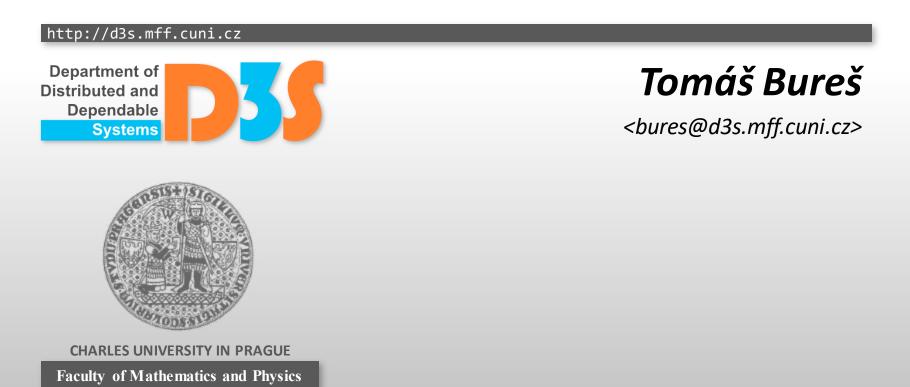
Inovace tohoto kurzu byla v roce 2011/12 podpořena projektem CZ.2.17/3.1.00/33274 financovaným Evropským sociálním fondem a Magistrátem hl. m. Prahy.

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Embedded and Real-time Systems Periodic Task Scheduling II



Deadline Monotonic

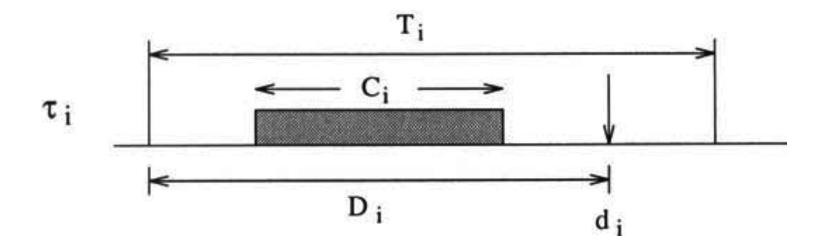
- A generalization of Rate Monotonic
 - Task deadlines are allowed to be shorter than periods D < T
- Each task characterized by
 - A phase Φ_i
 - A worst-case computation time C_i (constant for each instance)
 - A relative deadline D_i (constant for each instance)
 - A period T_i
- A task is assigned a priority inversely proportional to its relative deadline

Deadline Monotonic

$$C_i \le D_i \le T_i$$

$$r_{i,k} = \Phi_i + (k-1)T_i$$

$$d_{i,k} = r_{i,k} + D_i$$



Deadline Monotonic

 DM is optimal among static priority scheduling algorithms, which allow relative deadlines less or equal to periods.

Proof similar to RM

 The feasibility of a set of tasks with deadlines unequal to their periods could be guaranteed using the Rate-Monotonic schedulability test, by reducing tasks' periods to relative deadlines

$$\sum_{i=1}^{n} \frac{C_i}{D_i} \le n(2^{\frac{1}{n}} - 1)$$

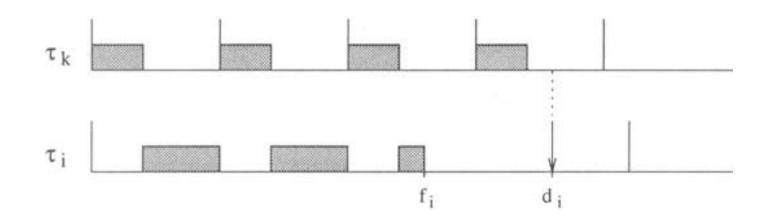
 This is however a big overestimation since it does not reflect the periods which can be relatively large

- Better test may be derived by noting that:
 - The worst-case processor demand occurs when all tasks are released simultaneously; that is, at their critical instants;
 - For each task the sum of its processing time and the interference (preemption) imposed by higher priority tasks must be less than or equal to its relative deadline

$$\forall i, 1 \le i \le n: C_i + I_i \le D_i$$
$$I_i = \sum_{j=1}^{i-1} \left[\frac{D_i}{T_j} \right] C_j$$

