
1

Inovace tohoto kurzu byla v roce 2011/12 podpořena projektem 
CZ.2.17/3.1.00/33274 financovaným Evropským sociálním fondem

a Magistrátem hl. m. Prahy.

Evropský sociální fond
Praha & EU: Investujeme do vaší budoucnosti



CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

Faculty of Mathematics and Physics

Embedded and Real-time
Systems

Resource Sharing

Tomáš Bureš
<bures@d3s.mff.cuni.cz>



3

Resource Sharing

Mutual exclusion
Access to a resource is 
limited to one task at a 
time

Critical section
a code section that 
should be executed 
mutually exclusively by 
tasks

Semaphore
a data structure used for 
protection of critical 
sections

𝑅𝑅 - shared resource
𝑆𝑆 - semaphore

while (1) {
...
lock(S);
...
access(R);
...
unlock(S);
...

}



4Figure from Buttazzo, G.:Hard Real-Time Computing Systems

Blocking on an Exclusive Resource



5Figure from Buttazzo, G.:Hard Real-Time Computing Systems

Priority Inversion

If a high priority task waits for a lock kept by a low 
priority task and an unrelated medium priority 
task interferes

The waiting time of the high priority task is unbounded



6

Real Case

Mars Pathfinder
experienced infrequent resets
high-priority information bus task
low-priority meteorological data 
gathering task

shared date with the high-priority 
information bus task

medium-priority communication 
task
after some time a watchdog 
noticed that information bus task 
is not running – initiated a reset



7

Priority Inheritance Protocol

Assumptions
Jobs have a fixed nominal priority and an active priority
Critical sections are properly nested
Critical sections are guarded by binary semaphores
Jobs are scheduled based on their active priorities. 
Jobs with the same priority are executed on First Come 
First Served basis.



8

Priority Inheritance Protocol

When job 𝐽𝐽𝑖𝑖 tries to enter a critical section 𝑍𝑍𝑖𝑖,𝑗𝑗 and resource 𝑅𝑅𝑖𝑖 ,𝑗𝑗 is 
already held by a lower-priority job, 𝐽𝐽𝑖𝑖 will be blocked. Otherwise, 
𝐽𝐽𝑖𝑖 enters the critical section.
When a job 𝐽𝐽𝑖𝑖 is blocked on a semaphore, it transmits its active 
priority to the job, say 𝐽𝐽𝑘𝑘, that holds that semaphore. Hence, 𝐽𝐽𝑘𝑘
resumes and executes the rest of its critical section with a priority 
𝑝𝑝𝑘𝑘 = 𝑝𝑝𝑖𝑖.
When 𝐽𝐽𝑘𝑘 exits a critical section, it unlocks the semaphore, and the 
highest-priority job, if any, blocked on that semaphore is 
awakened. Moreover, the active priority of 𝐽𝐽𝑘𝑘 is updated as 
follows: if no other jobs are blocked by 𝐽𝐽𝑘𝑘, 𝑝𝑝𝑘𝑘 is set to its nominal 
priority 𝑃𝑃𝑘𝑘, otherwise it is set to the highest priority of the jobs 
blocked by 𝐽𝐽𝑘𝑘.
Priority inheritance is transitive.



9Figure from Buttazzo, G.:Hard Real-Time Computing Systems

Priority Inheritance Protocol



10Figure from Buttazzo, G.:Hard Real-Time Computing Systems

Nested Critical Sections



11Figure from Buttazzo, G.:Hard Real-Time Computing Systems

Transitive Priority Inheritance



12

Properties of PIP

If there are 𝑛𝑛 lower-priority jobs that can block a job 𝐽𝐽𝑖𝑖, then 
𝐽𝐽𝑖𝑖 can be blocked for at most the duration of 𝑛𝑛 critical 
sections (one for each of the 𝑛𝑛 lower-priority jobs), 
regardless of the number of semaphores used by 𝐽𝐽𝑖𝑖.
If there are 𝑚𝑚 distinct semaphores that can block a job 𝐽𝐽𝑖𝑖, 
then 𝐽𝐽𝑖𝑖 can be blocked for at most the duration of 𝑚𝑚 critical 
sections, one for each of the 𝑚𝑚 semaphores.
Under the Priority Inheritance Protocol, a job 𝐽𝐽 can be 
blocked for at most the duration of min(𝑛𝑛,𝑚𝑚) critical 
sections, where 𝑛𝑛 is the number of lower-priority jobs that 
could block 𝐽𝐽 and 𝑚𝑚 is the number of distinct semaphores 
that can be used to block 𝐽𝐽.



