
1

Inovace tohoto kurzu byla v roce 2011/12 podpořena projektem
CZ.2.17/3.1.00/33274 financovaným Evropským sociálním fondem

a Magistrátem hl. m. Prahy.

Evropský sociální fond
Praha & EU: Investujeme do vaší budoucnosti

CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

Faculty of Mathematics and Physics

Embedded and Real-time
Systems

RT design

Tomáš Bureš
<bures@d3s.mff.cuni.cz>

3

Software Substitute

Today mechanical and electrical control systems
are replaced by computer based solutions.
Contributing causes are:

It is possible to improve already existing technologies,
e.g., brakes in cars
It is possible to do things previously seemed
impossible, e.g., drive-by wire, electronic stability
program in cars, etc..

But …
Stress on reliability and safety

4

Accidents

Ariane 5
Exploded on June 4, 1996

only 39 seconds after launch
loss of about US$ 370 million

A 64-bit float was truncated to 16-bit
integer in a “non-critical software
component”
This caused unhandled hardware
exception
The erroneous component (a method)
was inherited/reused from Ariane 4
and had no practical use in Ariane 5

5

Accidents

Patriot – Failure at Dhahran
February 25, 1991, an Iraqi Scud hit
the barracks in Dhahran killing 28
soldiers
The area was protected by Patriot
aerial interceptor missiles
Due to drift of system's internal

by one third of a second in 100 hours
amounted to miss distance of 600
meters
The system detected the missile but due
to the time skew, it disregarded it as
spurious

6

Accidents

Therac-25
Computer controller radiation therapy machine
6 accidents 1985-1987

three people died as the direct consequence of
radiation burns

Race condition as the primary cause
Other causes included

Poor design, no review of the
software
Bad man-machine interface
Overconfidence in the software
Not understanding safety

The software was in use previously,
but different hardware design
covered its flaws

7

This lecture

How to obtain task attributes from a given
specification
How to design a systems that has timing
requirements
More specific: Real-time Talk (RTT) design
method

8

Design

What is design?
A high-level description of the system
You don’t start building your house without a plan
(drawing) …

Why design?
A tool for the system constructor
Documentation
Parallel development
Evaluation on an early stage
Easier testing and verification
Automatization

9Figure from Issovic, D.:Real-time systems, basic course

Design methods

The waterfall model is the one of the oldest and
the most famous design method

10Figure from Issovic, D.:Real-time systems, basic course

Design methods

V-model introduces early testing in design process
Test plans and test data produced while designing
the system the time needed to test the system is
decreased

11

Design methods

Agile methods
XP, RUP, Scrum, …
characterized by

regular rapid cycles which create executable deliverables
focus on coding rather than planning or documentation
refactor continually to improve code
communicate continually and extensively within the development team
communicate continually and extensively with customers
continually measure project progress, extrapolate projections, adjust long-
term project goals (project end date and features set), set short-term goals
(work elements for the next iteration)
use test-driven development to verify that code is initially correct, and
emphasize regression testing to ensure that the code stays correct
[Doug Dahlby: Applying Agile Methods to Embedded Systems Development]

12

Design methods – Agile methods

Agile methods must be adapted for development
of embedded RT-systems – details below

Rapid fixed-length cycles each delivering a new
version of the product – not always possible

substantial initial effort needed to set up the
development, debugging and testing infrastructure
(simulator, etc.)
embedded systems are often monolithic (i.e. not easily
separable to independent features)
the required features are often more clear upfront
than in enterprise systems

13

Design methods – Agile methods

Focus on coding rather than planning or
documentation – not completely possible

embedded and real-time systems are often optimized –
thus lacking on the self-documentability of the code
need for objective proof that the software works correctly

requires additional artifacts such as test/requirements traceability,
test records, test coverage records, …

ability to keep the software working correctly in the future
(even for decades) needed

may require additional artifacts such as architecture documentation
(high-level structure of the system) and design documentation
(trade-offs, alternatives, design decisions),

user documentation needed
continuously maintained user instruction manual, installation guide,
change log, feature summary, errata list

14

Design methods – Agile methods

Refactor continually to improve code – beneficial
more difficult because code is optimized
dependence on hardware makes refactoring more
costly

if hardware has to be upgraded
necessity of having a good “initial guess”

impractical to have universal code ownership because
many software specializations are combined

operating systems, control theory, signal processing,
communication protocols, user interfaces

15

Design methods – Agile methods

Communicate continually and extensively with
customers – not completely possible

design and optimizations in embedded systems often
require deep understanding to electronics, physics and
mathematics
a story like “replace Gaussian elimination with L-U
decomposition” is not something that you can consult
with a customer
requires engineering management that has technical
and business skills to supplement the interaction with
customers

16

Design methods – Agile methods

Communicate continually and extensively withing the
development team – beneficial

is beneficial if the informal communication does not result
in scarcity of formal written documents

Continual measurements, planning, projections, and
adjustments by management – beneficial

helps with hard to predict development time
due to coupling with hardware, more difficult debugging, etc.