Department of Distributed and Dependable Systems

• This is still an overestimation since it assumes that every higher priority task interferes exactly $\left[D_i/T_j\right]$ times, which is not necessarily true



Thus the test is still only sufficient but not necessary

Sufficient and necessary test for schedulability:

The longest response time R_i of a periodic task τ_i (both in RM and DM) is computed, at the critical instant, as the sum of its computation time and the interference due to preemption by higher-priority tasks: $R_i = C_i + I_i$, where

$$I_i = \sum_{j=1}^{i-1} \left[\frac{R_i}{T_j} \right] C_j$$

Hence,

$$R_i = C_i + \sum_{j=1}^{i-1} \left[\frac{R_i}{T_j} \right] C_j$$

- Since R_i is on both sides, the solution is to find the smallest value of R_i which satisfies the equation.
- Only a subset of points in the interval [0, D_i] need to be examined for feasibility.
 - The interference on a task *i* only increases when there is a release of a higher-priority task.

$$R_i = C_i + \sum_{j=1}^{i-1} \left[\frac{R_i}{T_j} \right] C_j$$

#1

• Let R_i^k be the k^{th} estimate of R_i and let I_i^k be the interference on task τ_i in the interval

$$[0, R_i^k]: I_i^k = \sum_{j=1}^{i-1} \left[\frac{R_i^k}{T_j} \right] C_j$$

- The calculation of R_i is performed as follows:
 - 1. Iteration starts with $R_i^0 = C_i$, which is the first point in time that τ_i could possible complete.
 - 2. The actual interference I_i^k in the interval $[0, R_i^k]$ is computed by equation **#1**.
 - 3. If $I_i^k + C_i = R_i^k$, then R_i^k is the actual worst-case response time of task τ_i ; that is, $R_i = R_i^k$. Otherwise, the next estimate is given by $R_i^{k+1} = I_i^k + C_i$, and the iteration continues to step 2.

 Once calculated, the feasibility of task *i* is guaranteed if and only if:

 $R_i \leq D_i$

Response Time Analysis – Example

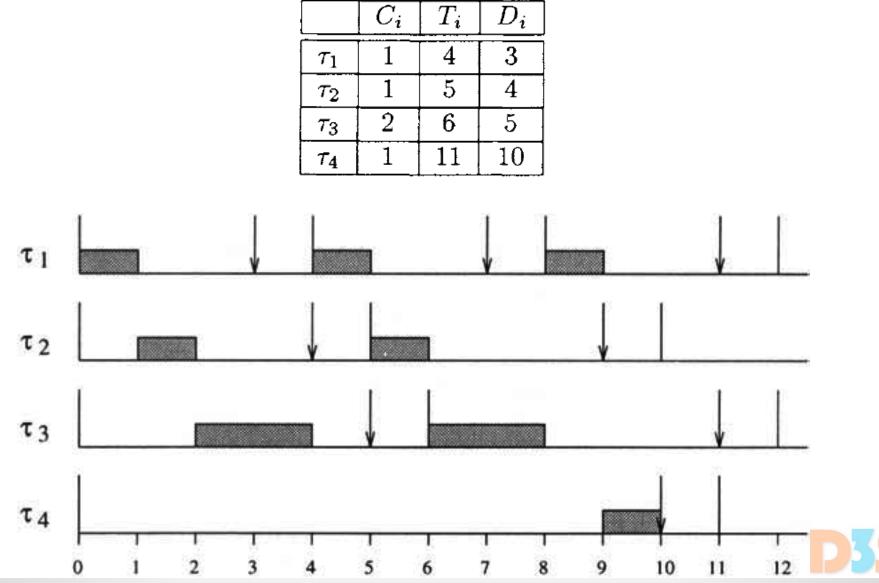
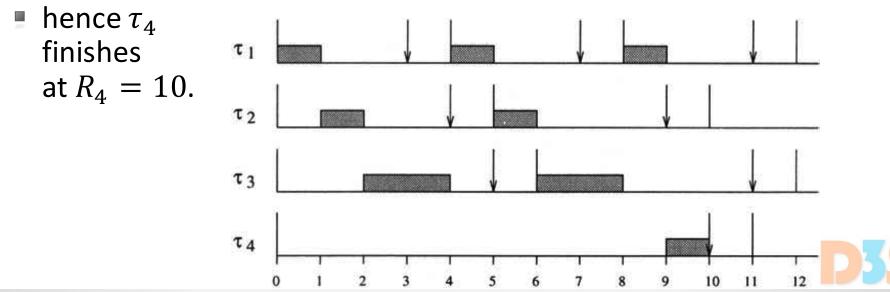