13

Schedulability Analysis of PIP

A set of 𝑛𝑛 periodic tasks using the Priority Inheritance 
Protocol can be scheduled by the Rate-Monotonic 
algorithm if

∀𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛: �
𝑘𝑘=1

𝑖𝑖
𝐶𝐶𝑘𝑘
𝑇𝑇𝑘𝑘

+
𝐵𝐵𝑖𝑖
𝑇𝑇𝑖𝑖
≤ 𝑖𝑖 2 ⁄1 𝑖𝑖 − 1

The schedulability test based on response times can be 
also performed similarly, however it is no longer a 
necessary condition.

𝑅𝑅𝑖𝑖 = 𝐶𝐶𝑖𝑖 + 𝐵𝐵𝑖𝑖 + �
𝑗𝑗=1

𝑖𝑖−1
𝑅𝑅𝑖𝑖
𝑇𝑇𝑗𝑗

𝐶𝐶𝑗𝑗



14

Blocking Time Computation

Computed as the minimum of these two:
Sum of the durations of the longest critical section for 
any job with lower priority that can block our task
Sum of the durations of the longest critical section for 
any semaphore on which can our task can wait



15Figure from Buttazzo, G.:Hard Real-Time Computing Systems

Problems of PIP

Chained blocking



16Figure from Buttazzo, G.:Hard Real-Time Computing Systems

Problems of PIP

Deadlock



17

Priority Ceiling Protocol

Each semaphore 𝑆𝑆𝑘𝑘 is assigned a priority ceiling 
𝐶𝐶(𝑆𝑆𝑘𝑘) equal to the priority of the highest-priority 
job, that can lock it. (It is a static values that can be 
computed off-line.)
𝑆𝑆∗ is the semaphore with the highest priority ceiling 
among all the semaphores currently locked by jobs 
other than 𝐽𝐽𝑖𝑖. 𝐶𝐶 𝑆𝑆∗ is its ceiling.
To enter a critical section guarded by semaphore 𝑆𝑆𝑘𝑘 , 
𝐽𝐽𝑖𝑖 must have a priority higher than 𝐶𝐶 𝑆𝑆∗ .
If 𝑃𝑃𝑖𝑖 ≤ 𝐶𝐶 𝑆𝑆∗ , the lock on 𝑆𝑆𝑘𝑘 is denied and 𝐽𝐽𝑖𝑖 is 
blocked on semaphore 𝑆𝑆∗ by the job that has a lock 
on it.
The rest is same as in PIP.



18Figure from Buttazzo, G.:Hard Real-Time Computing Systems

PCP – Example



19

Properties of PCP

PCP prevents transitive blocking
i.e. 𝐽𝐽𝑘𝑘 blocks 𝐽𝐽𝑗𝑗 and 𝐽𝐽𝑗𝑗 blocks 𝐽𝐽𝑖𝑖
It would mean that 𝐽𝐽𝑘𝑘 locks 𝑆𝑆𝑎𝑎, then comes 𝐽𝐽𝑗𝑗 locks 𝑆𝑆𝑏𝑏
and then 𝑆𝑆𝑎𝑎, then comes 𝐽𝐽𝑖𝑖 and locks 𝑆𝑆𝑏𝑏
This cannot happen as 𝐽𝐽𝑗𝑗 would be blocked at the time 
it tries to lock 𝑆𝑆𝑏𝑏

PCP prevents deadlocks
Forming a cycle among tasks is not possible due to the 
ceiling



20

Properties of PCP

Under the Priority Ceiling Protocol, a job 𝐽𝐽𝑖𝑖 can be 
blocked for at most the duration of one critical 
section.

Suppose that 𝐽𝐽𝑖𝑖 is blocked by two lower priority jobs 𝐽𝐽𝑗𝑗
and 𝐽𝐽𝑘𝑘, where 𝑃𝑃𝑘𝑘 < 𝑃𝑃𝑗𝑗 < 𝑃𝑃𝑖𝑖. Let 𝐽𝐽𝑘𝑘 enter its blocking 
critical section first, and let 𝐶𝐶𝑘𝑘∗ be the highest-priority 
ceiling among all the semaphores locked by 𝐽𝐽𝑘𝑘. In this 
situation, if job 𝐽𝐽𝑗𝑗 enters its critical section we must 
have that 𝑃𝑃𝑗𝑗 > 𝐶𝐶𝑘𝑘∗. This means that 𝑃𝑃𝑗𝑗 > 𝐶𝐶𝑘𝑘∗ ≥ 𝑃𝑃𝑖𝑖. This 
contradicts the assumption that 𝑃𝑃𝑖𝑖 > 𝑃𝑃𝑘𝑘.