Test-driven development and regression testing –
beneficial

is more difficult due to timing constraints and coupling with
HW – use of simulators
difficulties to test real systems due to problems in probing
into the system

17

Design of real-time systems

Design of real -time systems
An extra design parameter: TIME!
It makes the design more difficult
We need design methods!

Very few design methods for real-time systems
No support for the temporal domain
Existing methods focus on the structure (data and
control flow)
Usually general methods with a “patch” for time

18Figure from Issovic, D.:Real-time systems, basic course

RTT design model

Developed at MDH university
Used in industry

Volvo Construction Equipment
Design of control systems of wheel loaders

Simple model
Can be combined with “standard”
development processes (e.g. V-model, agile)
Few powerful constructions suited for RT
systems, not a general purpose design
method that suits “everything”
Break down a huge problem into smaller
problems that are easier to manage

19Figure from Issovic, D.:Real-time systems, basic course

RTT application model

Pre-defined design objects with strict semantics

Mode: describes functionality in a certain system state
Transaction: A set of tasks that provides a certain function

20Figure from Issovic, D.:Real-time systems, basic course

Tasks in RTT

A task is defined by its temporal behavior, states
and function

21Figure from Issovic, D.:Real-time systems, basic course

Example task and its interfaces

22Figure from Issovic, D.:Real-time systems, basic course

Precedence graph

23Figure from Issovic, D.:Real-time systems, basic course

Example composed system with precedence

24Figure from Issovic, D.:Real-time systems, basic course

Interaction graph

Communication between tasks in a mode
Shared resources (mutual exclusion)

25Figure from Issovic, D.:Real-time systems, basic course

RTT design methodology

Iterative method
Hierarchical decomposition
Early integration
Comm. and synch. separated
WCET estimation
Automatic temporal
verification (scheduling)

26Figure from Issovic, D.:Real-time systems, basic course

Example: Control of a truck bed

Design of a simple control system by using RTT

Assignment:
To control the truck bed with a motor and some
sensors, without damaging the truck bed
The driver must be warned if (s)he starts driving with
the truck bed up

27Figure from Issovic, D.:Real-time systems, basic course

Information about the system

28Figure from Issovic, D.:Real-time systems, basic course

Requirements from the customer

29

Timing requirements

Requirements for motor control
switch from FAST to SLOW within 0.5º → 167 ms to switch
[speed = 3º/s, distance = 0.5º ⇒ t = distance/speed = 0.5º /
(3º/s) = 167 ms]
must get a new control signal at least every 500 ms
must not run the motor in the end-position longer than 400 ms

Requirements for keeping track of the current position of
the truck bed:
no explicit timing requirements, but we must detect ALL pulses

Requirements to warn and stop the truck bed motor if the
vehicle is moving with the truck bed up:
We have 500 ms to stop and warn

30Figure from Issovic, D.:Real-time systems, basic course

Decomposition into modes

OPERATE
An obvious mode to control the truck bed
Is it enough?

No, since we don’t know the initial position of the truck bed (when
we start to use it) Hence we need an INIT mode

INIT
If something goes wrong, we recalibrate the system by
entering the INIT mode

31Figure from Issovic, D.:Real-time systems, basic course

INIT mode

Transactions
Transaction 1: control the truck bed into a
defined position (start position) and then switch
to OPERATE

Tasks
INIT – run to the start position and switch to
OPERATE mode

Interaction graph

32Figure from Issovic, D.:Real-time systems, basic course

INIT mode - timing constraints

Requirement 1: The motor must not run in end-position longer
than 400 ms

Requirement 2: Warn and stop within 500 ms
Previous requirement is more strict than this one, hence T=200
ms is good enough to fulfill this requirement
Requirement 3: The motor must get a signal each 500 ms
The same reasoning as above, T=200 ms is enough

33Figure from Issovic, D.:Real-time systems, basic course

OPERATE mode

Transactions and tasks
Transaction 1: keep track on position and control the motor (tasks:
POSITION, CONTROL)
Transaction 2: detect vehicle movement, stop and warn (tasks:
ALARM)

34Figure from Issovic, D.:Real-time systems, basic course

OPERATE with error handling

Transaction for error handling
Transaction 3: check if position task and end sensors
indicate the same position (task: ERROR)

35

OPERATE mode – timing requirements

Requirement 1: We must detect all pulses
How often do we need to invoke POSITION task in order
not to miss OPERATE mode – timing constraints any of the
pulses, i.e., what is the period of POSITION task?