Figure from Buttazzo, G.:Hard RT Comp. Systems

Response Time Analysis – Example

- Step 0: $R_4^0 = C_4 = 1$, but $I_4^0 = 4$ and $I_4^0 + C_4 > R_4^0$
- Step 1: $R_4^1 = I_4^0 + C_4 = 5$, but $I_4^1 = 5$ and $I_4^1 + C_4 > R_4^1$
- Step 2: $R_4^2 = I_4^1 + C_4 = 6$, but $I_4^2 = 6$ and $I_4^2 + C_4 > R_4^2$
- Step 3: $R_4^3 = I_4^2 + C_4 = 7$, but $I_4^3 = 7$ and $I_4^3 + C_4 > R_4^3$
- Step 4: $R_4^4 = I_4^3 + C_4 = 9$, but $I_4^4 = 9$ and $I_4^4 + C_4 > R_4^4$
- Step 5: $R_4^5 = I_4^4 + C_4 = 10$, but $I_4^5 = 9$ and $I_4^5 + C_4 > R_5^4$,



Response Time Analysis – Example

- Since $R_4 \leq D_4$, τ_4 is schedulable within its deadline.
- If $R_i \leq D_i$ for all tasks, we conclude the task is schedulable by DM.

Earliest Deadline First

- Selects the task with the shortest absolute deadline
- Preemptive, with dynamic priority assignment
- Conditions:
 - independent tasks
 - deadline = period
 - release time = start of period
- Optimal, as proved in aperiodic case
- Schedulability analysis:
 - All tasks meet their deadline if $U \leq 1$

Example

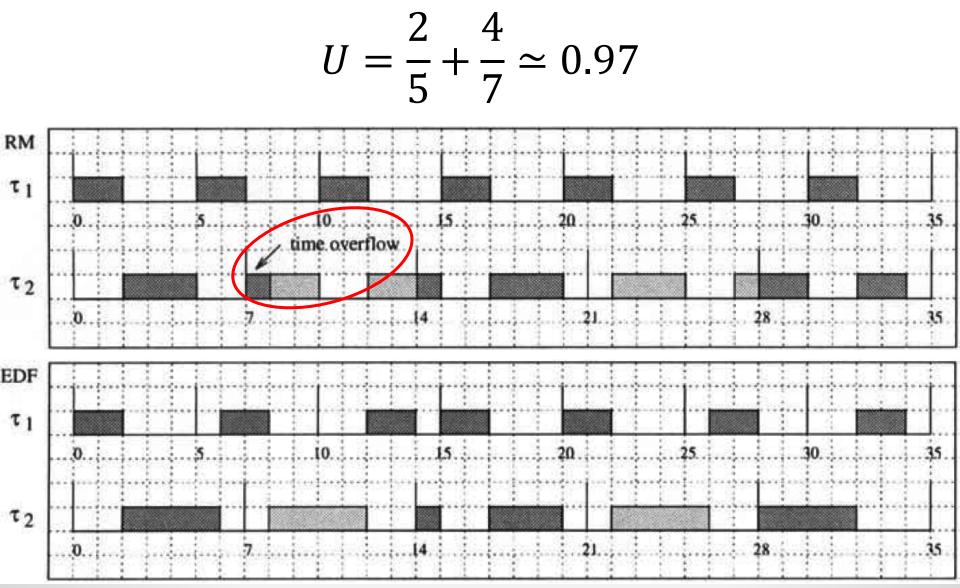
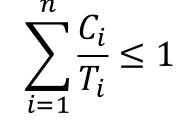


