
MIPS R4000 Microprocessor
User’s Manual

Second Edition

Joe Heinrich

 1994 MIPS Technologies, Inc. All Rights Reserved.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 52.227-7013 and/or in similar or successor
clauses in the FAR, or in the DOD or NASA FAR Supplement.
Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is MIPS Technologies, Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

RISCompiler, RISC/os, R2000, R6000, R4000, and R4400 are trademarks of
MIPS Technologies, Inc. MIPS and R3000 are registered trademarks of
MIPS Technologies, Inc.

IBM 370 is a registered trademark of International Business Machines.

VAX is a registered trademark of Digital Equipment Corporation.

iAPX is a registered trademark of Intel Corporation.

MC68000 is a registered trademark of Motorola Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company, Ltd.

MIPS Technologies, Inc.

2011 North Shoreline

Mountain View, California 94039-7311

MIPS R4000 Microprocessor User's Manual iii

Acknowledgments for the First Edition

First of all, special thanks go to Duk Chun for his patient help in supplying and
verifying the content of this manual; that this manual is technically correct is, in a
very large part, directly attributable to him.

Thanks also to the following people for supplying portions of this book: Shabbir
Latif, for, among other things, the exception handler flow charts, the description
of the output buffer edge-control logic, and the interrupts; once again, Duk Chun,
for his paper on R4000 processor synchronization support; Paul Ries, for
confirming the accuracy of sections describing the memory management and the
caches; John Mashey, for verifying the R4000 processor actually does employ the
64-bit architecture; Dave Ditzel, for raising the issue in the first place; and Mike
Gupta, for substantiating various aspects of the errata. Finally, thanks to Ed
Reidenbach for supplying a large portion of the parity and ECC sections of this
manual, and Michael Ngo for checking their accuracy.

Thanks also to the following folks for their technical assistance: Andy Keane,
Keith Garrett, Viggy Mokkarala, Charles Price, Ali Moayedian, George Hsieh,
Peter Fu, Stephen Przybylski, Michael Woodacre, and Earl Killian. Also to be
thanked are the people at fvn@world.std.com: Bill Tuthill, Barry Shein, Bob
Devine, and Alan Marr, for helping place RISC in a pecuniary perspective. Also,
thanks to the following people at the mystery_train@swim2birds news group: toma,
dan_sears, jharris@garnet, tut@cairo (again), and elvis@dalkey(mateo_b). Their night-
for-day netversations, fueled by caffeine, concerning the viability of the
cyberpsykinetic compute-core model helped form an important basis of this book.

On the editorial front, thanks once again to Ms. Robin Cowan, of the Consortium
of Editorial Arts for her labors in editing this manual. Thanks to Evelyn Spire for
slaving over that bottomless black well we refer to as an “Index.” Thanks also,
once again, to Karen Gettman, and Lisa Iarkowski at Prentice-Hall for their help.

On the artistic side, thanks to Jeanne Simonian, of the Creative department here
at Silicon Graphics, for the book cover design; and thanks to Pam Flanders for
providing MarCom tactical support.

Have we missed anyone? If so, here is where we apologize for doing so.

Joe Heinrich
April 1, 1993

Mt. View, California

MIPS R4000 Microprocessor User's Manual iv

MIPS R4000 Microprocessor User's Manual v

Acknowledgments for the Second Edition

Thanks go to Shabbir Latif, from whose errata the major part of this second
edition is derived. Thanks also to Charlie Price for, among other things, making
available his revision of the ISA.

On the production side, thanks to Kay Maitz, Beth Fraker, Molly Castor, Lynnea
Humphries, and Claudia Lohnes for their assistance at the center of the hurricane.

Joe Heinrich
joeh@sgi.com
April 1, 1994

Mt. View, California

MIPS R4000 Microprocessor User's Manual vi

MIPS R4000 Microprocessor User's Manual vii

Preface

This book describes the MIPS R4000 and R4400 family of RISC
microprocessors (also referred to in this book as processor).

Overview of the Contents

Chapter 1 is a discussion (including the historical context) of RISC
development in general, and the R4000 microprocessor in particular.

Chapter 2 is an overview of the CPU instruction set.

Chapter 3 describes the operation of the R4000 instruction execution
pipeline, including the basic operation of the pipeline and
interruptions that are caused by interlocks and exceptions.

Chapter 4 describes the memory management system including
address mapping and address spaces, virtual memory, the translation
lookaside buffer (TLB), and the System Control Processor (CP0).

Chapter 5 describes the exception processing resources of R4000
processor. It includes an overview of the CPU exception handling
process and describes the format and use of each CPU exception
handling register.

Preface

viii MIPS R4000 Microprocessor User's Manual

Chapter 6 describes the Floating-Point Unit (FPU), a coprocessor for
the CPU that extends the CPU instruction set to perform floating-
point arithmetic operations. This chapter lists the FPU registers and
instructions.

Chapter 7 describes the FPU exception processing.

Chapter 8 describes the signals that pass between the R4000 processor
and other components in a system. The signals discussed include the
System interface, the Clock/Control interface, the Secondary Cache
interface, the Interrupt interface, the Initialization interface, and the
JTAG interface.

Chapter 9 describes in more detail the Initialization interface, which
includes the boot modes for the processor, as well as system resets.

Chapter 10 describes the clocks used in the R4000 processor, as well as
the processor status reporting mechanism.

Chapter 11 discusses cache memory, including the operation of the
primary and secondary caches, and cache coherency in a
multiprocessor system.

Chapter 12 describes the System interface, which allows the processor
access to external resources such as memory and input/output (I/O).
It also allows an external agent access to the internal resources of the
processor, such as the secondary cache.

Chapter 13 describes the Secondary Cache interface, including read
and write cycle timing. This chapter also discusses the interface buses
and signals.

Chapter 14 describes the Joint Test Action Group (JTAG) interface.
The JTAG boundary scan mechanism tests the interconnections
between the R4000 processor, the printed circuit board to which it is
mounted, and other components on the board.

Chapter 15 describes the single nonmaskable processor interrupt,
along with the six hardware and two software processor interrupts.

Chapter 16 describes the error checking and correcting (ECC)
mechanisms of the R4000 processor.

MIPS R4000 Microprocessor User's Manual ix

Preface

Appendix A describes the R4000 CPU instructions, in both 32- and 64-
bit modes. The instruction list is given in alphabetical order.

Appendix B describes the R4000 FPU instructions, listed
alphabetically.

Appendix C describes sub-block ordering, a nonsequential method of
retrieving data.

Appendix D describes the output buffer and the ∆i/∆t control
mechanism.

Appendix E describes the passive components that make up the
phase-locked loop (PLL).

Appendix F describes Coprocessor 0 hazards.

Appendix G describes the R4000 pinout.

A Note on Style

A brief note on some of the stylistic conventions used in this book: bits,
fields, and registers of interest from a software perspective are
italicized (such as Config register); signal names of more importance
from a hardware point of view are rendered in bold (such as Reset*).

A range of bits uses a colon as a separator; for instance, (15:0)
represents the 16-bit range that runs from bit 0, inclusive, through bit
15. (In some places an ellipsis may used in place of the colon for
visibility: (15...0).)

Preface

x MIPS R4000 Microprocessor User's Manual

MIPS R4000 Microprocessor User's Manual xi

Preface to the Second Edition

Changes From the First Edition

The second edition of this book incorporates certain low-level changes
and technical additions, but retains a substantive identity with the
original version.

Changes from the first edition are indicated by left-margin vertical
rules.

Getting MIPS Documents On-Line

MIPS documents (including an electronic version of the errata) are
available on-line, through the file transport protocol (FTP). To
retrieve them, follow the steps below. The text you are to type is
shown in Courier Bold font; the computer’s responses are in
shown in Courier Regular font.

1. First, place yourself in the directory on your system within which
you want to store the retrieved files. Do this by typing:

cd <directory_you_want_file_to_be_in>

2. Access the MIPS document server, sgigate, through FTP by
typing:

ftp sgigate.sgi.com

3. The server tells you when you are connected for FTP by
responding:

Connected to sgigate.sgi.com.

Preface

xii MIPS R4000 Microprocessor User's Manual

4. Next (after some announcements) the server asks you to log in by
requesting a name and then a password.

Name (sgigate.sgi.com:<login_name>) :

5. Login by typing anonymous for your name and your electronic
mail address for your password.

Name (sgigate.sgi.com:<login_name>) : anonymous

331 Guest login ok, type your name as
password.

Password: your_email_address

6. The system indicates you have successfully logged in by
supplying an FTP prompt:

ftp>

7. Go to the pub/doc directory by typing:

ftp> cd pub/doc

8. You can take a look at the contents of the doc directory by listing
them:

ftp> ls

9. You will find several R4000-related subdirectories, such as R4200,
R4400, and R4600. When you find the subdirectory you want, cd
into that subdirectory and retrieve the file you want by typing:

get <filename>

This copies the file from sgigate back to your system.

10. When you have retrieved the files you want, exit from ftp by
typing:

ftp> quit

11. If the file was encoded for transmission, you must decode it, after
retrieval, by typing:

uudecode <filename>

12. If the file was compressed for transmission, you must uncompress
it, after retrieval, by typing:

uncompress <filename>

13. If you tarred the file, type:

tar xvof <filename>

MIPS R4000 Microprocessor User's Manual xiii

Table of Contents

Preface

Overview of the Contents ... vii
A Note on Style .. ix

Preface to the Second Edition

Changes From the First Edition ... xi
Getting MIPS Documents On-Line.. xi

Table of Contents

xiv MIPS R4000 Microprocessor User's Manual

1
Introduction

Benefits of RISC Design... 2
Shorter Design Cycle ... 3
Effective Utilization of Chip Area ... 3
User (Programmer) Benefits... 3
Advanced Semiconductor Technologies .. 3
Optimizing Compilers... 4
MIPS RISCompiler Language Suite .. 5

Compatibility .. 6
Processor General Features... 6
R4000 Processor Configurations .. 7
R4400 Processor Enhancements ... 7
R4000 Processor .. 9

64-bit Architecture ... 9
Superpipeline Architecture .. 11
System Interface ... 11
CPU Register Overview .. 12
CPU Instruction Set Overview... 14
Data Formats and Addressing ... 24
Coprocessors (CP0-CP2) ... 27

System Control Coprocessor, CP0... 27
Floating-Point Unit (FPU), CP1 ... 30

Memory Management System (MMU)... 31
The Translation Lookaside Buffer (TLB) .. 31
Operating Modes ... 32
Cache Memory Hierarchy .. 32
Primary Caches .. 33
Secondary Cache Interface ... 33

MIPS R4000 Microprocessor User's Manual xv

Table of Contents

2
CPU Instruction Set Summary

CPU Instruction Formats .. 36
Load and Store Instructions ... 37

Scheduling a Load Delay Slot .. 37
Defining Access Types.. 37

Computational Instructions.. 39
64-bit Operations ... 39
Cycle Timing for Multiply and Divide Instructions................................... 40

Jump and Branch Instructions ... 41
Overview of Jump Instructions ... 41
Overview of Branch Instructions .. 41

Special Instructions.. 42
Exception Instructions... 42
Coprocessor Instructions .. 42

3
The CPU Pipeline

CPU Pipeline Operation.. 44
CPU Pipeline Stages... 45
Branch Delay... 48
Load Delay .. 48
Interlock and Exception Handling... 49

Exception Conditions .. 52
Stall Conditions .. 53
Slip Conditions ... 53
External Stalls ... 53
Interlock and Exception Timing .. 53

Backing Up the Pipeline ... 54
Aborting an Instruction Subsequent to an Interlock 55

Pipelining the Exception Handling ... 56
Special Cases... 58

Performance Considerations.. 58
Correctness Considerations.. 58

R4400 Processor Uncached Store Buffer ... 59

Table of Contents

xvi MIPS R4000 Microprocessor User's Manual

4
Memory Management

Translation Lookaside Buffer (TLB) .. 62
Hits and Misses .. 62
Multiple Matches ... 62

Address Spaces ... 63
Virtual Address Space... 63
Physical Address Space... 64
Virtual-to-Physical Address Translation.. 64
32-bit Mode Address Translation .. 65
64-bit Mode Address Translation .. 66
Operating Modes ... 67

 User Mode Operations... 67
 Supervisor Mode Operations.. 69
 Kernel Mode Operations ... 73

System Control Coprocessor .. 80
Format of a TLB Entry... 81
CP0 Registers .. 84

Index Register (0) ... 85
Random Register (1).. 86
EntryLo0 (2), and EntryLo1 (3) Registers... 87
PageMask Register (5)... 87
Wired Register (6) .. 88
EntryHi Register (CP0 Register 10) ... 89
Processor Revision Identifier (PRId) Register (15)...................................... 89
Config Register (16) ... 90
Load Linked Address (LLAddr) Register (17) .. 93
Cache Tag Registers [TagLo (28) and TagHi (29)] 93

Virtual-to-Physical Address Translation Process.. 95
TLB Misses .. 97
TLB Instructions ... 97

MIPS R4000 Microprocessor User's Manual xvii

Table of Contents

5
CPU Exception Processing

How Exception Processing Works... 100
Exception Processing Registers .. 101

Context Register (4) ... 102
Bad Virtual Address Register (BadVAddr) (8) .. 103
Count Register (9) .. 103
Compare Register (11)... 104
Status Register (12)... 105

Status Register Format .. 105
Status Register Modes and Access States... 109
Status Register Reset ... 110

Cause Register (13) .. 110
Exception Program Counter (EPC) Register (14) .. 112
WatchLo (18) and WatchHi (19) Registers ... 113
XContext Register (20)... 114
Error Checking and Correcting (ECC) Register (26)....................................... 115
Cache Error (CacheErr) Register (27) .. 116
Error Exception Program Counter (Error EPC) Register (30)........................ 118

Processor Exceptions ... 119
Exception Types ... 119

Reset Exception Process.. 120
Cache Error Exception Process .. 120
Soft Reset and NMI Exception Process... 121
General Exception Process ... 121

Exception Vector Locations .. 122
Priority of Exceptions .. 123
Reset Exception .. 124
Soft Reset Exception .. 125
Address Error Exception... 127
TLB Exceptions... 128

TLB Refill Exception.. 129
TLB Invalid Exception... 130
TLB Modified Exception... 131

Cache Error Exception... 132
Virtual Coherency Exception ... 133
Bus Error Exception... 134
Integer Overflow Exception ... 135

Table of Contents

xviii MIPS R4000 Microprocessor User's Manual

Trap Exception ... 136
System Call Exception... 137
Breakpoint Exception .. 138
Reserved Instruction Exception ... 139
Coprocessor Unusable Exception .. 140
Floating-Point Exception... 141
Watch Exception .. 142
Interrupt Exception.. 143

Exception Handling and Servicing Flowcharts ... 144

MIPS R4000 Microprocessor User's Manual xix

Table of Contents

6
Floating-Point Unit

Overview ... 152
FPU Features ... 153
FPU Programming Model... 154

Floating-Point General Registers (FGRs).. 154
Floating-Point Registers .. 156
Floating-Point Control Registers ... 157
Implementation and Revision Register, (FCR0) .. 158
Control/Status Register (FCR31)... 159