6000 pulses/90° and 3°/s → 200 pulses/s

Nyquist-Shannon sampling theorem: The sampling
frequency of a signal must be strictly greater than twice
the highest frequency of the input signal

To detect all pulses, we must sample at least 400 times/s
We can easily manage that with a period of 2 ms

𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 2 𝑚𝑚𝑚𝑚

36Figure from Issovic, D.:Real-time systems, basic course

OPERATE mode – timing requirements

Requirement 2: We must switch from FAST to SLOW within 0.5°
It takes 167 ms for the motor to move the truck bed 0.5°.
How often do we need to invoke the CONTROL task?

Alternative 1: period is less or equal to 167/2 ms (as in previous cases)
Alternative 2: set longer period and shorter deadline to enforce earlier execution
(scheduling)

Worst case scenario:

37Figure from Issovic, D.:Real-time systems, basic course

OPERATE mode – timing requirements

Requirement 3: We must detect the movement and
warn the driver within 0.5 s

What requirements do we have on the ALARM task?
If we make sure that ALARM is always executed before
CONTROL, then CONTROL will get the latest info → we put
precedence relation between ALARM and CONTROL
Hence, the timing attributes for the ALARM task:

T =100 ms
D = 50 ms
ALARM precedes CONTROL

38Figure from Issovic, D.:Real-time systems, basic course

OPERATE mode – timing requirements

Requirement 4: The motor must not run in an end-position longer than
0.4 s

Can we meet this requirement with T=100 and D=50 for the CONTROL task
(derived from requirement 2)?

Yes! It takes max 150 ms from detecting the end-position to stopping the motor (see
illustration for requirement 2)

What happens if POSITION misses a pulse?
The ERROR task must detect the end-position and stop the motor within 400 ms
This is achieved if we set a period for ERROR to T=200 ms

Worst case scenario:

39Figure from Issovic, D.:Real-time systems, basic course

OPERATE mode – Error handling

Are we done?
What happens if ERROR gets pre-empted by CONTROL?

The problem is a common resource: the motor
Solution: mutual exclusion between CONTROL and ERROR

40Figure from Issovic, D.:Real-time systems, basic course

Truck bed – Final design

41Figure from Issovic, D.:Real-time systems, basic course

Example impl. – Offline scheduling

A possible offline schedule that fulfills the specification

42Figure from Issovic, D.:Real-time systems, basic course

Example impl. – Online scheduling

CONTROL and ERROR are sharing a resource (motor)
We need a resource access protocol, e.g., Priority Inheritance Protocol (PIP)
or Priority Ceiling Protocol (PCP)

Precedence relation between ALARM and CONTROL
This can be achieved by setting the right priorities

We can use Response Time Analysis to check schedulability

𝑅𝑅𝑖𝑖 = 𝐶𝐶𝑖𝑖 + 𝐵𝐵𝑖𝑖 + �
𝑗𝑗=1

𝑖𝑖−1
𝑅𝑅𝑖𝑖
𝑇𝑇𝑗𝑗

𝐶𝐶𝑗𝑗

Task C RT dl T priority R

POS 1 0 2 2 1 (high) ?

ALARM 2 0 50 100 2 ?

CONT 2 0 50 100 3 ?

ERR 1 0 200 200 4 (low) ?

43

Summary

Design is a very important part of SW development
Higher abstraction

Design of real-time systems
More complex due to the timing requirements

RTT-model
Specific for development of real-time systems
Can be combined (on the logical design level) with other
standard design methodologies

Design should be separated from the
implementation

We do not need to make decision about the
implementation when making design (truck bed example
with offline and FPS)

	Slide Number 1
	Embedded and Real-time Systems�RT design
	Software Substitute
	Accidents
	Accidents
	Accidents
	This lecture
	Design
	Design methods
	Design methods
	Design methods
	Design methods – Agile methods
	Design methods – Agile methods
	Design methods – Agile methods
	Design methods – Agile methods
	Design methods – Agile methods
	Design of real-time systems
	RTT design model
	RTT application model
	Tasks in RTT
	Example task and its interfaces
	Precedence graph
	Example composed system with precedence
	Interaction graph
	RTT design methodology
	Example: Control of a truck bed
	Information about the system
	Requirements from the customer
	Timing requirements
	Decomposition into modes
	INIT mode
	INIT mode - timing constraints
	OPERATE mode
	OPERATE with error handling
	OPERATE mode – timing requirements
	OPERATE mode – timing requirements
	OPERATE mode – timing requirements
	OPERATE mode – timing requirements
	OPERATE mode – Error handling
	Truck bed – Final design
	Example impl. – Offline scheduling
	Example impl. – Online scheduling
	Summary