21

Schedulability Analysis

Same as in PIP, only the blocking time is 
computed differently

∀𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛: �
𝑘𝑘=1

𝑖𝑖
𝐶𝐶𝑘𝑘
𝑇𝑇𝑘𝑘

+
𝐵𝐵𝑖𝑖
𝑇𝑇𝑖𝑖
≤ 𝑖𝑖 2 ⁄1 𝑖𝑖 − 1

or

𝑅𝑅𝑖𝑖 = 𝐶𝐶𝑖𝑖 + 𝐵𝐵𝑖𝑖 +�
𝑗𝑗=1

𝑖𝑖−1
𝑅𝑅𝑖𝑖
𝑇𝑇𝑗𝑗

𝐶𝐶𝑗𝑗



22

Blocking Time Computation

A job can be blocked at most for the duration of 
the longest critical section among those that can 
block it.
Lemma: Under PCP, a critical section 𝑍𝑍𝑗𝑗,𝑘𝑘 can 
block a job 𝐽𝐽𝑖𝑖 only if 𝑃𝑃𝑗𝑗 < 𝑃𝑃𝑖𝑖 and 𝐶𝐶 𝑆𝑆𝑘𝑘 ≥ 𝑃𝑃𝑖𝑖.
Using the lemma, we can compute the maximum 
blocking time as:

𝐵𝐵𝑖𝑖 = max
𝑗𝑗 ,𝑘𝑘

𝐷𝐷𝑗𝑗,𝑘𝑘|𝑃𝑃𝑗𝑗 < 𝑃𝑃𝑖𝑖 ,𝐶𝐶 𝑆𝑆𝑘𝑘 ≥ 𝑃𝑃𝑖𝑖



23

Example

𝐵𝐵1 = max 8,6,9,7,5 = 9
𝐵𝐵2 = max 8,6,7,5,4 = 8
𝐵𝐵3 = max 6,5,4 = 6
𝐵𝐵4 = 0

𝑺𝑺𝟏𝟏(𝑷𝑷𝟏𝟏) 𝑺𝑺𝟐𝟐(𝑷𝑷𝟏𝟏) 𝑺𝑺𝟑𝟑(𝑷𝑷𝟐𝟐)
𝐽𝐽1 1 2 0
𝐽𝐽2 0 9 3
𝐽𝐽3 8 7 0
𝐽𝐽4 6 5 4



24

Immediate Ceiling Priority Protocol

The same assumptions as for PCP, but…
In PCP, the priority is raised when a higher priority task is 
blocked
In ICPC, when a task locks a semaphore it immediately 
raises its own priority to the ceiling of the semaphore

As a consequence, a task will only suffer a block at 
the very beginning of its execution

Once the task starts actually executing, all the resources it 
needs must be free; if they were not, then some tasks 
would have an equal or higher priority and the tasks's
execution would be postponed



25

Immediate Ceiling Priority Protocol

In fact, a task doesn't have to really lock or unlock 
the semaphore, it just has to get the priority
ICPP is less complex then PCP and has fewer 
context switches
PCP gives better concurrency

Doesn't block medium priority task which doesn't lock

The worst-case timing performance of ICPP is the 
same as PCP

Thus the response time analysis for PCP may be used


	Slide Number 1
	Embedded and Real-time Systems�Resource Sharing
	Resource Sharing
	Blocking on an Exclusive Resource
	Priority Inversion
	Real Case
	Priority Inheritance Protocol
	Priority Inheritance Protocol
	Priority Inheritance Protocol
	Nested Critical Sections
	Transitive Priority Inheritance
	Properties of PIP
	Schedulability Analysis of PIP
	Blocking Time Computation
	Problems of PIP
	Problems of PIP
	Priority Ceiling Protocol
	PCP – Example
	Properties of PCP
	Properties of PCP
	Schedulability Analysis
	Blocking Time Computation
	Example
	Immediate Ceiling Priority Protocol
	Immediate Ceiling Priority Protocol