Accessing the Control/Status Register... 160
IEEE Standard 754 ... 161
Control/Status Register FS Bit... 161
Control/Status Register Condition Bit ... 161
Control/Status Register Cause, Flag, and Enable Fields........................... 161
Control/Status Register Rounding Mode Control Bits.............................. 163

Floating-Point Formats .. 164
Binary Fixed-Point Format.. 166
Floating-Point Instruction Set Overview .. 167

Floating-Point Load, Store, and Move Instructions.. 169
Transfers Between FPU and Memory... 169
Transfers Between FPU and CPU.. 169
Load Delay and Hardware Interlocks .. 169
Data Alignment.. 170
Endianness.. 170

Floating-Point Conversion Instructions.. 170
Floating-Point Computational Instructions ... 170
Branch on FPU Condition Instructions... 170
Floating-Point Compare Operations ... 171

FPU Instruction Pipeline Overview... 172
Instruction Execution .. 172
Instruction Execution Cycle Time ... 173
Scheduling FPU Instructions.. 175
FPU Pipeline Overlapping.. 175

Instruction Scheduling Constraints .. 176
Instruction Latency, Repeat Rate, and Pipeline Stage Sequences............. 181
Resource Scheduling Rules .. 182

Table of Contents

xx MIPS R4000 Microprocessor User's Manual

7
Floating-Point Exceptions

Exception Types.. 188
Exception Trap Processing.. 189
Flags ... 190
FPU Exceptions... 192

Inexact Exception (I) .. 192
Invalid Operation Exception (V).. 193
Division-by-Zero Exception (Z) ... 194
Overflow Exception (O) .. 194
Underflow Exception (U).. 195
Unimplemented Instruction Exception (E) .. 196

Saving and Restoring State ... 197
Trap Handlers for IEEE Standard 754 Exceptions... 198

8
R4000 Processor Signal Descriptions

System Interface Signals.. 201
Clock/Control Interface Signals .. 203
Secondary Cache Interface Signals .. 205
Interrupt Interface Signals .. 207
JTAG Interface Signals... 207
Initialization Interface Signals .. 208
Signal Summary ... 209

MIPS R4000 Microprocessor User's Manual xxi

Table of Contents

9
Initialization Interface

Functional Overview ... 214
Reset Signal Description.. 215

Power-on Reset... 216
Cold Reset ... 217
Warm Reset... 217

Initialization Sequence... 218
Boot-Mode Settings .. 222

10
Clock Interface

Signal Terminology.. 228
Basic System Clocks ... 229

MasterClock .. 229
MasterOut ... 229
SyncIn/SyncOut... 229
PClock.. 229
SClock .. 230
TClock.. 230
RClock.. 230
PClock-to-SClock Division ... 230

System Timing Parameters ... 233
Alignment to SClock.. 233
Alignment to MasterClock ... 233
Phase-Locked Loop (PLL)... 233

Connecting Clocks to a Phase-Locked System... 234
Connecting Clocks to a System without Phase Locking..................................... 235

Connecting to a Gate-Array Device .. 235
Connecting to a CMOS Logic System ... 238

Processor Status Outputs .. 241

Table of Contents

xxii MIPS R4000 Microprocessor User's Manual

11
Cache Organization, Operation, and Coherency

Memory Organization ... 244
Overview of Cache Operations .. 245
R4000 Cache Description... 246

Secondary Cache Size.. 248
Variable-Length Cache Lines ... 248
Cache Organization and Accessibility .. 248

Organization of the Primary Instruction Cache (I-Cache)......................... 249
Organization of the Primary Data Cache (D-Cache) 250
Accessing the Primary Caches... 251
Organization of the Secondary Cache .. 252
Accessing the Secondary Cache... 254

Cache States... 255
Primary Cache States... 256
Secondary Cache States... 256
Mapping States Between Caches ... 257

Cache Line Ownership .. 258
Cache Write Policy ... 259
Cache State Transition Diagrams... 260
Cache Coherency Overview ... 264

Cache Coherency Attributes... 264
Uncached .. 265
Noncoherent ... 265
Sharable... 265
Update ... 265
Exclusive ... 266

Cache Operation Modes.. 266
Secondary-Cache Mode .. 266
No-Secondary-Cache Mode ... 266

Strong Ordering ... 267
An Example of Strong Ordering.. 267
Testing for Strong Ordering... 267
Restarting the Processor ... 268

Maintaining Coherency on Loads and Stores .. 269
Manipulation of the Cache by an External Agent ... 270

Invalidate... 270
Update ... 270

MIPS R4000 Microprocessor User's Manual xxiii

Table of Contents

Snoop ... 270
Intervention... 271

Coherency Conflicts ... 271
How Coherency Conflicts Arise .. 272

Processor Coherent Read Requests... 272
Processor Invalidate or Update Requests .. 273
External Coherency Requests .. 274

System Implications of Coherency Conflicts ... 275
System Model... 276
Load ... 278
Store ... 278
Processor Coherent Read Request and Read Response............................. 278
Processor Invalidate .. 279
Processor Write .. 279

Handling Coherency Conflicts... 280
Coherent Read Conflicts ... 280
Coherent Write Conflicts .. 281
Invalidate Conflicts ... 282

Sample Cycle: Coherent Read Request... 283
R4000 Processor Synchronization Support... 286

Test-and-Set (Spinlock) ... 286
Counter .. 288
LL and SC.. 289
Examples Using LL and SC .. 290

Table of Contents

xxiv MIPS R4000 Microprocessor User's Manual

12
System Interface

Terminology.. 294
System Interface Description.. 294

Interface Buses.. 295
Address and Data Cycles ... 296
Issue Cycles .. 296

 Handshake Signals.. 298
System Interface Protocols .. 299

Master and Slave States... 299
Moving from Master to Slave State ... 300
External Arbitration... 300
Uncompelled Change to Slave State ... 301

Processor and External Requests ... 302
Rules for Processor Requests.. 303
Processor Requests... 304

Processor Read Request .. 306
Processor Write Request ... 307
Processor Invalidate Request ... 308
Processor Update Request.. 310
Clusters.. 311

External Requests... 313
External Read Request .. 316
External Write Request ... 316
External Invalidate Request ... 316
External Update Request .. 316
External Snoop Request .. 317
External Intervention Request ... 317
Read Response ... 317

Handling Requests ... 318
Load Miss .. 318

Secondary-Cache Mode .. 320
No-Secondary-Cache Mode ... 320

Store Miss .. 321
Secondary-Cache Mode .. 323
No-Secondary-Cache Mode ... 325

Store Hit... 326
Secondary-Cache Mode .. 326

MIPS R4000 Microprocessor User's Manual xxv

Table of Contents

No-Secondary-Cache Mode ... 326
Uncached Loads or Stores .. 326
CACHE Operations ... 327
Load Linked Store Conditional Operation... 327

Processor and External Request Protocols.. 329
Processor Request Protocols... 330

Processor Read Request Protocol .. 330
Processor Write Request Protocol ... 333
Processor Invalidate and Update Request Protocol 335
Processor Null Write Request Protocol .. 336
Processor Cluster Request Protocol .. 337
Processor Request and Cluster Flow Control.. 338

External Request Protocols ... 341
External Arbitration Protocol... 342
External Read Request Protocol .. 343
External Null Request Protocol ... 344
External Write Request Protocol ... 347
External Invalidate and Update Request Protocols.................................... 348
External Intervention Request Protocol ... 349
External Snoop Request Protocol .. 352
Read Response Protocol.. 354

Data Rate Control ... 356
Data Transfer Patterns... 356
Secondary Cache Transfers .. 357
Secondary Cache Write Cycle Time .. 358
Independent Transmissions on the SysAD Bus .. 359
System Interface Endianness.. 360

System Interface Cycle Time... 361
Cluster Request Spacing ... 361
Release Latency .. 362
External Request Response Latency.. 363

System Interface Commands and Data Identifiers.. 364
Command and Data Identifier Syntax.. 364
System Interface Command Syntax .. 365

Read Requests .. 366
Write Requests ... 367
Null Requests ... 369
Invalidate Requests ... 370

Table of Contents

xxvi MIPS R4000 Microprocessor User's Manual

Update Requests .. 370
Intervention and Snoop Requests ... 372

System Interface Data Identifier Syntax ... 374
Coherent Data .. 374
Noncoherent Data.. 374
Data Identifier Bit Definitions.. 375

System Interface Addresses .. 377
Addressing Conventions .. 377
Sequential and Subblock Ordering.. 378

Processor Internal Address Map.. 378

13
Secondary Cache Interface

Data Transfer Rates .. 380
Duplicating Signals .. 380
Accessing a Split Secondary Cache.. 381
SCDChk Bus.. 381
SCTAG Bus.. 381
Operation of the Secondary Cache Interface.. 382

Read Cycles... 383
4-Word Read Cycle.. 383
8-Word Read Cycle.. 384
Notes on a Secondary Cache Read Cycle... 384

Write Cycles.. 385
4-Word Write Cycle... 385
8-Word Write Cycle... 386
Notes on a Secondary Cache Write Cycle.. 387

MIPS R4000 Microprocessor User's Manual xxvii

Table of Contents

14
JTAG Interface

What Boundary Scanning Is ... 390
Signal Summary ... 391
JTAG Controller and Registers... 392

Instruction Register.. 392
Bypass Register... 393
Boundary-Scan Register.. 394
Test Access Port (TAP) .. 395

TAP Controller ... 396
Controller Reset ... 396
Controller States... 396

Implementation-Specific Details .. 400

15
R4000 Processor Interrupts

Hardware Interrupts.. 402
Nonmaskable Interrupt (NMI)... 402
Asserting Interrupts... 402

Table of Contents

xxviii MIPS R4000 Microprocessor User's Manual

16
Error Checking and Correcting

Error Checking in the Processor... 408
Types of Error Checking ... 408

Parity Error Detection ... 408
SECDED ECC Code... 409

Error Checking Operation .. 412
System Interface... 412
Secondary Cache Data Bus... 412
System Interface and Secondary Cache Data Bus....................................... 412
Secondary Cache Tag Bus... 413
System Interface Command Bus ... 413

SECDED ECC Matrices for Data and Tag Buses ... 414
ECC Check Bits... 414
Data ECC Generation .. 415
Detecting Data Transmission Errors ... 418

Single Data Bit ECC Error .. 420
Single Check Bit ECC Error.. 421
Double Data Bit ECC Errors... 422
Three Data Bit ECC Errors ... 423
Four Data Bit ECC Errors ... 424

Tag ECC Generation.. 425
Summary of ECC Operations... 426

R4400 Master/Checker Mode... 430
Connecting a System in Lock Step .. 431
Master-Listener Configuration .. 432
Cross-Coupled Checking Configuration.. 433
Fault Detection ... 435
Reset Operation.. 436
Fault History... 436

MIPS R4000 Microprocessor User's Manual xxix

Table of Contents

A
CPU Instruction Set Details

B
FPU Instruction Set Details

C
Subblock Ordering

Sequential Ordering... C-2
Subblock Ordering ... C-2

D
Output Buffer ∆i/∆t Control Mechanism

Mode Bits... D-1
Delay Times... D-2

E
PLL Passive Components

F
Coprocessor 0 Hazards

G
R4000 Pinouts

Pinout of R4000PC.. G-2
Pinout of R4000MC/SC Package Pinout .. G-5

Index

Table of Contents

xxx MIPS R4000 Microprocessor User's Manual

MIPS R4000 Microprocessor User's Manual 1

Introduction

1

Historically, the evolution of computer architectures has been dominated
by families of increasingly complex central processors. Under market
pressures to preserve existing software, complex instruction set computer
(CISC) architectures evolved by the accretion of microcode and
increasingly intricate instruction sets. This intricacy in architecture was
itself driven by the need to support high-level languages and operating
systems, as advances in semiconductor technology made it possible to
fabricate integrated circuits of greater and greater complexity. And at that
time it seemed self-evident to designers that architectures should continue
to become more and more complex as technological advances made such
VLSI designs possible.

Chapter 1

2 MIPS R4000 Microprocessor User's Manual

In recent years, however, reduced instruction set computer (RISC)
architectures are implementing a different model for the interaction
between hardware, firmware, and software. RISC concepts emerged from
a statistical analysis of the way in which software actually uses processor
resources: dynamic measurement of system kernels and object modules
generated by optimizing compilers showed that the simplest instructions
were used most often—even in the code for CISC machines.
Correspondingly, complex instructions often went unused because their
single way of performing a complex operation rarely matched the precise
needs of a high-level language.

RISC architecture eliminates microcode routines and turns low-level
control of the machine over to software. The RISC approach is not new,
but its application has become more prevalent in recent years, due to the
increasing use of high-level languages, the development of compilers that
are able to optimize at the microcode level, and dramatic advances in
semiconductor memory and packaging. It is now feasible to replace
relatively slow microcode ROM with faster RAM that is organized as an
instruction cache. Machine control resides in this instruction cache that is,
in effect, customized on-the-fly: the instruction stream generated by
system- and compiler-generated code provides a precise fit between the
requirements of high-level software and the low-level capabilities of the
hardware.

Reducing or simplifying the instruction set was not the primary goal of
RISC architecture; it is a pleasant side effect of techniques used to gain the
highest performance possible from available technology. Thus, the term
reduced instruction set computers is a bit misleading; it is the push for
performance that really drives and shapes RISC designs.

1.1 Benefits of RISC Design
Some benefits that result from RISC design techniques are not directly
attributable to the drive to increase performance, but are a result of the
basic reduction in complexity—a simpler design allows both chip-area
resources and human resources to be applied to features that enhance
performance. Some of these benefits are described below.

MIPS R4000 Microprocessor User's Manual 3

Introduction

Shorter Design Cycle

The architectures of RISC processors can be implemented more quickly
than their CISC counterparts: it is easier to fabricate and debug a
streamlined, simplified architecture with no microcode than a complex
architecture that uses microcode. CISC processors have such a long
design cycle that they may not be completely debugged by the time they
are technologically obsolete. The shorter time required to design and
implement RISC processors allows them to make use of the best available
technologies.

Effective Utilization of Chip Area

The simplicity of RISC processors also frees scarce chip geography for
performance-critical resources such as larger register files, translation
lookaside buffers (TLBs), coprocessors, and fast multiply and divide units.
Such resources help RISC processors obtain an even greater performance
edge.

User (Programmer) Benefits

Simplicity in architecture also helps the user by providing a uniform
instruction set that is easier to use. This allows a closer correlation
between the instruction count and the cycle count, making it easier to
measure code optimization activities.

Advanced Semiconductor Technologies

Each new VLSI technology is introduced with tight limits on the number
of transistors that fit on each chip. Since the simplicity of a RISC processor
allows it to be implemented in fewer transistors than its CISC counterpart,
the first computers capable of exploiting these new VLSI technologies
have been using and will continue to use RISC architecture.