Figure from Buttazzo, G.:Hard RT Comp. Systems

0-0-6

Theorem: A set of period tasks is schedulable with EDF if and only if

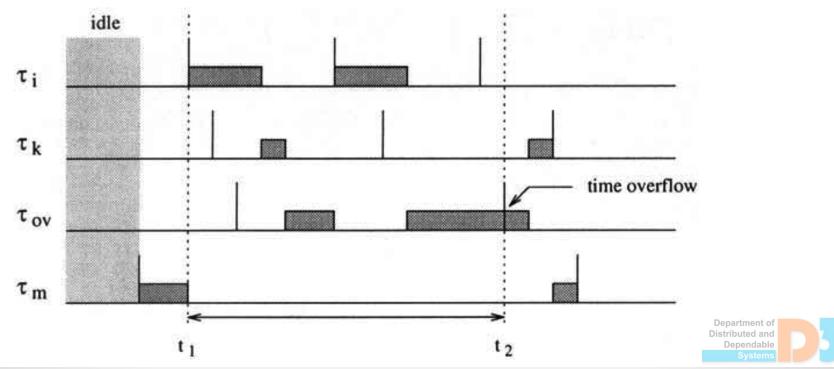


• Proof of only if: The task set cannot be scheduled if U > 1. By defining $T = T_1T_2 \dots T_n$, the total demand of computation time requested by all tasks in T can be calculated as

$$\sum_{i=1}^{n} \frac{T}{T_i} C_i = UT$$

• If U > 1, then UT > T, then the total demand exceeds the available time.

• Proof of if: Assume that U < 1 but the task set is not schedulable. Let t_2 be the instant at which the time-overflow occurs. Let $[t_1, t_2]$ be the longest interval of continuous utilization before the overflow such that only instance with deadline less than or equal to t_2 are executed in $[t_1, t_2]$



• t_1 must be the release time of some periodic instance. Let $C_p(t_1, t_2)$ be the total computation time demanded by periodic tasks in $[t_1, t_2]$, which can be computed as

$$C_p(t_1, t_2) = \sum_{\substack{r_k \ge t_1, d_k \le t_2}} C_k = \sum_{i=1}^n \left[\frac{t_2 - t_1}{T_i} \right] C_i$$

~~

Now, observe that

$$C_p(t_1, t_2) = \sum_{i=1}^n \left| \frac{t_2 - t_1}{T_i} \right| C_i \le \sum_{i=1}^n \frac{t_2 - t_1}{T_i} C_i = (t_2 - t_1)U$$

- Since a deadline is missed at t_2 , $C_p(t_1, t_2)$ must be greater than the available processor time $(t_2 - t_1)$; thus, we must have $(t_2 - t_1) < C_p(t_1, t_2) \le (t_2 - t_1)U$
- That is, U > 1, which is a contradiction.

Processor Demand Analysis

- When doing the schedulability analysis:
 - $\blacksquare D = T \text{use}$ the processor utilization analysis $U \leq 1$
 - $\square D < T use processor demand analysis (will follow)$

Processor Demand Analysis

• **Theorem:** If $\mathcal{D} = \{d_{i,k} | d_{i,k} = kT_i + D_i, d_{i,k} \le \min(B_p, H), 1 \le i \le n, k \ge 0\}$, then a set of periodic tasks with deadlines less than periods is schedulable by EDF if and only if

$$\forall L \in \mathcal{D}: L \ge \sum_{i=1}^{n} \left(\left| \frac{L - D_i}{T_i} \right| + 1 \right) C_i$$

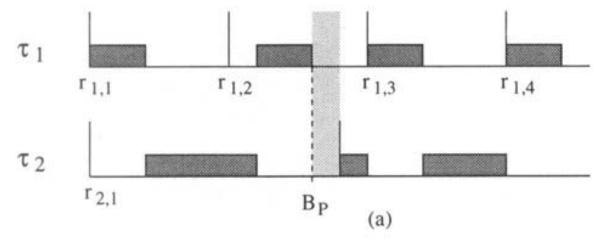
•
$$H = lcm(T_1, \dots, T_n)$$

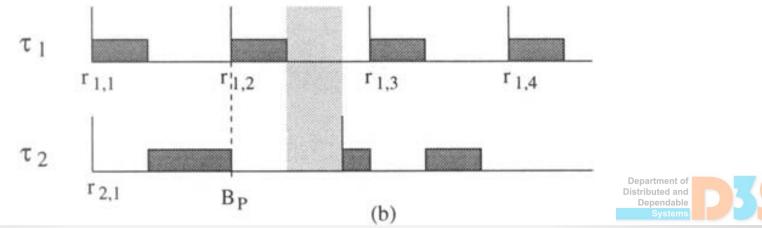
• B_p signifies a busy period – i.e., the smallest interval [0, L] in which the total processing time W(L) requested in [0, L] is completely executed. The quantity W(L) can be computed as

