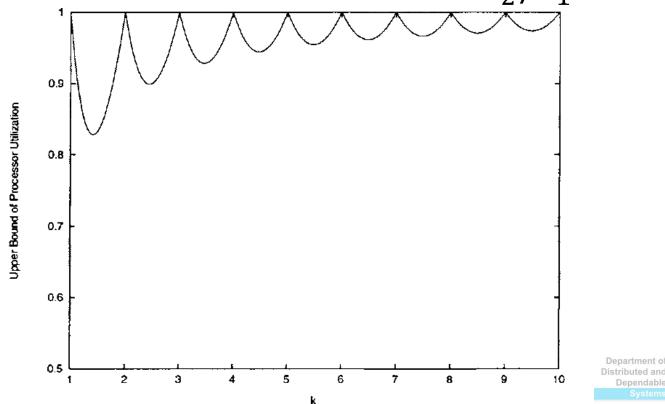
• Since $0 \le G < 1$, the negative solution $G = G_1$ is discarded. Thus, the least upper bound of U is given for $G = G_2$:

$$U_{lub} = \frac{1 + (\sqrt{2} - 1)}{1 + (\sqrt{2} - 1)} = \frac{4 - 2\sqrt{2}}{\sqrt{2}} = 2(\sqrt{2} - 1)$$

• That is,

$$U_{lub} = 2(2^{1/2} - 1) \simeq 0.83$$

• Notice that if T_2 is a multiple of T_1 , G = 0 and the processor utilization factor becomes 1. In general, the utilization factor for two tasks can be computed as a function of the ratio $k = T_2/T_1$



From the previous, the conditions for computing the least upper bound were:

$$F = 1$$

$$C_1 = T_2 - FT_1$$

$$C_2 = (T_1 - C_1)F$$

which can be rewritten as

$$T_1 < T_2 < 2T_1 C_1 = T_2 - T_1 C_2 = 2T_1 - T_2$$

 Generalizing for an arbitrary set of n tasks, the worst conditions for the schedulability of a task set that fully utilizes the processor are

$$T_1 < T_n < 2_{T_1}$$

 $C_1 = T_2 - T_1$
 $C_2 = T_3 - T_2$

$$C_{n-1} = T_n - T_n - 1$$

$$C_n = T_1 - (C_1 + C_2 + \dots + C_{n-1}) = 2T_1 - T_n$$

- Thus, the processor utilization factor becomes $U = \frac{T_2 - T_1}{T_1} + \frac{T_3 - T_2}{T_2} + \dots + \frac{T_n - T_{n-1}}{T_{n-1}} + \frac{2T_1 - T_n}{T_n}$
- Defining $R_i = T_{i+1}/T_i$, and noting that $R_1R_2 \dots R_{n-1} = T_n/T_1$, the utilization factor may be re-written as

$$U = \sum_{i=1}^{n-1} R_i + \frac{2}{R_1 R_2 \dots R_{n-1}} - n$$

- To minimize U over R_i , i = 1, ..., n 1, we have $\frac{\partial U}{\partial R_k} = 1 - \frac{2}{R_i^2 (\prod_{i \neq k}^{n-1} R_i)}$ • Defining $P = R_1 R_2 \dots R_{n-1}$, U is minimum when $R_1 P = 2$ $R_2 P = 2$ $R_{n-1} P = 2$
- That is, when all R_i have the same value:

$$R_1 = R_2 = \dots = R_{n-1} = 2^{1/n}$$

• Substituting the value of R_i in U we obtain

$$U_{lub} = (n-1)2^{1/n} + \frac{2}{2^{1-1/n}} - n$$

= $n2^{1/n} - 2^{1/n} + 2^{1/n} - n$
= $n(2^{1/n} - 1)$

 For high values of n, the least upper bound converges to

$$U_{lub} = \ln 2 \simeq 0.69$$

- This is proved using substitution $y = (2^{1/n} 1)$. From that $n = \frac{\ln 2}{\ln(y+1)}$. Hence $\lim_{n \to \infty} n(2^{1/n} - 1) = (\ln 2) \lim_{y \to 0} \frac{y}{\ln(y+1)}$
- And using l'Hospital's rule:

$$\lim_{y \to 0} \frac{y}{\ln(y+1)} = \lim_{y \to 0} \frac{1}{1/(y+1)} = \lim_{y \to 0} (y+1) = 1$$

Hyperbolic Bound

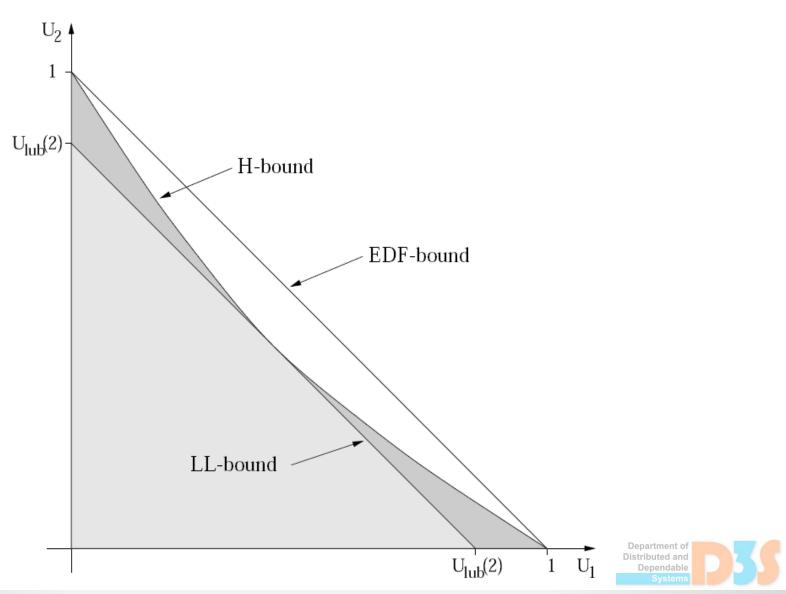
 There is a tighter sufficient condition called hyperbolic bound

Theorem: Let Γ = {τ₁, ..., τ_n} be a set of n periodic tasks, where each task τ_i is characterized by a processor utilization U_i. Then Γ is schedulable with the RM algorithm if

$$\prod_{i=1}^{n} (U_i + 1) \le 2$$

Department of Distributed and Dependable Systems

Hyperbolic Bound



0-0-6