Chapter 1

4 MIPS R4000 Microprocessor User's Manual

Optimizing Compilers

RISC architecture is designed so that the compilers, not assembly
languages, have the optimal working environment. RISC philosophy
assumes that high-level language programming is used, which contradicts
the older CISC philosophy that assumes assembly language programming
is of primary importance.

The trend toward high-level language instructions has led to the
development of more efficient compilers to convert high-level language
instructions to machine code. Primary measures of compiler efficiency are
the compactness of its generated code and the shortness of its execution
time.

During the development of more efficient compilers, analysis of
instruction streams revealed that the greatest amount of time was spent
executing simple instructions and performing load and store operations,
while the more complex instructions were used less frequently. It was also
learned that compilers produce code that is often a narrow subset of the
processor instruction set architecture (ISA). A compiler works more
efficiently with instructions that perform simple, well-defined operations
and generate minimal side-effects. Compilers do not use complex
instructions and features; the more complex, powerful instructions are
either too difficult for the compiler to employ or those instructions do not
precisely fit high-level language requirements.

Thus, a natural match exists between RISC architectures and efficient,
optimizing compilers. This match makes it easier for compilers to
generate the most effective sequences of machine instructions to
accomplish tasks defined by the high-level language.

MIPS R4000 Microprocessor User's Manual 5

Introduction

MIPS RISCompiler Language Suite

Some compiler products are derived from disparate sources and
consequently do not fit together very well. Instead of treating each
language’s compiler as a separate entity, the MIPS RISCompilerTM

language suite shares common elements across the entire family of
compilers. In this way the language suite offers both tight integration and
broad language coverage.

The MIPS language suite supports:

• industry-standard front ends for the following languages (C,
FORTRAN, Pascal)

• a common intermediate language, offering an efficient way to
add language front ends over time

• all of the back end optimization and code generation

• the same object format and calling conventions

• mixed-language programs

• debugging of programs written in all languages, including
mixtures

This language suite approach yields high-quality compilers for all
languages, since common elements make up the majority of each of the
language products. In addition, this approach provides the ability to
develop and execute multi-language programs, promoting flexibility in
development, avoiding the necessity of recoding proven program
segments, and protecting the user’s software investment. The common
back-end also exports optimizing and code-generating improvements
immediately throughout the language suite, thereby reducing
maintenance.

Chapter 1

6 MIPS R4000 Microprocessor User's Manual

1.2 Compatibility
The R4000 processor provides complete application software
compatibility with the MIPS R2000, R3000, and R6000 processors.
Although the MIPS processor architecture has evolved in response to a
compromise between software and hardware resources in the computer
system, the R4000 processor implements the MIPS ISA for user-mode
programs. This guarantees that user programs conforming to the ISA
execute on any MIPS hardware implementation.

1.3 Processor General Features
This section briefly describes the programming model, the memory
management unit (MMU), and the caches in the R4000 processor. A more
detailed description is given in succeeding sections.

• Full 32-bit and 64-bit Operations. The R4000 processor
contains 32 general purpose 64-bit registers. (When operating
as a 32-bit processor, the general purpose registers are 32-bits
wide.) All instructions are 32 bits wide.

• Efficient Pipeline. The superpipeline design of the processor
results in an execution rate approaching one instruction per
cycle. Pipeline stalls and exceptional events are handled
precisely and efficiently.

• MMU. The R4000 processor uses an on-chip TLB that provides
rapid virtual-to-physical address translation.

• Cache Control. The R4000 primary instruction and data caches
reside on-chip, and can each hold 8 Kbytes. In the R4400
processor, the primary caches can each hold 16 Kbytes.
Architecturally, each primary cache can be increased to hold up
to 32 Kbytes. An off-chip secondary cache (R4000SC and
R4000MC processors only) can hold from 128 Kbytes to 4
Mbytes. All processor cache control logic, including the
secondary cache control logic, is on-chip.

• Floating-Point Unit. The FPU is located on-chip and
implements the ANSI/IEEE standard 754-1985.

MIPS R4000 Microprocessor User's Manual 7

Introduction

1.4 R4000 Processor Configurations
The R4000 processor† is packaged in three different configurations. All
processors are implemented in sub-1-micron CMOS technology.

• R4000PC is designed for cost-sensitive systems such as
inexpensive desktop systems and high-end embedded
controllers. It is packaged in a 179-pin PGA, and does not
support a secondary cache.

• R4000SC is designed for high-performance uniprocessor
systems. It is packaged in a 447-pin LGA/PGA and includes
integrated control for large secondary caches built from
standard SRAMs.

• R4000MC is designed for large cache-coherent multiprocessor
systems. It is packaged in a 447-pin LGA/PGA and, in addition
to the features of R4000SC, includes support for a wide variety
of bus designs and cache-coherency mechanisms.

Table 1-1 lists the features in each of the three configurations (X indicates
the feature is present). R4400 processor enhancements are described in the
section following.

1.5 R4400 Processor Enhancements
In addition to the features contained in the R4000 processor, the R4400
processor has the following enhancements:

• fully functional Status pins (described in Chapter 10)

• Master/Checker mode (described in Chapter 16)

• larger primary caches (described in Processor General Features,
in this chapter)

• uncached store buffer (described in Chapter 3)

• divide-by-6 and divide-by-8 modes (described in Chapter 10)

• cache error bit, EW, added to the CacheErr register (described in
Chapter 5).

† Features of the R4400 processor that differ from the R4000 processor are noted throughout
this book; for instance, R4400 processor enhancements are listed in the next section.
Otherwise, references to the R4000 processor may be taken to include the R4400 processor.

Chapter 1

8 MIPS R4000 Microprocessor User's Manual

Table 1-1 R4000 Features

Feature R4000PC R4000SC R4000MC

Primary Cache States

Valid X X X

Shared X

Clean Exclusive X X

Dirty Exclusive X X X

Secondary Cache Interface X X

Secondary Cache States

Valid X X X

Shared X

Dirty Shared X

Clean Exclusive X X

Dirty Exclusive X X X

Multiprocessing X

Cache Coherency Attributes

Uncached X X X

Noncoherent X X X

Sharable X

Update X

Exclusive X

Packages

PGA (179-pin) X

PGA (447-pin) X X

MIPS R4000 Microprocessor User's Manual 9

Introduction

1.6 R4000 Processor
This section describes the following:

• the 64-bit architecture of the R4000 processor

• the superpipeline design of the CPU instruction pipeline
(described in detail in Chapter 3)

• an overview of the System interface (described in detail in
Chapter 12)

• an overview of the CPU registers (detailed in Chapters 4 and 5)
and CPU instruction set (detailed in Chapter 2 and Appendix
A)

• data formats and byte ordering

• the System Control Coprocessor, CP0, and the floating-point
unit, CP1

• caches and memory, including a description of primary and
secondary caches, the memory management unit (MMU), the
translation lookaside buffer (TLB), and the Secondary Cache
interface (described in more detail in Chapters 4 and 11). The
Secondary Cache interface is detailed in Chapter 13.

64-bit Architecture

The natural mode of operation for the R4000 processor is as a 64-bit
microprocessor; however, 32-bit applications maintain compatibility even
when the processor operates as a 64-bit processor.

The R4000 processor provides the following:

• 64-bit on-chip floating-point unit (FPU)

• 64-bit integer arithmetic logic unit (ALU)

• 64-bit integer registers

• 64-bit virtual address space

• 64-bit system bus

Figure 1-1 is a block diagram of the R4000 processor internals.

Chapter 1

10 MIPS R4000 Microprocessor User's Manual

Figure 1-1 R4000 Processor Internal Block Diagram

System
 Control

S-cache
 Control

Data Cache P-cache
 Control

Instruction
Cache

Exception/Control

Memory Management

Translation

CPU Registers

ALU

Load Aligner/Store Driver

Integer Multiplier/Divider

Address Unit

PC Incrementer

FPU Registers

Pipeline Bypass

FP Multiplier

FP Divider

FP Add, Convert

Registers

Registers

Lookaside
Buffers

Square Root

CP0 CPU FPU

Pipeline Control

64-bit System Bus

MIPS R4000 Microprocessor User's Manual 11

Introduction

Superpipeline Architecture

The R4000 processor exploits instruction parallelism by using an eight-
stage superpipeline which places no restrictions on the instruction issued.
Under normal circumstances, two instructions are issued each cycle.

The internal pipeline of the R4000 processor operates at twice the
frequency of the master clock, as discussed in Chapter 3. The processor
achieves high throughput by pipelining cache accesses, shortening
register access times, implementing virtual-indexed primary caches, and
allowing the latency of functional units to span more than one pipeline
clock cycles.

System Interface

The R4000 processor supports a 64-bit System interface that can construct
uniprocessor systems with a direct DRAM interface—with or without a
secondary cache—or cache-coherent multiprocessor systems. The System
interface includes:

• a 64-bit multiplexed address and data bus

• 8 check bits

• a 9-bit parity-protected command bus

• 8 handshake signals

The interface is capable of transferring data between the processor and
memory at a peak rate of 400 Mbytes/second, when running at 50 MHz.

Chapter 1

12 MIPS R4000 Microprocessor User's Manual

CPU Register Overview

The central processing unit (CPU) provides the following registers:

• 32 general purpose registers

• a Program Counter (PC) register

• 2 registers that hold the results of integer multiply and divide
operations (HI and LO).

Floating-point unit (FPU) registers are described in Chapter 6.

CPU registers can be either 32 bits or 64 bits wide, depending on the R4000
processor mode of operation.

Figure 1-2 shows the CPU registers.

Figure 1-2 CPU Registers

r0

r1

r2

r31

Multiply and Divide Registers

Program Counter

31 0

31 0

31 0

HI

LO

31 0

General Purpose Registers

PC

•
•
•
•

r29

r30

63

63

63

63

Register width depends on mode of operation: 32-bit or 64-bit

32

32

32

32

MIPS R4000 Microprocessor User's Manual 13

Introduction

Two of the CPU general purpose registers have assigned functions:

• r0 is hardwired to a value of zero, and can be used as the target
register for any instruction whose result is to be discarded. r0
can also be used as a source when a zero value is needed.

• r31 is the link register used by Jump and Link instructions. It
should not be used by other instructions.

The CPU has three special purpose registers:

• PC — Program Counter register

• HI — Multiply and Divide register higher result

• LO — Multiply and Divide register lower result

The two Multiply and Divide registers (HI, LO) store:

• the product of integer multiply operations, or

• the quotient (in LO) and remainder (in HI) of integer divide
operations

The R4000 processor has no Program Status Word (PSW) register as such;
this is covered by the Status and Cause registers incorporated within the
System Control Coprocessor (CP0). CP0 registers are described later in
this chapter.

Chapter 1

14 MIPS R4000 Microprocessor User's Manual

CPU Instruction Set Overview

Each CPU instruction is 32 bits long. As shown in Figure 1-3, there are
three instruction formats:

• immediate (I-type)

• jump (J-type)

• register (R-type)

Figure 1-3 CPU Instruction Formats

Each format contains a number of different instructions, which are
described further in this chapter. Fields of the instruction formats are
described in Chapter 2.

Instruction decoding is greatly simplified by limiting the number of
formats to these three. This limitation means that the more complicated
(and less frequently used) operations and addressing modes can be
synthesized by the compiler, using sequences of these same simple
instructions.

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt
11 10 6 5

rd saR-Type (Register)

J-Type (Jump)

I-Type (Immediate)

MIPS R4000 Microprocessor User's Manual 15

Introduction

The instruction set can be further divided into the following groupings:

• Load and Store instructions move data between memory and
general registers. They are all immediate (I-type) instructions,
since the only addressing mode supported is base register plus
16-bit, signed immediate offset.

• Computational instructions perform arithmetic, logical, shift,
multiply, and divide operations on values in registers. They
include register (R-type, in which both the operands and the
result are stored in registers) and immediate (I-type, in which
one operand is a 16-bit immediate value) formats.

• Jump and Branch instructions change the control flow of a
program. Jumps are always made to a paged, absolute address
formed by combining a 26-bit target address with the high-
order bits of the Program Counter (J-type format) or register
address (R-type format). Branches have 16-bit offsets relative
to the program counter (I-type). Jump And Link instructions
save their return address in register 31.

• Coprocessor instructions perform operations in the
coprocessors. Coprocessor load and store instructions are
I-type.

• Coprocessor 0 (system coprocessor) instructions perform
operations on CP0 registers to control the memory
management and exception handling facilities of the processor.
These are listed in Table 1-18.

• Special instructions perform system calls and breakpoint
operations. These instructions are always R-type.

• Exception instructions cause a branch to the general exception-
handling vector based upon the result of a comparison. These
instructions occur in both R-type (both the operands and the
result are registers) and I-type (one operand is a 16-bit
immediate value) formats.

Chapter 2 provides a more detailed summary and Appendix A gives a
complete description of each instruction.

Chapter 1

16 MIPS R4000 Microprocessor User's Manual

Tables 1-2 through 1-17 list CPU instructions common to MIPS R-Series
processors, along with those instructions that are extensions to the
instruction set architecture. The extensions result in code space
reductions, multiprocessor support, and improved performance in
operating system kernel code sequences—for instance, in situations where
run-time bounds-checking is frequently performed. Table 1-18 lists CP0
instructions.