$$W(L) = \sum_{i=1}^{n} \left[\frac{L}{T_i} \right] C_i$$

Busy Period

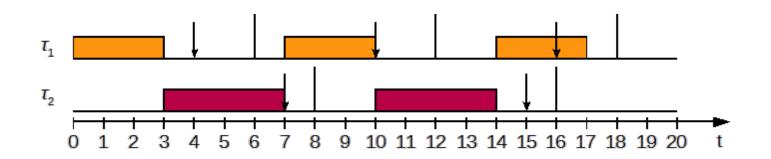
 Coincides either with the beginning of an idle time or with the release of an periodic instance



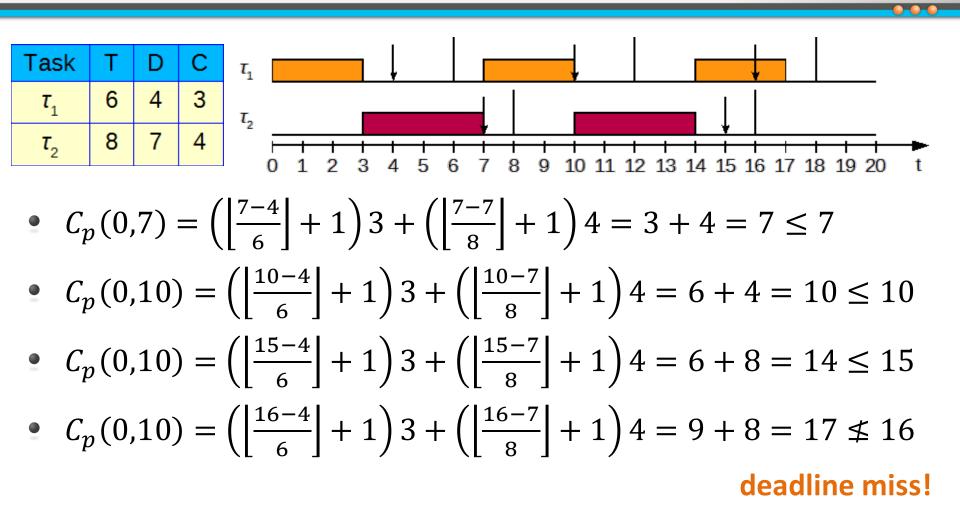


Processor Demand Analysis – Example

Task	Т	D	С
τ ₁	6	4	3
τ ₂	8	7	4



Processor Demand Analysis – Example



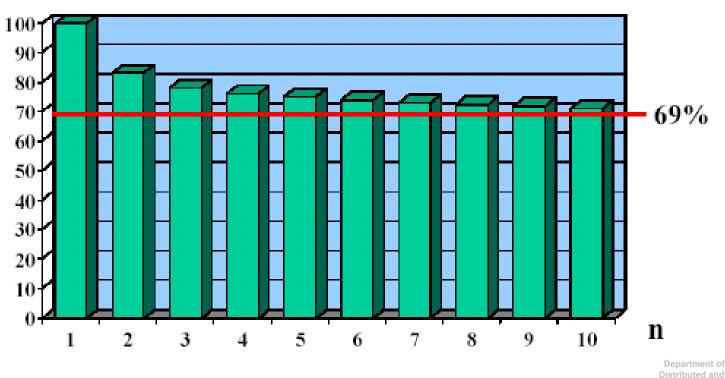
RM vs. EDF

- Let's compare RM vs. EDF in the following:
 - Processor utilization
 - Implementation complexity
 - Runtime overhead
 - Jitter

