
Lubomír Bulej
KDSS MFF UK

C language basics
(with tiny bits of C++)

Computer Systems

2

Basic features

Procedural, imperative, structured (mostly)
● Code organized in functions that can return a value
● Explicit control flow, structured programming

Statically typed
● All variables/parameters/return values must have a type
● Incompatible types cannot be assigned

Explicit memory management (heap)
● Allocated heap memory must be deallocated manually
● Difficult & error prone!

Conceptually close to machine level code
● Maps efficiently to machine instructions
● Used for operating & embedded systems, HPC
● Should NOT be used for (extensive) string manipulation!

3

Constant literals

Integer numbers
● Decimal

123, -18
● Hexadecimal

0x7A

Floating point
-1.234e-5

Char
'a'

Boolean (C++)
true, false

String
"Hello!"

Character escape sequences
● \n … Line Feed (LF)
● \r … Carriage Return (CR)
● \t … Tab (character 9)
● \\ … \
● \' … '
● \" … "
● \xAB … character 0xAB
● \0 … Zero character (NUL)

4

Basic types

Integer types
● Base

char, int
● Modifiers

short, long
signed, unsigned

Floating point types
float, double

Other types
void, bool (C++)

Implicit conversion
● Towards higher rank (higher precision = higher rank)

Type definitions
size_t, ssize_t
off_t, ...

Precise sizes
uint8_t, int32_t, …

Strings?
● A bit special… Wait until

arrays and pointers.

5

Named value stored in memory
● Must be declared before first use

○ Variable type followed by variable name
int i;

● Always strive to initialize variable at declaration
○ Helps keep track of how a variable got its value
unsigned int u = 42;

Variable scope
● Determines where a variable can be accessed

○ Local variables only accessible within the block it was
declared in (function, block in curly braces)

○ Function parameters are also local variables
○ Global variables accessible anywhere after declaration

Variables

6

Storage class determines lifetime
● Automatic variables: lifetime starts when execution enters

their scope and ends when execution leaves their scope
○ Default, no need to be specified explicitly

● Static variables: lifetime starts with declaration and lasts for
the lifetime of a program (special keyword needed)

static int s = 0;

Auto variables (C++)
● Variable type inferred from the initialization expression

auto a = 3;

Variables (2)

7

Run-time: like variables
const int j = 33;

Compile-time only
● Does not exist in memory
● Compiler understands it (C++)
constexpr int C = 13;

Compile-time macro
● Handled by pre-processor
● Appears as a literal to the compiler
#define C 13

Constants

Const
● immutable, accessible

at runtime (it exists in
memory), immutable

8

Statements

Expression statement
● Variable assignments considered an expression

expr;

Compound statement (block)
{ }

Conditional statement
if (expr) stmt

if (expr) stmt else stmt

Return form a function
return expr;

9

Statements - switch
switch (expr) {

case 0:

// Code for value 0

break;

case 1:

// Code for value 1

break;

case 2:

case 3:

// Common code for values 2 and 3

break;

default:

// Code for all other values

break;

}

10

Statements - iteration

While loop
while (expr) stmt

Do-while loop
do stmt while (expr);

For loop
for (expr_init; expr_test; expr_post) stmt

Jumps
break;

continue;

11

Operators
Arithmetic

+, -, *, /, % (modulo), ++ (increment), -- (decrement)
Comparison

<, <=, >, >=, == (equal), != (not equal)
Bitwise

~ (bit inversion), &, |, ^ (xor), << (shift left logical), >>
Logical

&&, ||, ! (not)
Pointers

& (address of), * (pointer dereference), -> (struct dereference)
Assignment (with arithmetic and bitwise operations)

=, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=

12

Arrays
Sequence of elements of the same type

● Laid out in a contiguous chunk of memory
● Each element identified by a zero-based index
● Correct alignment, row-major order

int u[4];
int p[] = { 1, 2, 3 };
int a[2][3] = { { 1, 2, 3 }, { 4, 5, 6 } }

u[0] u[1] u[2] u[3]

0 0 0 0

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]

1 2 3 4 5 6

Sequence of characters ending with zero (NUL) character
● Represented as array of char elements

○ Zero (NUL) character added automatically
● Interchangeable with pointer to character

○ Pointers coming up next…
● Array of characters not necessarily a string!

char str[] = "Hello!";

char chars[] = { 'H', 'e', 'l', 'l', 'o', '!' };

13

Strings

chars[0] chars[1] chars[2] chars[3] chars[4] chars[5]

'H' 'e' 'l' 'l' 'o' '!'