Table 1-2 CPU Instruction Set: Load and Store Instructions

Table 1-3 CPU Instruction Set: Arithmetic Instructions (ALU Immediate)

OpCode Description

LB Load Byte

LBU Load Byte Unsigned

LH Load Halfword

LHU Load Halfword Unsigned

LW Load Word

LWL Load Word Left

LWR Load Word Right

SB Store Byte

SH Store Halfword

SW Store Word

SWL Store Word Left

SWR Store Word Right

OpCode Description

ADDI Add Immediate

ADDIU Add Immediate Unsigned

SLTI Set on Less Than Immediate

SLTIU Set on Less Than Immediate Unsigned

ANDI AND Immediate

ORI OR Immediate

XORI Exclusive OR Immediate

LUI Load Upper Immediate

MIPS R4000 Microprocessor User's Manual 17

Introduction

Table 1-4 CPU Instruction Set: Arithmetic (3-Operand, R-Type)

Table 1-5 CPU Instruction Set: Multiply and Divide Instructions

OpCode Description

ADD Add

ADDU Add Unsigned

SUB Subtract

SUBU Subtract Unsigned

SLT Set on Less Than

SLTU Set on Less Than Unsigned

AND AND

OR OR

XOR Exclusive OR

NOR NOR

OpCode Description

MULT Multiply

MULTU Multiply Unsigned

DIV Divide

DIVU Divide Unsigned

MFHI Move From HI

MTHI Move To HI

MFLO Move From LO

MTLO Move To LO

Chapter 1

18 MIPS R4000 Microprocessor User's Manual

Table 1-6 CPU Instruction Set: Jump and Branch Instructions

Table 1-7 CPU Instruction Set: Shift Instructions

OpCode Description

J Jump

JAL Jump And Link

JR Jump Register

JALR Jump And Link Register

BEQ Branch on Equal

BNE Branch on Not Equal

BLEZ Branch on Less Than or Equal to Zero

BGTZ Branch on Greater Than Zero

BLTZ Branch on Less Than Zero

BGEZ Branch on Greater Than or Equal to Zero

BLTZAL Branch on Less Than Zero And Link

BGEZAL Branch on Greater Than or Equal to Zero And Link

OpCode Description

SLL Shift Left Logical

SRL Shift Right Logical

SRA Shift Right Arithmetic

SLLV Shift Left Logical Variable

SRLV Shift Right Logical Variable

SRAV Shift Right Arithmetic Variable

MIPS R4000 Microprocessor User's Manual 19

Introduction

Table 1-8 CPU Instruction Set: Coprocessor Instructions

Table 1-9 CPU Instruction Set: Special Instructions

OpCode Description

LWCz Load Word to Coprocessor z

SWCz Store Word from Coprocessor z

MTCz Move To Coprocessor z

MFCz Move From Coprocessor z

CTCz Move Control to Coprocessor z

CFCz Move Control From Coprocessor z

COPz Coprocessor Operation z

BCzT Branch on Coprocessor z True

BCzF Branch on Coprocessor z False

OpCode Description

SYSCALL System Call

BREAK Break

Chapter 1

20 MIPS R4000 Microprocessor User's Manual

Table 1-10 Extensions to the ISA: Load and Store Instructions

Table 1-11 Extensions to the ISA: Arithmetic Instructions (ALU Immediate)

Table 1-12 Extensions to the ISA: Multiply and Divide Instructions

OpCode Description

LD Load Doubleword

LDL Load Doubleword Left

LDR Load Doubleword Right

LL Load Linked

LLD Load Linked Doubleword

LWU Load Word Unsigned

SC Store Conditional

SCD Store Conditional Doubleword

SD Store Doubleword

SDL Store Doubleword Left

SDR Store Doubleword Right

SYNC Sync

OpCode Description

DADDI Doubleword Add Immediate

DADDIU Doubleword Add Immediate Unsigned

OpCode Description

DMULT Doubleword Multiply

DMULTU Doubleword Multiply Unsigned

DDIV Doubleword Divide

DDIVU Doubleword Divide Unsigned

MIPS R4000 Microprocessor User's Manual 21

Introduction

Table 1-13 Extensions to the ISA: Branch Instructions

Table 1-14 Extensions to the ISA: Arithmetic Instructions (3-operand, R-type)

OpCode Description

BEQL Branch on Equal Likely

BNEL Branch on Not Equal Likely

BLEZL Branch on Less Than or Equal to Zero Likely

BGTZL Branch on Greater Than Zero Likely

BLTZL Branch on Less Than Zero Likely

BGEZL Branch on Greater Than or Equal to Zero Likely

BLTZALL Branch on Less Than Zero And Link Likely

BGEZALL Branch on Greater Than or Equal to Zero And Link
Likely

BCzTL Branch on Coprocessor z True Likely

BCzFL Branch on Coprocessor z False Likely

OpCode Description

DADD Doubleword Add

DADDU Doubleword Add Unsigned

DSUB Doubleword Subtract

DSUBU Doubleword Subtract Unsigned

Chapter 1

22 MIPS R4000 Microprocessor User's Manual

Table 1-15 Extensions to the ISA: Shift Instructions

Table 1-16 Extensions to the ISA: Exception Instructions

OpCode Description

DSLL Doubleword Shift Left Logical

DSRL Doubleword Shift Right Logical

DSRA Doubleword Shift Right Arithmetic

DSLLV Doubleword Shift Left Logical Variable

DSRLV Doubleword Shift Right Logical Variable

DSRAV Doubleword Shift Right Arithmetic Variable

DSLL32 Doubleword Shift Left Logical + 32

DSRL32 Doubleword Shift Right Logical + 32

DSRA32 Doubleword Shift Right Arithmetic + 32

OpCode Description

TGE Trap if Greater Than or Equal

TGEU Trap if Greater Than or Equal Unsigned

TLT Trap if Less Than

TLTU Trap if Less Than Unsigned

TEQ Trap if Equal

TNE Trap if Not Equal

TGEI Trap if Greater Than or Equal Immediate

TGEIU Trap if Greater Than or Equal Immediate
Unsigned

TLTI Trap if Less Than Immediate

TLTIU Trap if Less Than Immediate Unsigned

TEQI Trap if Equal Immediate

TNEI Trap if Not Equal Immediate

MIPS R4000 Microprocessor User's Manual 23

Introduction

Table 1-17 Extensions to the ISA: Coprocessor Instructions

Table 1-18 CP0 Instructions

OpCode Description

DMFCz Doubleword Move From Coprocessor z

DMTCz Doubleword Move To Coprocessor z

LDCz Load Double Coprocessor z

SDCz Store Double Coprocessor z

OpCode Description

DMFC0 Doubleword Move From CP0

DMTC0 Doubleword Move To CP0

MTC0 Move to CP0

MFC0 Move from CP0

TLBR Read Indexed TLB Entry

TLBWI Write Indexed TLB Entry

TLBWR Write Random TLB Entry

TLBP Probe TLB for Matching Entry

CACHE Cache Operation

ERET Exception Return

Chapter 1

24 MIPS R4000 Microprocessor User's Manual

Data Formats and Addressing

The R4000 processor uses four data formats: a 64-bit doubleword, a 32-bit
word, a 16-bit halfword, and an 8-bit byte. Byte ordering within each of
the larger data formats—halfword, word, doubleword—can be
configured in either big-endian or little-endian order. Endianness refers
to the location of byte 0 within the multi-byte data structure. Figures 1-4
and 1-5 show the ordering of bytes within words and the ordering of
words within multiple-word structures for the big-endian and little-
endian conventions.

When the R4000 processor is configured as a big-endian system, byte 0 is
the most-significant (leftmost) byte, thereby providing compatibility with
MC 68000 and IBM 370 conventions. Figure 1-4 shows this
configuration.

Figure 1-4 Big-Endian Byte Ordering

When configured as a little-endian system, byte 0 is always the least-
significant (rightmost) byte, which is compatible with iAPX x86 and DEC
VAX conventions. Figure 1-5 shows this configuration.

Figure 1-5 Little-Endian Byte Ordering

Higher
Address

Lower
Address

Word

4

8

12
Address

 Bit #

8 9 1110

4 5 76

0 1 32

12 13 1514

0

31 24 23 16 15 8 7 0

Higher
Address

Lower
Address

Word

4

8

12
Address 31 24 23 16 15 8 7 0

 Bit #

11 10 89

7 6 45

3 2 01

15 14 1213

0

MIPS R4000 Microprocessor User's Manual 25

Introduction

In this text, bit 0 is always the least-significant (rightmost) bit; thus, bit
designations are always little-endian (although no instructions explicitly
designate bit positions within words).

Figures 1-6 and 1-7 show little-endian and big-endian byte ordering in
doublewords.

Figure 1-6 Little-Endian Data in a Doubleword

Figure 1-7 Big-Endian Data in a Doubleword

31 24 23 16 15 8 7 0
7 6 4Byte #

Word

 Bit #
5

7 0123456

Bits in a Byte

 Bit #

Halfword Byte

3 2 01
63 56 55 48 47 40 39 32

Most-significant byte Least-significant byte

0 1 3Byte #

Word

 Bit #
2

07 6 5 4 3 2 1

Bits in a Byte

 Bit #

Halfword Byte

4 5 76
31 24 23 16 15 8 7 063 56 55 48 47 40 39 32

Most-significant byte Least-significant byte

Chapter 1

26 MIPS R4000 Microprocessor User's Manual

The CPU uses byte addressing for halfword, word, and doubleword
accesses with the following alignment constraints:

• Halfword accesses must be aligned on an even byte boundary
(0, 2, 4...).

• Word accesses must be aligned on a byte boundary divisible by
four (0, 4, 8...).

• Doubleword accesses must be aligned on a byte boundary
divisible by eight (0, 8, 16...).

The following special instructions load and store words that are not
aligned on 4-byte (word) or 8-word (doubleword) boundaries:

LWL LWR SWL SWR

LDL LDR SDL SDR

These instructions are used in pairs to provide addressing of misaligned
words. Addressing misaligned data incurs one additional instruction
cycle over that required for addressing aligned data.

Figures 1-8 and 1-9 show the access of a misaligned word that has byte
address 3.

Figure 1-8 Big-Endian Misaligned Word Addressing

Figure 1-9 Little-Endian Misaligned Word Addressing

Higher
Address

Lower
Address

 Bit #

4 5 6

3

31 24 23 16 15 8 7 0

Higher
Address

Lower
Address

31 24 23 16 15 8 7 0

 Bit #

3

6 45

MIPS R4000 Microprocessor User's Manual 27

Introduction

Coprocessors (CP0-CP2)

The MIPS ISA defines three coprocessors (designated CP0 through CP2):

• Coprocessor 0 (CP0) is incorporated on the CPU chip and
supports the virtual memory system and exception handling.
CP0 is also referred to as the System Control Coprocessor.

• Coprocessor 1 (CP1) is reserved for the on-chip, floating-point
coprocessor, the FPU.

• Coprocessor 2 (CP2) is reserved for future definition by MIPS.

CP0 and CP1 are described in the sections that follow.

System Control Coprocessor, CP0

CP0 translates virtual addresses into physical addresses and manages
exceptions and transitions between kernel, supervisor, and user states.
CP0 also controls the cache subsystem, as well as providing diagnostic
control and error recovery facilities.

The CP0 registers shown in Figure 1-10 and described in Table 1-19
manipulate the memory management and exception handling capabilities
of the CPU.

Chapter 1

28 MIPS R4000 Microprocessor User's Manual

Figure 1-10 R4000 CP0 Registers

Index

Random

EntryLo0

EntryLo1

Context

PageMask

Wired

BadVAddr

Count

EntryHi

Compare

SR

Cause

EPC

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

PRId 15

Config

LLAddr

WatchLo

WatchHi

ECC

CacheErr

TagLo

TagHi

ErrorEPC

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Register Name Reg. #Register Name Reg. #

Exception Processing Memory Management Reserved

XContext

MIPS R4000 Microprocessor User's Manual 29

Introduction

Table 1-19 System Control Coprocessor (CP0) Register Definitions

Number Register Description

0 Index Programmable pointer into TLB array

1 Random Pseudorandom pointer into TLB array (read only)

2 EntryLo0 Low half of TLB entry for even virtual address (VPN)

3 EntryLo1 Low half of TLB entry for odd virtual address (VPN)

4 Context Pointer to kernel virtual page table entry (PTE) in 32-bit
addressing mode

5 PageMask TLB Page Mask

6 Wired Number of wired TLB entries

7 — Reserved

8 BadVAddr Bad virtual address

9 Count Timer Count

10 EntryHi High half of TLB entry

11 Compare Timer Compare

12 SR Status register

13 Cause Cause of last exception

14 EPC Exception Program Counter

15 PRId Processor Revision Identifier

16 Config Configuration register

17 LLAddr Load Linked Address

18 WatchLo Memory reference trap address low bits

19 WatchHi Memory reference trap address high bits

20 XContext Pointer to kernel virtual PTE table in 64-bit addressing mode

21–25 — Reserved

26 ECC Secondary-cache error checking and correcting (ECC) and
Primary parity

27 CacheErr Cache Error and Status register

28 TagLo Cache Tag register

29 TagHi Cache Tag register

30 ErrorEPC Error Exception Program Counter

31 — Reserved

Chapter 1

30 MIPS R4000 Microprocessor User's Manual

 Floating-Point Unit (FPU), CP1

The MIPS floating-point unit (FPU) is designated CP1; the FPU extends
the CPU instruction set to perform arithmetic operations on floating-point
values. The FPU, with associated system software, fully conforms to the
requirements of ANSI/IEEE Standard 754–1985, IEEE Standard for Binary
Floating-Point Arithmetic.

The FPU features include:

• Full 64-bit Operation. The FPU can contain either 16 or 32
64-bit registers to hold single-precision or double-precision
values. The FPU also includes a 32-bit Status/Control register
that provides access to all IEEE-Standard exception handling
capabilities.

• Load and Store Instruction Set. Like the CPU, the FPU uses a
load- and store-based instruction set. Floating-point operations
are started in a single cycle and their execution overlaps other
fixed-point or floating-point operations.

• Tightly-coupled Coprocessor Interface. The FPU is on the
CPU chip, and appears to the programmer as a simple
extension of the CPU (accessed as CP1). Together, the CPU and
FPU form a tightly-coupled unit with a seamless integration of
floating-point and fixed-point instruction sets. Since each unit
receives and executes instructions in parallel, some floating-
point instructions can execute at the same rate (two
instructions per cycle) as fixed-point instructions.

MIPS R4000 Microprocessor User's Manual 31

Introduction

Memory Management System (MMU)

The R4000 processor has a 36-bit physical addressing range of 64 Gbytes.
However, since it is rare for systems to implement a physical memory
space this large, the CPU provides a logical expansion of memory space by
translating addresses composed in the large virtual address space into
available physical memory addresses. The R4000 processor supports the
following two addressing modes:

• 32-bit mode, in which the virtual address space is divided into
2 Gbytes per user process and 2 Gbytes for the kernel.

• 64-bit mode, in which the virtual address is expanded to
1 Tbyte (240 bytes) of user virtual address space.

A detailed description of these address spaces is given in Chapter 4.

The Translation Lookaside Buffer (TLB)

Virtual memory mapping is assisted by a translation lookaside buffer,
which caches virtual-to-physical address translations. This fully-
associative, on-chip TLB contains 48 entries, each of which maps a pair of
variable-sized pages ranging from 4 Kbytes to 16 Mbytes, in multiples of
four.

Instruction TLB

The R4000 processor has a two-entry instruction TLB (ITLB) which assists
in instruction address translation. The ITLB is completely invisible to
software and exists only to increase performance.

Joint TLB

An address translation value is tagged with the most-significant bits of its
virtual address (the number of these bits depends upon the size of the
page) and a per-process identifier. If there is no matching entry in the TLB,
an exception is taken and software refills the on-chip TLB from a page
table resident in memory; this TLB is referred to as the joint TLB (JTLB)
because it contains both data and instructions jointly. The JTLB entry to
be rewritten is selected at random.

Chapter 1

32 MIPS R4000 Microprocessor User's Manual

Operating Modes

The R4000 processor has three operating modes:

• User mode

• Supervisor mode

• Kernel mode

The manner in which memory addresses are translated or mapped depends
on the operating mode of the CPU; this is described in Chapter 4.

Cache Memory Hierarchy

To achieve a high performance in uniprocessor and multiprocessor
systems, the R4000 processor supports a two-level cache memory
hierarchy that increases memory access bandwidth and reduces the
latency of load and store instructions. This hierarchy consists of on-chip
instruction and data caches, together with an optional external secondary
cache that varies in size from 128 Kbytes to 4 Mbytes.