RM vs. EDF: Processor Utilization

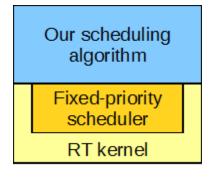
• EDF utilizes processor better than RM

CPU%



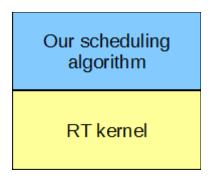
RM vs. EDF: Implementation Complexity

- Case 1
 - on top of existing fixed priority scheduler



- RM straightforward
- EDF needs re-mapping of priorities at runtime

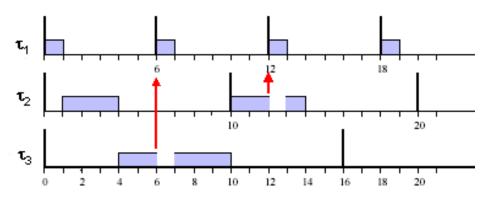
- Case 2
 - implementation from scratch



Same complexity

RM vs. EDF: Runtime Overhead

- EDF has higher overhead for task release since absolute deadline must be updated for each instance. RM has higher context-switch overhead due to more preemptions.
- RM Example:



If we increase the execution time of τ₃, we get 3 preemptions instead of 2:

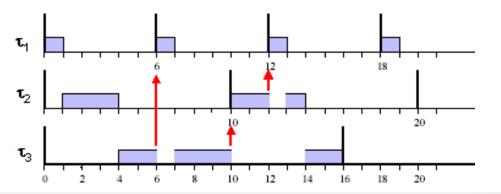
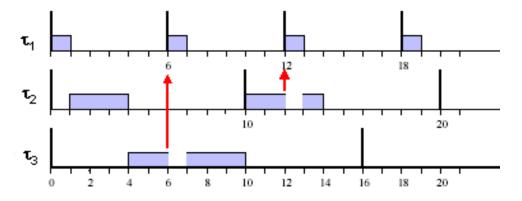


Figure from Issovic, D.:Real-time systems, basic course

stributed and

RM vs. EDF: Runtime Overhead

• EDF Example:



If we increase the execution time of τ_3 , we get only 1 preemption!

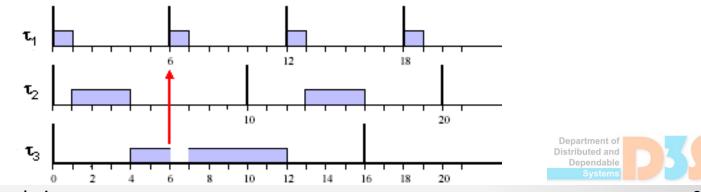
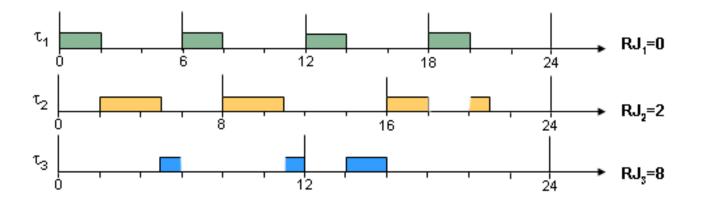


Figure from Issovic, D.:Real-time systems, basic course

RM vs. EDF: Effects of Jitter

• Release jitter under RM: No release jitter for τ_1 but τ_3 experiences very high jitter.



• Release jitter under EDF: For a little increase of release jitter for τ_1 we get large decrease of release jitter for τ_3 .

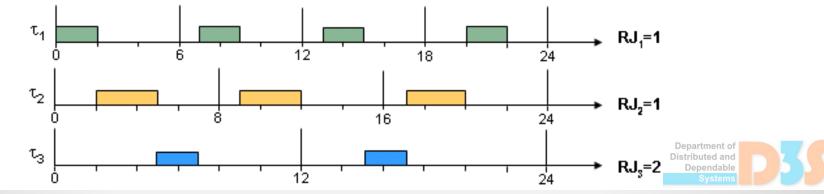


Figure from Issovic, D.:Real-time systems, basic course

RM vs. EDF: Conclusions

- RM and EDF have same implementation complexity— a small additional overhead is needed in EDF to update the absolute deadlines of instances.
- RM is supported by commercial RTOSs a big advantage of RM is that it can be easily implemented on top of fixed priority kernels.
- Runtime overhead is smaller in EDF smaller number of context switches.
- EDF utilizes the processor better than RM EDF achieves full processor utilization, 100%, whereas RM only guarantees 69%
- EDF is simpler to analyze if D = T, RM is simpler for D < T
- EDF is fair in reducing jitter, whereas RM only reduces the jitter of the highest priority tasks
- **EDF** is more efficient than RM for handling **aperiodic** tasks

Periodic Task Schedulability – Overview