str[0] str[1] str[2] str[3] str[4] str[5] str[6]

'H' 'e' 'l' 'l' 'o' '!' '\0'

14

Structures
Sequence of elements of the same type

● Collection of fields (members)
● Alignment (produces padding)

○ Typically fields aligned to their size, aggregates
(structures) aligned to largest field alignment

struct point2d { int x; int y; }

struct data {
char c;
double d;
int i;

}

Offset

0 B c

8 B d

16 B i

15

Structures
Sequence of elements of the same type

● Collection of fields (members)
● Alignment (produces padding)

○ Typically fields aligned to their size, aggregates
(structures) aligned to largest field alignment

struct point2d { int x; int y; }

struct data {
char c;
int i;
double d;

}

Offset

0 B c i

8 B d

16

Enums
Basically an int type

● Values assigned automatically
enum color_t { COLOR_RED, COLOR_GREEN, COLOR_BLUE };

● Values can be forced if necessary (and selectively)
enum color_t {

COLOR_RED = 0, COLOR_GREEN, COLOR_BLUE = 2
};

● Good practice is to add "support" for iteration
enum color_t {

COLOR_FIRST = 0,
COLOR_RED = COLOR_FIRST,
COLOR_GREEN = 1,
COLOR_BLUE = 2,
COLOR_LAST = COLOR_BLUE

};

17

Preprocessor
Strange keywords/directives starting with #

● Handled by preprocessor (mostly)
● Produces text at source code level (mostly)

○ Used for parametrization at source code level
(conditional compilation)

#include <module.h> … import relative to system defined path
#include "module.h" … import relative to this file

#define MACRO_NAME macro literal value

#ifdef MACRO_NAME

#endif

18

Pointers
Abstraction of a location (address) in memory

● Pointer = variable holding an address
○ Operations capture address manipulations

● Pointers are typed
○ Pointing at a particular data type
○ Different pointer types are incompatible

● Pointer-related operators
& … Take an address of a variable (produces pointer value)
* … Dereference (follow) the pointer to the value

int v = 8;
int * pv = &v;
*pv = 4;

Address

1234 8 v

...

6666 1234 pv

19

String and array variables: pointers
Array variable = pointer to first element

● Applies to strings as well
○ String = array of char with extra NUL character

char str1[] = "Hello!";
char * str2 = "Hello!";

int vals1[] = { 1, 2, 3 };
int * vals2 = { 1, 2, 3 };

Address

1234 'H', 'e', 'l', 'l', 'o', '!', '\0'

...

6666 1234 str1

20

The size of things
The sizeof operator

● Returns the size of a type or variable in bytes
sizeof(int)
sizeof(struct data)

● Also works for fixed-size array variables
int u[4];
sizeof(u) == 4 * sizeof(int)

char s[] = "Hello";
sizeof(s) == (5 + 1) * sizeof(char)

● Beware in the case of pointer types
○ The compiler only knows the size of the pointer

variable, or the data type it points at
const char * s_ptr = "World";
sizeof(s_ptr) == sizeof(char *)
sizeof(*s_ptr) == sizeof(char)

21

Functions, argument passing — C
Arguments in C always passed by value

● Array variables are in fact pointers (passed by value)
Output parameters use a pointer

struct point2d {
int x;
int y;

};

void copy_point(point2d in, point2d * out) {
out->x = in.x;
out->y = in.y;

}

22

References
Alias to a variable

● Must be initialized, cannot be reassigned
○ A bit safer than pointers

● Consider it a fixed pointer
○ Does not support pointer arithmetics
○ Bit more complicated, but let's leave it at that…

● Below: note the absence of & applied to the variable v
○ Variable rv is an alias to variable v

int v = 8;
int & rv = v;
rv = 4;

Address

1234 8 v

...

6666 1234 rv

23

Functions, argument passing — C++
Arguments in C++ passed by value or reference

● Recall: reference must be initialized
Output parameters use a pointer

struct point2d {
int x;
int y;

};

void copy_point(point2d in, point2d & out) {
out->x = in.x;
out->y = in.y;

}

Physical layout
● One of "infinitely"

many possible...

24

Advanced pointer example: linked list
Definition

struct node {
int value;
node * next;

};

node * list;

Logical view
● “Chain” of nodes
● Variable list is a pointer to

the first node

Address Contents

0x100 value = 1

0x104 next = 0x400

...

0x200 list = 0x100

...

0x300 value = 3

0x304 next = 0x0 (NULL)

...

0x400 value = 2

0x404 next = 0x300

value = 1

next

value = 2

next

value = 3

next

list