The secondary cache is assumed to consist of one bank of industry-
standard static RAM (SRAM) with output enables, arranged as a
quadword (128-bit) data array, with a 25-bit-wide tag array. Check fields
are added to both data and tag arrays to improve data integrity.

The secondary cache can be configured as a joint cache, or split into
separate instruction and data caches. The maximum secondary cache size
is 4 Mbytes; the minimum secondary cache size is 128 Kbytes for a joint
cache, or 256 Kbytes total for split instruction/data caches. The secondary
cache is direct mapped, and is addressed with the lower part of the
physical address.

Primary and secondary caches are described in more detail in Chapter 11.

MIPS R4000 Microprocessor User's Manual 33

Introduction

Primary Caches

The R4000 processor incorporates separate on-chip primary instruction
and data caches to fill the high-performance pipeline. Each cache has its
own 64-bit data path, and each can be accessed in parallel.

The R4000 processor primary caches hold from 8 Kbytes to 32 Kbytes; the
R4400 processor primary caches are fixed at 16 Kbytes.

Cache accesses can occur up to twice each cycle. This provides the integer
and floating-point units with an aggregate bandwidth of 1.6 Gbytes per
second at a MasterClock frequency of 50 MHz.

Secondary Cache Interface

The R4000SC (secondary cache) and R4000MC (multiprocessor) versions
of the processor allow connection to an optional secondary cache. These
processors provide all of the secondary cache control circuitry, including
error checking and correcting (ECC) protection, on chip.

The Secondary Cache interface includes:

• a 128-bit data bus

• a 25-bit tag bus

• an 18-bit address bus

• SRAM control signals

The 128-bit-wide data bus is designed to minimize cache miss penalties,
and allow the use of standard low-cost SRAM in secondary cache.

Chapter 1

34 MIPS R4000 Microprocessor User's Manual

MIPS R4000 Microprocessor User's Manual 35

CPU Instruction Set Summary

2

This chapter is an overview of the central processing unit (CPU)
instruction set; refer to Appendix A for detailed descriptions of individual
CPU instructions.

An overview of the floating-point unit (FPU) instruction set is in
Chapter 6; refer to Appendix B for detailed descriptions of individual FPU
instructions.

Chapter 2

36 MIPS R4000 Microprocessor User's Manual

2.1 CPU Instruction Formats
Each CPU instruction consists of a single 32-bit word, aligned on a word
boundary. There are three instruction formats—immediate (I-type), jump
(J-type), and register (R-type)—as shown in Figure 2-1. The use of a small
number of instruction formats simplifies instruction decoding, allowing
the compiler to synthesize more complicated (and less frequently used)
operations and addressing modes from these three formats as needed.

Figure 2-1 CPU Instruction Formats

In the MIPS architecture, coprocessor instructions are implementation-
dependent; see Appendix A for details of individual Coprocessor 0
instructions.

op 6-bit operation code

rs 5-bit source register specifier

rt
5-bit target (source/destination) register or branch
condition

immediate 16-bit immediate value, branch displacement or
address displacement

target 26-bit jump target address

rd 5-bit destination register specifier

sa 5-bit shift amount

funct 6-bit function field

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt
1110 6 5

rd sa

R-Type (Register)

J-Type (Jump)

I-Type (Immediate)

MIPS R4000 Microprocessor User's Manual 37

CPU Instruction Set Summary

Load and Store Instructions

Load and store are immediate (I-type) instructions that move data
between memory and the general registers. The only addressing mode
that load and store instructions directly support is base register plus 16-bit
signed immediate offset.

Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the
instruction immediately following is called a delayed load instruction. The
instruction slot immediately following this delayed load instruction is
referred to as the load delay slot.

In the R4000 processor, the instruction immediately following a load
instruction can use the contents of the loaded register, however in such
cases hardware interlocks insert additional real cycles. Consequently,
scheduling load delay slots can be desirable, both for performance and
R-Series processor compatibility. However, the scheduling of load delay
slots is not absolutely required.

Defining Access Types

Access type indicates the size of an R4000 processor data item to be loaded
or stored, set by the load or store instruction opcode. Access types are
defined in Appendix A.

Regardless of access type or byte ordering (endianness), the address given
specifies the low-order byte in the addressed field. For a big-endian
configuration, the low-order byte is the most-significant byte; for a little-
endian configuration, the low-order byte is the least-significant byte.†

The access type, together with the three low-order bits of the address,
define the bytes accessed within the addressed doubleword (shown in
Table 2-1). Only the combinations shown in Table 2-1 are permissible;
other combinations cause address error exceptions. See Appendix A for
individual descriptions of CPU load and store instructions.

† Data formats are described in Chapter 1.

Chapter 2

38 MIPS R4000 Microprocessor User's Manual

Table 2-1 Byte Access within a Doubleword

Access Type
Mnemonic

(Value)

Low Order
Address

Bits

Bytes Accessed

Big endian
(63-----------31------------0)

Byte

Little endian
(63-----------31------------0)

Byte2 1 0

Doubleword (7) 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0

Septibyte (6)
0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 0

0 0 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1

Sextibyte (5)
0 0 0 0 1 2 3 4 5 5 4 3 2 1 0

0 1 0 2 3 4 5 6 7 7 6 5 4 3 2

Quintibyte (4)
0 0 0 0 1 2 3 4 4 3 2 1 0

0 1 1 3 4 5 6 7 7 6 5 4 3

Word (3)
0 0 0 0 1 2 3 3 2 1 0

1 0 0 4 5 6 7 7 6 5 4

Triplebyte (2)

0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

1 0 0 4 5 6 6 5 4

1 0 1 5 6 7 7 6 5

Halfword (1)

0 0 0 0 1 1 0

0 1 0 2 3 3 2

1 0 0 4 5 5 4

1 1 0 6 7 7 6

Byte (0)

0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

1 0 0 4 4

1 0 1 5 5

1 1 0 6 6

1 1 1 7 7

MIPS R4000 Microprocessor User's Manual 39

CPU Instruction Set Summary

Computational Instructions

Computational instructions can be either in register (R-type) format, in
which both operands are registers, or in immediate (I-type) format, in
which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register
values:

• arithmetic

• logical

• shift

• multiply

• divide

These operations fit in the following four categories of computational
instructions:

• ALU Immediate instructions

• three-Operand Register-Type instructions

• shift instructions

• multiply and divide instructions

64-bit Operations

When operating in 64-bit mode, 32-bit operands must be sign extended.
The result of operations that use incorrect sign-extended 32-bit values is
unpredictable.

Chapter 2

40 MIPS R4000 Microprocessor User's Manual

Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipeline is transferred to the
multiplier as remaining instructions continue through the pipeline; the
product of the multiply instruction is saved in the HI and LO registers.

If the multiply instruction is followed by an MFHI or MFLO before the
product is available, the pipeline interlocks until this product does become
available.

Table 2-2 gives the execution time for integer multiply and divide
operations. The “Total Cycles” column gives the total number of cycles
required to execute the instruction. The “Overlap” column gives the
number of cycles that overlap other CPU operations; that is, the number of
cycles required between the present instruction and a subsequent MFHI or
MFLO without incurring an interlock. If this value is zero, the operation
is not performed in parallel with any other CPU operation.

Table 2-2 Multiply/Divide Instruction Cycle Timing

For more information about computational instructions, refer to the
individual instruction as described in Appendix A.

Instruction Total Cycles Overlap

MULT 12 10

MULTU 12 10

DIV 75 0

DIVU 75 0

DMULT 20 18

DMULTU 20 18

DDIV 139 0

DDIVU 139 0

MIPS R4000 Microprocessor User's Manual 41

CPU Instruction Set Summary

Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All
jump and branch instructions occur with a delay of one instruction: that is,
the instruction immediately following the jump or branch (this is known
as the instruction in the delay slot) always executes while the target
instruction is being fetched from storage.†

Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with
Jump or Jump and Link instructions, both of which are J-type instructions.
In J-type format, the 26-bit target address shifts left 2 bits and combines
with the high-order 4 bits of the current program counter to form an
absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented
with the Jump Register or Jump and Link Register instructions. Both are
R-type instructions that take the 32-bit or 64-bit byte address contained in
one of the general purpose registers.

For more information about jump instructions, refer to the individual
instruction as described in Appendix A.

Overview of Branch Instructions

All branch instruction target addresses are computed by adding the
address of the instruction in the delay slot to the 16-bit offset (shifted left
2 bits and sign-extended to 32 bits). All branches occur with a delay of one
instruction.

If a conditional branch likely is not taken, the instruction in the delay slot
is nullified.

For more information about branch instructions, refer to the individual
instruction as described in Appendix A.

† Taken branches have a 3 cycle penalty in this implementation. See Chapter 3 for more
information.

Chapter 2

42 MIPS R4000 Microprocessor User's Manual

Special Instructions

Special instructions allow the software to initiate traps; they are always
R-type. For more information about special instructions, refer to the
individual instruction as described in Appendix A.

Exception Instructions

Exception instructions are extensions to the MIPS ISA. For more
information about exception instructions, refer to the individual
instruction as described in Appendix A.

Coprocessor Instructions

Coprocessor instructions perform operations in their respective
coprocessors. Coprocessor loads and stores are I-type, and coprocessor
computational instructions have coprocessor-dependent formats.

Individual coprocessor instructions are described in Appendices A (for
CP0) and B (for the FPU, CP1).

CP0 instructions perform operations specifically on the System Control
Coprocessor registers to manipulate the memory management and
exception handling facilities of the processor. Appendix A details CP0
instructions.

MIPS R4000 Microprocessor User's Manual 43

The CPU Pipeline

3

This chapter describes the basic operation of the CPU pipeline, which
includes descriptions of the delay instructions (instructions that follow a
branch or load instruction in the pipeline), interruptions to the pipeline
flow caused by interlocks and exceptions, and R4400 implementation of an
uncached store buffer.

The FPU pipeline is described in Chapter 6.

Chapter 3

44 MIPS R4000 Microprocessor User's Manual

3.1 CPU Pipeline Operation
The CPU has an eight-stage instruction pipeline; each stage takes one
PCycle (one cycle of PClock, which runs at twice the frequency of
MasterClock). Thus, the execution of each instruction takes at least eight
PCycles (four MasterClock cycles). An instruction can take longer—for
example, if the required data is not in the cache, the data must be retrieved
from main memory.

Once the pipeline has been filled, eight instructions are executed
simultaneously. Figure 3-1 shows the eight stages of the instruction
pipeline; the next section describes the pipeline stages.

Figure 3-1 Instruction Pipeline Stages

PCycle (8-Deep)

Current
 CPU
Cycle

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

MasterClock
Cycle

MIPS R4000 Microprocessor User's Manual 45

The CPU Pipeline

3.2 CPU Pipeline Stages
This section describes each of the eight pipeline stages:

• IF - Instruction Fetch, First Half

• IS - Instruction Fetch, Second Half

• RF - Register Fetch

• EX - Execution

• DF - Data Fetch, First Half

• DS - Data Fetch, Second Half

• TC - Tag Check

• WB - Write Back

IF - Instruction Fetch, First Half

During the IF stage, the following occurs:

• Branch logic selects an instruction address and the instruction
cache fetch begins.

• The instruction translation lookaside buffer (ITLB) begins the
virtual-to-physical address translation.

IS - Instruction Fetch, Second Half

During the IS stage, the instruction cache fetch and the virtual-to-physical
address translation are completed.

RF - Register Fetch

During the RF stage, the following occurs:

• The instruction decoder (IDEC) decodes the instruction and
checks for interlock conditions.

• The instruction cache tag is checked against the page frame
number obtained from the ITLB.

• Any required operands are fetched from the register file.

Chapter 3

46 MIPS R4000 Microprocessor User's Manual

EX - Execution

During the EX stage, one of the following occurs:

• The arithmetic logic unit (ALU) performs the arithmetic or
logical operation for register-to-register instructions.

• The ALU calculates the data virtual address for load and store
instructions.

• The ALU determines whether the branch condition is true and
calculates the virtual branch target address for branch
instructions.

DF - Data Fetch, First Half

During the DF stage, one of the following occurs:

• The data cache fetch and the data virtual-to-physical
translation begins for load and store instructions.

• The branch instruction address translation and translation
lookaside buffer (TLB)† update begins for branch instructions.

• No operations are performed during the DF, DS, and TC stages
for register-to-register instructions.

DS - Data Fetch, Second Half

During the DS stage, one of the following occurs:

• The data cache fetch and data virtual-to-physical translation
are completed for load and store instructions. The Shifter
aligns data to its word or doubleword boundary.

• The branch instruction address translation and TLB update are
completed for branch instructions.

TC - Tag Check

For load and store instructions, the cache performs the tag check during
the TC stage. The physical address from the TLB is checked against the
cache tag to determine if there is a hit or a miss.

† The TLB is described in Chapter 4.

MIPS R4000 Microprocessor User's Manual 47

The CPU Pipeline

WB - Write Back

For register-to-register instructions, the instruction result is written back
to the register file during the WB stage. Branch instructions perform no
operation during this stage.

Figure 3-2 shows the activities occurring during each ALU pipeline stage,
for load, store, and branch instructions.

Figure 3-2 CPU Pipeline Activities

IC1 Instruction cache access stage 1

IC2 Instruction cache access stage 2

ITLB1 Instruction address translation stage 1

ITLB2 Instruction address translation stage 2

ITC Instruction tag check

IDEC Instruction decode

RF Register operand fetch

ALU Operation

DVA Data virtual address calculation

DC1 Data cache access stage 1

DC2 Data cache access stage 2

LSA Data load or store align

JTLB1 Data/Instruction address translation stage 1

JTLB2 Data/Instruction address translation stage 2

DTC Data tag check

IVA Instruction virtual address calculation

WB Write back to register file

Clock

Phase

Stage

IFetch

ALU
Load/Store

Branch

1 2

IF IS RF EX DF DS TC WB

IC1 IC2
ITLB1 ITLB2 ITC

IDEC
RF

DVA DC1 DC2
LSA

JTLB1 JTLB2 DTC WB
IVA

1 2 1 2 1 2 1 2 1 2 1 2 1 2

and
Decode

WBALU

Chapter 3

48 MIPS R4000 Microprocessor User's Manual

3.3 Branch Delay
The CPU pipeline has a branch delay of three cycles and a load delay of
two cycles. The three-cycle branch delay is a result of the branch
comparison logic operating during the EX pipeline stage of the branch,
producing an instruction address that is available in the IF stage, four
instructions later.

Figure 3-3 illustrates the branch delay.

Figure 3-3 CPU Pipeline Branch Delay

3.4 Load Delay
The completion of a load at the end of the DS pipeline stage produces an
operand that is available for the EX pipeline stage of the third subsequent
instruction.

Figure 3-4 shows the load delay of two pipeline stages.

Figure 3-4 CPU Pipeline Load Delay

branch

target

Branch Delay

three branch
delay
instructions

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

load

f(load)

Load

two load
delay
instructions

Delay

MIPS R4000 Microprocessor User's Manual 49

The CPU Pipeline

3.5 Interlock and Exception Handling
Smooth pipeline flow is interrupted when cache misses or exceptions
occur, or when data dependencies are detected. Interruptions handled
using hardware, such as cache misses, are referred to as interlocks, while
those that are handled using software are called exceptions.

As shown in Figure 3-5, all interlock and exception conditions are
collectively referred to as faults.

Figure 3-5 Interlocks, Exceptions, and Faults

There are two types of interlocks:

• stalls, which are resolved by halting the pipeline

• slips, which require one part of the pipeline to advance while
another part of the pipeline is held static

At each cycle, exception and interlock conditions are checked for all active
instructions.

Because each exception or interlock condition corresponds to a particular
pipeline stage, a condition can be traced back to the particular instruction
in the exception/interlock stage, as shown in Figure 3-6. For instance, an
Illegal Instruction (II) exception is raised in the execution (EX) stage.

Tables 3-1 and 3-2 describe the pipeline interlocks and exceptions listed in
Figure 3-6.

Hardware

Exceptions

Software

Interlocks

Slips

Faults

Stalls

Chapter 3

50 MIPS R4000 Microprocessor User's Manual

Figure 3-6 Correspondence of Pipeline Stage to Interlock Condition

State
Pipeline Stage

IF IS RF EX DF DS TC WB

Stall*

ITM ICM CPBE DCM

SXT WA

STI

*MP stalls can occur at any stage; they are not associated with any instruction or pipe stage

IF IS RF EX DF DS TC WB

Slip

LDI

MultB

DivB

MDOne

ShSlip

FCBsy

IF IS RF EX DF DS TC WB

Exceptions

ITLB Intr OVF DTLB DBE

IBE FPE TLBMod Watch

IVACoh ExTrap DVACoh

II DECCErr

BP NMI

SC Reset

CUn

IECCErr

Clock

PCycle 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

MIPS R4000 Microprocessor User's Manual 51

The CPU Pipeline

Table 3-1 Pipeline Exceptions

Exception Description

ITLB Instruction Translation or Address Exception

Intr External Interrupt

IBE IBus Error

IVACoh IVA Coherent

II Illegal Instruction

BP Breakpoint

SC System Call

CUn Coprocessor Unusable

IECCErr Instruction ECC Error

OVF Integer Overflow

FPE FP Interrupt

ExTrap EX Stage Traps

DTLB Data Translation or Address Exception

TLBMod TLB Modified

DBE Data Bus Error

Watch Memory Reference Address Compare

DVACoh DVA Coherent

DECCErr Data ECC Error

NMI Non-maskable Interrupt

Reset Reset

Chapter 3

52 MIPS R4000 Microprocessor User's Manual

Table 3-2 Pipeline Interlocks

Exception Conditions

When an exception condition occurs, the relevant instruction and all those
that follow it in the pipeline are cancelled. Accordingly, any stall
conditions and any later exception conditions that may have referenced
this instruction are inhibited; there is no benefit in servicing stalls for a
cancelled instruction.

After instruction cancellation, a new instruction stream begins, starting
execution at a predefined exception vector. System Control Coprocessor
registers are loaded with information that identifies the type of exception
and auxiliary information such as the virtual address at which translation
exceptions occur.

Interlock Description

ITM Instruction TLB Miss

ICM Instruction Cache Miss

CPBE Coprocessor Possible Exception

SXT Integer Sign Extend

STI Store Interlock

DCM Data Cache Miss

WA Watch Address Exception

LDI Load Interlock

MultB Multiply Unit Busy

DivB Divide Unit Busy

MDOne Mult/Div One Cycle Slip

ShSlip Var Shift or Shift > 32 bits

FCBsy FP Busy

MIPS R4000 Microprocessor User's Manual 53

The CPU Pipeline

Stall Conditions

Often, a stall condition is only detected after parts of the pipeline have
advanced using incorrect data; this is called a pipeline overrun. When a stall
condition is detected, all eight instructions—each different stage of the
pipeline—are frozen at once. In this stalled state, no pipeline stages can
advance until the interlock condition is resolved.

Once the interlock is removed, the restart sequence begins two cycles
before the pipeline resumes execution. The restart sequence reverses the
pipeline overrun by inserting the correct information into the pipeline.

Slip Conditions

When a slip condition is detected, pipeline stages that must advance to
resolve the dependency continue to be retired (completed), while
dependent stages are held until the required data is available.

External Stalls

External stall is another class of interlocks. An external stall originates
outside the processor and is not referenced to a particular pipeline stage.
This interlock is not affected by exceptions.

Interlock and Exception Timing

To prevent interlock and exception handling from adversely affecting the
processor cycle time, the R4000 processor uses both logic and circuit
pipeline techniques to reduce critical timing paths. Interlock and
exception handling have the following effects on the pipeline:

• In some cases, the processor pipeline must be backed up
(reversed and started over again from a prior stage) to recover
from interlocks.

• In some cases, interlocks are serviced for instructions that will
be aborted, due to an exception.

These two cases are discussed below.

Chapter 3

54 MIPS R4000 Microprocessor User's Manual

Backing Up the Pipeline

An example of pipeline back-up occurs in a data cache miss, in which the
late detection of the miss causes a subsequent instruction to compute an
incorrect result.

When this occurs, not only must the cache miss be serviced but the EX
stage of the dependent instruction must be re-executed before the pipeline
can be restarted. Figure 3-7 illustrates this procedure; a minus (–) after
the pipeline stage descriptor (for instance, EX–) indicates the operation
produced an incorrect result, while a plus (+) indicates the successful
re-execution of that operation.

Figure 3-7 Pipeline Overrun

Run Run Run Run Run Run Run Stl Stl Stl Stl Stl Run Run Run Run Run

Rst2 Rst1

IF IS RF EX DF DS TC DF DS TC WB

IF IS RF EX DF DS DF DS TC WB

IF IS RF EX DF DF DS TC WB

IF IS RF EX- RF EX+ DF DS TC WB

IF IS RF EX DF DS TC WB

Cycle

Restart

Load

ALU

MIPS R4000 Microprocessor User's Manual 55

The CPU Pipeline

Aborting an Instruction Subsequent to an Interlock

The interaction between an integer overflow and an instruction cache miss
is an example of an interlock being serviced for an instruction that is
subsequently aborted.

In this case, pipelining the overflow exception handling into the DF stage
allows an instruction cache miss to occur on the next immediate
instruction. Figure 3-8 illustrates this; aborted instructions are indicated
with an asterisk (*).

Figure 3-8 Instruction Cache Miss

Even though the line brought in by the instruction cache could have been
replaced by a line of the exception handler, no performance loss occurs,
since the instruction cache miss would have been serviced anyway, after
returning from the exception handler. Handling of the exception is done
in this fashion because the frequency of an exception occurring is, by
definition, relatively low.

Run Run Run Run Stl Stl Stl Stl Stl Run Run Run Run Run Run Run

 Rst2 Rst1

IF IS RF EX DF DS TC WB*

IF IS RF IF IS RF EX DF DS TC WB*

IF IS IF IS RF EX DF DS TC WB*

IF IF IS RF EX DF DS TC WB*

Cycle

Restart

Stall

ALU
OVF

ICM

InstrCacheMiss

Chapter 3

56 MIPS R4000 Microprocessor User's Manual

Pipelining the Exception Handling

Pipelining of interlock and exception handling is done by pipelining the
logical resolution of possible fault conditions with the buffering and
distributing of the pipeline control signals.

In particular, a half clock period is provided for buffering and distributing
the run control signal; during this time the logic evaluation to produce run
for the next cycle begins. Figure 3-9 shows this process for a sequence of
loads.

Figure 3-9 Pipelining of Interlock and Exception Handling

Clock

Phase

Load1:

1 2

DF DS TC WB

1 2 1 2 1 2 1 2 1 2

TagCk Resolve Buffer

DF DS TC WB

TagCk Resolve Buffer

DF DS TC WB

TagCk Resolve Buffer

Load2:

Load3:

MIPS R4000 Microprocessor User's Manual 57

The CPU Pipeline

The decision whether or not to advance the pipeline is derived from these
three rules:

• All possible fault-causing events, such as cache misses,
translation exceptions, load interlocks, etc., must be
individually evaluated.

• The fault to be serviced is selected, based on a predefined
priority as determined by the pipeline stage of the asserted
faults.

• Pipeline advance control signals are buffered and distributed.

 Figure 3-10 illustrates this process.

Figure 3-10 Pipeline Advance Decision

Clock

Phase

Cycle

1 2

Run Run Run Run

1 2 1 2 1 2

Evaluate Resolve Buffer

Evaluate Resolve Buffer

Evaluate Resolve Buffer

Chapter 3

58 MIPS R4000 Microprocessor User's Manual

Special Cases

In some instances, the pipeline control state machine is bypassed. This
occurs due to performance considerations or to correctness
considerations, which are described in the following sections.

Performance Considerations

A performance consideration occurs when there is a cache load miss. By
bypassing the pipeline state machine, it is possible to eliminate up to two
cycles of load miss latency. Two techniques, address acceleration and
address prediction, increase performance.

Address Acceleration

Address acceleration bypasses a potential cache miss address. It is relatively
straightforward to perform this bypass since sending the cache miss
address to the secondary cache has no negative impact even if a
subsequent exception nullifies the effect of this cache access. Power is
wasted when the miss is inhibited by some fault, but this is a minor effect.

Address Prediction

Another technique used to reduce miss latency is the automatic increment
and transmission of instruction miss addresses following an instruction
cache miss. This form of latency reduction is called address prediction: the
subsequent instruction miss address is predicted to be a simple increment
of the previous miss address. Figure 3-11 shows a cache miss in which the
cache miss address is changed based on the detection of the miss.

Figure 3-11 Load Address Bypassing

Correctness Considerations

An example in which bypassing is necessary to guarantee correctness is a
cache write.

Run Run Run Run Run Run Run Stl Stl Stl Stl Stl Stl Stl Stl RunCycle

Restart

Address

Load IF IS RF EX DF DS TC DF DS TC WB

Rst3 Rst2 Rst1

Cache Index

MIPS R4000 Microprocessor User's Manual 59

The CPU Pipeline

3.6 R4400 Processor Uncached Store Buffer
The R4400 processor contains an uncached store buffer to improve the
performance of uncached stores over that available from an R4000
processor. When an uncached store reaches the write-back (WB) stage in
the CPU pipeline, the CPU must stall until the store is sent off-chip. In the
R4400 processor, a single-entry buffer stores this uncached WB-stage data
on the chip without stalling the pipeline.

If a second uncached store reaches the WB stage in the R4400 processor
before the first uncached store has been moved off-chip, the CPU stalls
until the store buffer completes the first uncached store. To avoid this
stall, the compiler can insert seven instruction cycles between the two
uncached stores, as shown in Figure 3-12. A single instruction that
requires seven cycles to complete could be used in place of the seven No
Operation (NOP) instructions.

Figure 3-12 Pipeline Sequence for Back-to-Back Uncached Stores

If the two uncached stores execute within a loop, the two killed
instructions which are part of the loop branch latency are included in the
count of seven interpolated cycles. Figure 3-13 shows the four NOP
instructions that need to be scheduled in this case.

SW R2, (r3) # uncached store
NOP # NOP 1
NOP # NOP 2
NOP # NOP 3
NOP # NOP 4
NOP # NOP 5
NOP # NOP 6
NOP # NOP 7
SW R2, (R3) # uncached store

Chapter 3

60 MIPS R4000 Microprocessor User's Manual

Figure 3-13 Back-to-Back Uncached Stores in a Loop

The timing requirements of the System interface govern the latency
between uncached stores; back-to-back stores can be sent across the
interface at a maximum rate of one store for every four external cycles. If
the R4400 processor is programmed to run in divide-by-2 mode (for more
information about divided clock, see the description of SClock in Chapter
10), an uncached store can occur every eight pipeline cycles. If a larger
clock divisor is used, more pipeline cycles are required for each store.

CAUTION: The R4000 processor always had a strongly-ordered
execution; however, with the addition of the uncached store buffer in
the R4400 there is a potential for out-of-order execution (described in
the section of the same name in Chapter 11, and Uncached Loads or
Stores in Chapter 12).

Loop: SW R2, (R3) # uncached store
NOP
NOP
NOP
B Loop # branch to loop
NOP
killed # branch latency
killed # branch latency

MIPS R4000 Microprocessor User's Manual 61

Memory Management

4

The MIPS R4000 processor provides a full-featured memory management
unit (MMU) which uses an on-chip translation lookaside buffer (TLB) to
translate virtual addresses into physical addresses.

This chapter describes the processor virtual and physical address spaces,
the virtual-to-physical address translation, the operation of the TLB in
making these translations, and those System Control Coprocessor (CP0)
registers that provide the software interface to the TLB.

Chapter 4

62 MIPS R4000 Microprocessor User's Manual

4.1 Translation Lookaside Buffer (TLB)
Mapped virtual addresses are translated into physical addresses using an
on-chip TLB.† The TLB is a fully associative memory that holds 48 entries,
which provide mapping to 48 odd/even page pairs (96 pages). When
address mapping is indicated, each TLB entry is checked simultaneously
for a match with the virtual address that is extended with an ASID stored
in the EntryHi register.

The address mapped to a page ranges in size from 4 Kbytes to 16 Mbytes,
in multiples of 4—that is, 4K, 16K, 64K, 256K, 1M, 4M, 16M.

Hits and Misses

If there is a virtual address match, or hit, in the TLB, the physical page
number is extracted from the TLB and concatenated with the offset to form
the physical address (see Figure 4-1).

If no match occurs (TLB miss), an exception is taken and software refills
the TLB from the page table resident in memory. Software can write over
a selected TLB entry or use a hardware mechanism to write into a random
entry.

Multiple Matches

If more than one entry in the TLB matches the virtual address being
translated, the operation is undefined. To prevent permanent damage to
the part, the TLB may be disabled if more than several entries match. The
TLB-Shutdown (TS) bit in the Status register is set to 1 if the TLB is
disabled.

† There are virtual-to-physical address translations that occur outside of the TLB. For
example, addresses in the kseg0 and kseg1 spaces are unmapped translations. In these
spaces the physical address is derived by subtracting the base address of the space from
the virtual address.

MIPS R4000 Microprocessor User's Manual 63

Memory Management

4.2 Address Spaces
This section describes the virtual and physical address spaces and the
manner in which virtual addresses are converted or “translated” into
physical addresses in the TLB.

Virtual Address Space

The processor virtual address can be either 32 or 64 bits wide,† depending
on whether the processor is operating in 32-bit or 64-bit mode.

• In 32-bit mode, addresses are 32 bits wide. The maximum user
process size is 2 gigabytes (231).

• In 64-bit mode, addresses are 64 bits wide. The maximum user
process size is 1 terabyte (240).

Figure 4-1 shows the translation of a virtual address into a physical
address.

Figure 4-1 Overview of a Virtual-to-Physical Address Translation

† Figure 4-8 shows the 32-bit and 64-bit versions of the processor TLB entry.

1. Virtual address (VA) represented by the
virtual page number (VPN) is compared
with tag in TLB.

Virtual address

2. If there is a match, the page frame
number (PFN) representing the upper
bits of the physical address (PA) is
output from the TLB.

VPNASIDG

VPNASIDG

PFN

TLB

Physical address

PFN

Offset

Offset

TLB

3. The Offset, which does not pass through
the TLB, is then concatenated to the PFN.

Entry

Chapter 4

64 MIPS R4000 Microprocessor User's Manual

As shown in Figures 4-2 and 4-3, the virtual address is extended with an
8-bit address space identifier (ASID), which reduces the frequency of TLB
flushing when switching contexts. This 8-bit ASID is in the CP0 EntryHi
register, described later in this chapter. The Global bit (G) is in the EntryLo0
and EntryLo1 registers, described later in this chapter.

Physical Address Space

Using a 36-bit address, the processor physical address space encompasses
64 gigabytes. The section following describes the translation of a virtual
address to a physical address.

Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing
the virtual address from the processor with the virtual addresses in the
TLB; there is a match when the virtual page number (VPN) of the address
is the same as the VPN field of the entry, and either:

• the Global (G) bit of the TLB entry is set, or

• the ASID field of the virtual address is the same as the ASID
field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss
exception is taken by the processor and software is allowed to refill the
TLB from a page table of virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is
output from the TLB and concatenated with the Offset, which represents
an address within the page frame space. The Offset does not pass through
the TLB.

Virtual-to-physical translation is described in greater detail throughout
the remainder of this chapter; Figure 4-20 is a flow diagram of the process
shown at the end of this chapter.

The next two sections describe the 32-bit and 64-bit address translations.

MIPS R4000 Microprocessor User's Manual 65

Memory Management

32-bit Mode Address Translation

Figure 4-2 shows the virtual-to-physical-address translation of a 32-bit
mode address.

• The top portion of Figure 4-2 shows a virtual address with a
12-bit, or 4-Kbyte, page size, labelled Offset. The remaining 20
bits of the address represent the VPN, and index the 1M-entry
page table.

• The bottom portion of Figure 4-2 shows a virtual address with
a 24-bit, or 16-Mbyte, page size, labelled Offset. The remaining
8 bits of the address represent the VPN, and index the 256-
entry page table.

Figure 4-2 32-bit Mode Virtual Address Translation

28 11 0

 20 12

 2931

VPN Offset

3239

ASID

8

Virtual Address with 1M (2 20) 4-Kbyte pages

23 0

 8 24

Offset

39

Virtual Address with 256 (2 8)16-Mbyte pages

8 bits = 256 pages

20 bits = 1M pages 12

ASID
8

28 293132

VPN

24

Virtual-to-physical
translation in TLB

Bits 31, 30 and 29 of the virtual
address select user, supervisor,
or kernel address spaces.

Offset passed
unchanged to
physical
memory

Virtual-to-physical
translation in TLB

 TLB

 TLB

 35 0
PFN Offset

Offset passed
unchanged to
physical
memory

36-bit Physical Address

Chapter 4

66 MIPS R4000 Microprocessor User's Manual

64-bit Mode Address Translation

Figure 4-3 shows the virtual-to-physical-address translation of a 64-bit
mode address. This figure illustrates the two extremes in the range of
possible page sizes: a 4-Kbyte page (12 bits) and a 16-Mbyte page (24 bits).

• The top portion of Figure 4-3 shows a virtual address with a
12-bit, or 4-Kbyte, page size, labelled Offset. The remaining 28
bits of the address represent the VPN, and index the 256M-
entry page table.

• The bottom portion of Figure 4-3 shows a virtual address with
a 24-bit, or 16-Mbyte, page size, labelled Offset. The remaining
16 bits of the address represent the VPN, and index the 64K-
entry page table.

Figure 4-3 64-bit Mode Virtual Address Translation

11 0

12

63

VPN Offset

6471

ASID

 8

Virtual Address with 256M (2 28) 4-Kbyte pages

23 0

 24 24

Offset

Virtual Address with 64K (2 16)16-Mbyte pages

16 bits = 64K pages

28 bits = 256M pages 12

ASID VPN

6162 40 39

 28

0 or -1

636471 6162 40 24

 8

39

 16

 24

0 or -1

Virtual-to-physical
translation in TLB

Bits 62 and 63 of the virtual
address select user, supervisor,
or kernel address spaces.

Virtual-to-physical
translation in TLB TLB

 35 0
PFN Offset

 TLB

Offset passed
unchanged to
physical
memory

Offset passed
unchanged to
physical
memory

36-bit Physical Address

MIPS R4000 Microprocessor User's Manual 67

Memory Management

Operating Modes

The processor has three operating modes that function in both 32- and 64-
bit operations:

• User mode

• Supervisor mode

• Kernel mode

These modes are described in the next three sections.

 User Mode Operations

In User mode, a single, uniform virtual address space—labelled User
segment—is available; its size is:

• 2 Gbytes (231 bytes) in 32-bit mode (useg)

• 1 Tbyte (240 bytes) in 64-bit mode (xuseg)

Figure 4-4 shows User mode virtual address space.

Figure 4-4 User Mode Virtual Address Space

*NOTE: The R4000 uses 64-bit addresses internally. When the kernel
is running in Kernel mode, it initializes registers before switching
modes, and saves (or restores, whichever is appropriate) register
values on context switches. In 32-bit mode, a valid address must be a
32-bit signed number, where bits 63:32 = bit 31. In normal operation
it is not possible for a 32-bit User-mode program to produce invalid
addresses. However, although it would be an error, it is possible for a
Kernel-mode program to erroneously place a value that is not a 32-bit
signed number into a 64-bit register, in which case the User-mode
program generates an invalid address.

useg xuseg

Address
Error

1 TB
Mapped

32-bit* 64-bit

0x FFFF FFFF FFFF FFFF

0x 0000 0000 0000 0000

0x FFFF FFFF

0x 8000 0000

0x 0000 0000

0x 0000 0100 00 00 0000

Address
Error

Mapped
2 GB

Chapter 4

68 MIPS R4000 Microprocessor User's Manual

The User segment starts at address 0 and the current active user process
resides in either useg (in 32-bit mode) or xuseg (in 64-bit mode). The TLB
identically maps all references to useg/xuseg from all modes, and controls
cache accessibility.†

The processor operates in User mode when the Status register contains the
following bit-values:

• KSU bits = 102

• EXL = 0

• ERL = 0

In conjunction with these bits, the UX bit in the Status register selects
between 32- or 64-bit User mode addressing as follows:

• when UX = 0, 32-bit useg space is selected and TLB misses are
handled by the 32-bit TLB refill exception handler

• when UX = 1, 64-bit xuseg space is selected and TLB misses are
handled by the 64-bit XTLB refill exception handler

Table 4-1 lists the characteristics of the two user mode segments, useg and
xuseg.

Table 4-1 32-bit and 64-bit User Mode Segments

† The cached (C) field in a TLB entry determines whether the reference is cached; see Figure
4-8.

Address Bit
Values

Status Register
Segment

Name
Address Range Segment SizeBit Values

KSU EXL ERL UX

32-bit
A(31) = 0 102 0 0 0 useg

0x0000 0000
through

0x7FFF FFFF

2 Gbyte
(231 bytes)

64-bit
A(63:40) = 0 102 0 0 1 xuseg

0x0000 0000 0000 0000
through

0x0000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

MIPS R4000 Microprocessor User's Manual 69

Memory Management

32-bit User Mode (useg)

In User mode, when UX = 0 in the Status register, User mode addressing
is compatible with the 32-bit addressing model shown in Figure 4-4, and a
2-Gbyte user address space is available, labelled useg.

All valid User mode virtual addresses have their most-significant bit
cleared to 0; any attempt to reference an address with the most-significant
bit set while in User mode causes an Address Error exception.

The system maps all references to useg through the TLB, and bit settings
within the TLB entry for the page determine the cacheability of a reference.

64-bit User Mode (xuseg)

In User mode, when UX =1 in the Status register, User mode addressing is
extended to the 64-bit model shown in Figure 4-4. In 64-bit User mode, the
processor provides a single, uniform address space of 240 bytes, labelled
xuseg.

All valid User mode virtual addresses have bits 63:40 equal to 0; an
attempt to reference an address with bits 63:40 not equal to 0 causes an
Address Error exception.

 Supervisor Mode Operations

Supervisor mode is designed for layered operating systems in which a
true kernel runs in R4000 Kernel mode, and the rest of the operating
system runs in Supervisor mode.

The processor operates in Supervisor mode when the Status register
contains the following bit-values:

• KSU = 012

• EXL = 0

• ERL = 0

In conjunction with these bits, the SX bit in the Status register selects
between 32- or 64-bit Supervisor mode addressing:

• when SX = 0, 32-bit supervisor space is selected and TLB
misses are handled by the 32-bit TLB refill exception handler

• when SX = 1, 64-bit supervisor space is selected and TLB
misses are handled by the 64-bit XTLB refill exception handler

Chapter 4

70 MIPS R4000 Microprocessor User's Manual

Figure 4-5 shows Supervisor mode address mapping. Table 4-2 lists the
characteristics of the supervisor mode segments; descriptions of the
address spaces follow.

Figure 4-5 Supervisor Mode Address Space

*NOTE: The R4000 uses 64-bit addresses internally. In 32-bit mode,
a valid address must be a 32-bit signed number, where bits 63:32 = bit
31. In normal operation it is not possible for a 32-bit Supervisor-mode
program to create an invalid address through arithmetic operations.
However 32-bit-mode Supervisor programs must not create addresses
using base register+offset calculations that produce a 32-bit 2’s-
complement overflow; in specific, there are two prohibited cases:

• offset with bit 15 = 0 and base register with bit 31 = 0, but (base
register+offset) bit 31 = 1

• offset with bit 15 = 1 and base register with bit 31 = 1, but (base
register+offset) bit 31 = 0

Using this invalid address produces an undefined result.

2 GB

Mapped

Mapped

suseg

Address

0.5 GB
error

sseg

Address
error

Address
error

Mapped

xsuseg

Address

0.5 GB

error

xsseg1 TB
Mapped

Address
error

32-bit* 64-bit

csseg

0x FFFF FFFF FFFF FFFF

0x 4000 0100 0000 0000

0x 0000 0000 0000 0000

0x FFFF FFFF E000 0000

0x FFFF FFFF C000 0000

0x 4000 0000 0000 0000

0x 0000 0100 0000 0000

0x FFFF FFFF

0x 8000 0000

0x 0000 0000

0x E000 0000

0x C000 0000

0x A000 0000

Address
error

1 TB
Mapped

MIPS R4000 Microprocessor User's Manual 71

Memory Management

Table 4-2 32-bit and 64-bit Supervisor Mode Segments

32-bit Supervisor Mode, User Space (suseg)

In Supervisor mode, when SX = 0 in the Status register and the most-
significant bit of the 32-bit virtual address is set to 0, the suseg virtual
address space is selected; it covers the full 231 bytes (2 Gbytes) of the
current user address space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs through
0x7FFF FFFF.

32-bit Supervisor Mode, Supervisor Space (sseg)

In Supervisor mode, when SX = 0 in the Status register and the three most-
significant bits of the 32-bit virtual address are 1102, the sseg virtual
address space is selected; it covers 229-bytes (512 Mbytes) of the current
supervisor address space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xC000 0000 and runs
through 0xDFFF FFFF.

Address Bit
Values

Status Register
Segment

Name
Address Range

Segment
Size

Bit Values

KSU EXL ERL SX

32-bit
A(31) = 0 012 0 0 0 suseg

0x0000 0000
through

0x7FFF FFFF

2 Gbytes
(231 bytes)

32-bit
A(31:29) = 1102

012 0 0 0 ssseg
0xC000 0000

through
0xDFFF FFFF

512 Mbytes
(229 bytes)

64-bit
A(63:62) = 002

012 0 0 1 xsuseg
0x0000 0000 0000 0000

through
0x0000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

64-bit
A(63:62) = 012

012 0 0 1 xsseg
0x4000 0000 0000 0000

through
0x4000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

64-bit
A(63:62) = 112

012 0 0 1 csseg
0xFFFF FFFF C000 0000

through
0xFFFF FFFF DFFF FFFF

512 Mbytes
(229 bytes)

Chapter 4

72 MIPS R4000 Microprocessor User's Manual

64-bit Supervisor Mode, User Space (xsuseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the
virtual address are set to 002, the xsuseg virtual address space is selected;
it covers the full 240 bytes (1 Tbyte) of the current user address space. The
virtual address is extended with the contents of the 8-bit ASID field to
form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 0000 0000 and
runs through 0x0000 00FF FFFF FFFF.

64-bit Supervisor Mode, Current Supervisor Space (xsseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the
virtual address are set to 012, the xsseg current supervisor virtual address
space is selected. The virtual address is extended with the contents of the
8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0x4000 0000 0000 0000 and
runs through 0x4000 00FF FFFF FFFF.

64-bit Supervisor Mode, Separate Supervisor Space (csseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the
virtual address are set to 112, the csseg separate supervisor virtual address
space is selected. Addressing of the csseg is compatible with addressing
sseg in 32-bit mode. The virtual address is extended with the contents of
the 8-bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xFFFF FFFF C000 0000 and
runs through 0xFFFF FFFF DFFF FFFF.

MIPS R4000 Microprocessor User's Manual 73

Memory Management

 Kernel Mode Operations

The processor operates in Kernel mode when the Status register contains
one of the following values:

• KSU = 002

• EXL = 1

• ERL = 1

In conjunction with these bits, the KX bit in the Status register selects
between 32- or 64-bit Kernel mode addressing:

• when KX = 0, 32-bit kernel space is selected and all TLB misses
are handled by the 32-bit TLB refill exception handler

• when KX = 1, 64-bit kernel space is selected and all TLB misses
are handled by the 64-bit XTLB refill exception handler

The processor enters Kernel mode whenever an exception is detected and
it remains in Kernel mode until an Exception Return (ERET) instruction is
executed. The ERET instruction restores the processor to the mode
existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated
by the high-order bits of the virtual address, as shown in Figure 4-6. Table
4-3 lists the characteristics of the 32-bit kernel mode segments, and Table
4-4 lists the characteristics of the 64-bit kernel mode segments.

Chapter 4

74 MIPS R4000 Microprocessor User's Manual

Figure 4-6 Kernel Mode Address Space

*NOTE: The R4000 uses 64-bit addresses internally. In 32-bit mode,
a valid address must be a 32-bit signed number, where bits 63:32 = bit
31; an invalid address produces an undefined result. In 32-bit mode,
a Kernel-mode program may use 64-bit instructions, but must not
create addresses using base register+offset calculations that produce a
32-bit 2’s-complement overflow; in specific, there are two prohibited
cases:

• offset with bit 15 = 0 and base register with bit 31 = 0, but (base
register+offset) bit 31 = 1

• offset with bit 15 = 1 and base register with bit 31 = 1, but (base
register+offset) bit 31 = 0

Address
error

2 GB

0.5 GB

0.5 GB

Mapped

Mapped

Unmapped

Unmapped

kuseg

kseg0

kseg1

0.5 GB

0.5 GB

Mapped

ksseg

kseg3

Uncached

Cached

xkuseg

ckseg0

ckseg1

xksseg

ckseg3Mapped
0.5 GB

Mapped
0.5 GB

0.5 GB
Unmapped
Uncached

0.5 GB
Unmapped

Cached

Unmapped

Address
error

cksseg

1 TB
Mapped

xksegMapped

xkphys

32-bit* 64-bit

Address
error

0x FFFF FFFF FFFF FFFF

0x 4000 0100 0000 0000

0x 0000 0000 0000 0000

0x FFFF FFFF E000 0000

0x FFFF FFFF C000 0000

0x 4000 0000 0000 0000

0x 0000 0100 0000 0000

0x 8000 0000 0000 0000

0x C000 0000 0000 0000

0x FFFF FFFF A000 0000

0x FFFF FFFF 8000 0000

0x C000 00FF 8000 0000

0x FFFF FFFF

0x 8000 0000

0x 0000 0000

0x E000 0000

0x C000 0000

0x A000 0000

1 TB
Mapped

MIPS R4000 Microprocessor User's Manual 75

Memory Management

Table 4-3 32-bit Kernel Mode Segments

32-bit Kernel Mode, User Space (kuseg)

In Kernel mode, when KX = 0 in the Status register, and the most-
significant bit of the virtual address, A31, is cleared, the 32-bit kuseg virtual
address space is selected; it covers the full 231 bytes (2 Gbytes) of the
current user address space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a
231-byte unmapped (that is, mapped directly to physical addresses)
uncached address space. See the Cache Error exception in Chapter 5 for
more information.

32-bit Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when KX = 0 in the Status register and the most-
significant three bits of the virtual address are 1002, 32-bit kseg0 virtual
address space is selected; it is the 229-byte (512-Mbyte) kernel physical
space. References to kseg0 are not mapped through the TLB; the physical
address selected is defined by subtracting 0x8000 0000 from the virtual
address. The K0 field of the Config register, described in this chapter,
controls cacheability and coherency.

Address Bit
Values

Status Register
Is One Of These

Values
Segment

Name
Address Range

Segment
Size

KSU EXL ERL KX

A(31) = 0

KSU = 002
or

EXL = 1
or

ERL =1

0 kuseg
0x0000 0000

through
0x7FFF FFFF

2 Gbytes
(231 bytes)

A(31:29) = 1002 0 kseg0
0x8000 0000

through
0x9FFF FFFF

512 Mbytes
(229 bytes)

A(31:29) = 1012 0 kseg1
0xA000 0000

through
0xBFFF FFFF

512 Mbytes
(229 bytes)

A(31:29) = 1102 0 ksseg
0xC000 0000

through
0xDFFF FFFF

512 Mbytes
(229 bytes)

A(31:29) = 1112 0 kseg3
0xE000 0000

through
0xFFFF FFFF

512 Mbytes
(229 bytes)

Chapter 4

76 MIPS R4000 Microprocessor User's Manual

32-bit Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when KX = 0 in the Status register and the most-
significant three bits of the 32-bit virtual address are 1012, 32-bit kseg1
virtual address space is selected; it is the 229-byte (512-Mbyte) kernel
physical space.

References to kseg1 are not mapped through the TLB; the physical address
selected is defined by subtracting 0xA000 0000 from the virtual address.

Caches are disabled for accesses to these addresses, and physical memory
(or memory-mapped I/O device registers) are accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)

In Kernel mode, when KX = 0 in the Status register and the most-
significant three bits of the 32-bit virtual address are 1102, the ksseg virtual
address space is selected; it is the current 229-byte (512-Mbyte) supervisor
virtual space. The virtual address is extended with the contents of the 8-
bit ASID field to form a unique virtual address.

32-bit Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when KX = 0 in the Status register and the most-
significant three bits of the 32-bit virtual address are 1112, the kseg3 virtual
address space is selected; it is the current 229-byte (512-Mbyte) kernel
virtual space. The virtual address is extended with the contents of the 8-bit
ASID field to form a unique virtual address.

MIPS R4000 Microprocessor User's Manual 77

Memory Management

Table 4-4 64-bit Kernel Mode Segments

64-bit Kernel Mode, User Space (xkuseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-
bit virtual address are 002, the xkuseg virtual address space is selected; it
covers the current user address space. The virtual address is extended
with the contents of the 8-bit ASID field to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a 231-
byte unmapped (that is, mapped directly to physical addresses) uncached
address space. See the Cache Error exception in Chapter 5 for more
information.

Address Bit
Values

Status Register
Is One Of These

Values
Segment

Name
Address Range

Segment
Size

KSU EXL ERL KX

A(63:62) = 002

KSU = 002
or

EXL = 1
or

ERL =1

1 xksuseg
0x0000 0000 0000 0000

through
0x0000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

A(63:62) = 012 1 xksseg
0x4000 0000 0000 0000

through
0x4000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

A(63:62) = 102 1 xkphys
0x8000 0000 0000 0000

through
0xBFFF FFFF FFFF FFFF

8 236-byte
spaces

A(63:62) = 112 1 xkseg
0xC000 0000 0000 0000

through
0xC000 00FF 7FFF FFFF

(240–231)
bytes

A(63:62) = 112
A(61:31) = -1 1 ckseg0

0xFFFF FFFF 8000 0000
through

0xFFFF FFFF 9FFF FFFF

512 Mbytes
(229 bytes)

A(63:62) = 112
A(61:31) = -1 1 ckseg1

0xFFFF FFFF A000 0000
through

0xFFFF FFFF BFFF FFFF

512 Mbytes
(229 bytes)

A(63:62) = 112
A(61:31) = -1 1 cksseg

0xFFFF FFFF C000 0000
through

0xFFFF FFFF DFFF FFFF

512 Mbytes
(229 bytes)

A(63:62) = 112
A(61:31) = -1 1 ckseg3

0xFFFF FFFF E000 0000
through

0xFFFF FFFF FFFF FFFF

512 Mbytes
(229 bytes)

Chapter 4

78 MIPS R4000 Microprocessor User's Manual

64-bit Kernel Mode, Current Supervisor Space (xksseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-
bit virtual address are 012, the xksseg virtual address space is selected; it is
the current supervisor virtual space. The virtual address is extended with
the contents of the 8-bit ASID field to form a unique virtual address.

64-bit Kernel Mode, Physical Spaces (xkphys)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-
bit virtual address are 102, the xkphys virtual address space is selected; it is
a set of eight 236-byte kernel physical spaces. Accesses with address bits
58:36 not equal to 0 cause an address error.

References to this space are not mapped; the physical address selected is
taken from bits 35:0 of the virtual address. Bits 61:59 of the virtual address
specify the cacheability and coherency attributes, as shown in Table 4-5.

Table 4-5 Cacheability and Coherency Attributes

Value (61:59) Cacheability and Coherency Attributes Starting Address

0 Reserved 0x8000 0000 0000 0000

1 Reserved 0x8800 0000 0000 0000

2 Uncached 0x9000 0000 0000 0000

3 Cacheable, noncoherent 0x9800 0000 0000 0000

4 Cacheable, coherent exclusive 0xA000 0000 0000 0000

5 Cacheable, coherent exclusive on write 0xA800 0000 0000 0000

6 Cacheable, coherent update on write 0xB000 0000 0000 0000

7 Reserved 0xB800 0000 0000 0000

MIPS R4000 Microprocessor User's Manual 79

Memory Management

64-bit Kernel Mode, Kernel Space (xkseg)

In Kernel mode, when KX = 1 in the Status register and bits 63:62 of the 64-
bit virtual address are 112, the address space selected is one of the
following:

• kernel virtual space, xkseg, the current kernel virtual space; the
virtual address is extended with the contents of the 8-bit ASID
field to form a unique virtual address

• one of the four 32-bit kernel compatibility spaces, as described
in the next section.

64-bit Kernel Mode, Compatibility Spaces (ckseg1:0, cksseg, ckseg3)

In Kernel mode, when KX = 1 in the Status register, bits 63:62 of the 64-bit
virtual address are 112, and bits 61:31 of the virtual address equal –1, the
lower two bytes of address, as shown in Figure 4-6, select one of the
following 512-Mbyte compatibility spaces.

• ckseg0. This 64-bit virtual address space is an unmapped
region, compatible with the 32-bit address model kseg0. The K0
field of the Config register, described in this chapter, controls
cacheability and coherency.

• ckseg1. This 64-bit virtual address space is an unmapped and
uncached region, compatible with the 32-bit address model
kseg1.

• cksseg. This 64-bit virtual address space is the current
supervisor virtual space, compatible with the 32-bit address
model ksseg.

• ckseg3. This 64-bit virtual address space is kernel virtual space,
compatible with the 32-bit address model kseg3.

Chapter 4

80 MIPS R4000 Microprocessor User's Manual

4.3 System Control Coprocessor
The System Control Coprocessor (CP0) is implemented as an integral part
of the CPU, and supports memory management, address translation,
exception handling, and other privileged operations. CP0 contains the
registers shown in Figure 4-7 plus a 48-entry TLB. The sections that follow
describe how the processor uses the memory management-related
registers†.

Each CP0 register has a unique number that identifies it; this number is
referred to as the register number. For instance, the Page Mask register is
register number 5.

Figure 4-7 CP0 Registers and the TLB

† For a description of CP0 data dependencies and hazards, please see Appendix F.

EntryLo0
2*

EntryHi

Page Mask

Index

Random

Wired

Count

47

0

BadVAddr

TLB

(“Safe” entries)
(See Random Register,

PRId

0127

8*

15*

Compare
11*

Config
16*

LLAddr
17*

WatchLo
18*

WatchHi
19*

TagLo
28*

TagHi
29*

contents of TLB Wired)
ECC
26*

*Register number

Used with exception
processing. SeeUsed with memory

Chapter 5 for details.

EntryLo0
2*

3*
EntryLo1

EntryHi
10*

5*
Page Mask

Index
0*

Random
1*

Wired
6*

ErrorEPC
30*

Context

4*

Status
12*

Cause
13*

EPC
14*

management system.

CacheErr
27*

XContext

20*

9*

MIPS R4000 Microprocessor User's Manual 81

Memory Management

Format of a TLB Entry

Figure 4-8 shows the TLB entry formats for both 32- and 64-bit modes.
Each field of an entry has a corresponding field in the EntryHi, EntryLo0,
EntryLo1, or PageMask registers, as shown in Figures 4-9 and 4-10; for
example the Mask field of the TLB entry is also held in the PageMask
register.

Figure 4-8 Format of a TLB Entry

 12

127

13

96

MASK 0

95

VPN2 G

 19

64

1 4 8

ASID

7677

 24

63 32

PFN

31 0

7

0

121 120 109 108

75 72 71

62 61

2

C VD

3 1 1

3334353738

0

1

 24

PFN

30 29

2

C VD

3 1 1

12356

0

1

0

 0

0

 12

255

13

192

MASK 0

191

VPN2 G

 27

128

1 4 8

ASID

140141

 24

127 64

PFN

63 0

39

0

139136 135

94 93

C VD

3 1 1

6566676970

0

1

 24

PFN

30 29

34

C VD

3 1 1

12356

0

1

0

0

32-bit Mode

64-bit Mode

34

0

167168

R

190 189

22

0

2

204205216217

128-bit TLB
entry in 32-
bit mode of
R4000
processor

256-bit TLB
entry in 64-
bit mode of
R4000
processor

Chapter 4

82 MIPS R4000 Microprocessor User's Manual

The format of the EntryHi, EntryLo0, EntryLo1, and PageMask registers are
nearly the same as the TLB entry. The one exception is the Global field
(G bit), which is used in the TLB, but is reserved in the EntryHi register.
Figures 4-9 and 4-10 describe the TLB entry fields shown in Figure 4-8.

Figure 4-9 Fields of the PageMask and EntryHi Registers

 12

31

13

0

MASK

31

VPN2
 19

0

5 8

ASID

1213

7

25 24 13 12

8 7

PageMask Register

EntryHi Register

0 0

0

VPN2 ... Virtual page number divided by two (maps to two pages).
ASID Address space ID field. An 8-bit field that lets multiple processes share the TLB;

each process has a distinct mapping of otherwise identical virtual page numbers.
R Region. (00 → user, 01 → supervisor, 11 → kernel) used to match vAddr63...62
Fill Reserved. 0 on read; ignored on write.
0........... Reserved. Must be written as zeroes, and returns zeroes when read.

63

VPN2
 27

0

5 8

ASID
1213 8 7

0
2

62 61 40 39

22

FILLR

32-bit
Mode

32-bit
Mode

64-bit
Mode

Mask.....Page comparison mask.
0Reserved. Must be written as zeroes, and returns zeroes when read.

MIPS R4000 Microprocessor User's Manual 83

Memory Management

Figure 4-10 Fields of the EntryLo0 and EntryLo1 Registers

G

D

 24

31

PFN

31 0

30 29

2 3 1 1 1

 24

PFN

30 29

2

C VD

3 1 1

12356

G

1

0

0

PFN...... Page frame number; the upper bits of the physical address.
C Specifies the TLB page coherency attribute; see Table 4-6.
D Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is

actually a write-protect bit that software can use to prevent alteration of data.
V Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS

miss occurs.
G Global. If this bit is set in both Lo0 and Lo1, then the processor ignores the ASID during

TLB lookup.
0 Reserved. Must be written as zeroes, and returns zeroes when read.

 24

63

PFN

63 0
34

C VD

3 1 1 1

 24

PFN

30 29

34

C V

3 1 1

12356

G

1

0

0

EntryLo0 and EntryLo1 Registers

30 29 012356

GC VD

012356
32-bit
Mode

32-bit
Mode

64-bit
Mode

64-bit
Mode

Chapter 4

84 MIPS R4000 Microprocessor User's Manual

The TLB page coherency attribute (C) bits specify whether references to
the page should be cached; if cached, the algorithm selects between several
coherency attributes. Table 4-6 shows the coherency attributes selected by
the C bits.

Table 4-6 TLB Page Coherency (C) Bit Values

CP0 Registers

The following sections describe the CP0 registers, shown in Figure 4-7,
that are assigned specifically as a software interface with memory
management (each register is followed by its register number in
parentheses).

• Index register (CP0 register number 0)

• Random register (1)

• EntryLo0 (2) and EntryLo1 (3) registers

• PageMask register (5)

• Wired register (6)

• EntryHi register (10)

• PRId register (15)

• Config register (16)

• LLAddr register (17)

• TagLo (28) and TagHi (29) registers

C(5:3) Value Page Coherency Attribute

0 Reserved

1 Reserved

2 Uncached

3 Cacheable noncoherent (noncoherent)

4 Cacheable coherent exclusive (exclusive)

5 Cacheable coherent exclusive on write (sharable)

6 Cacheable coherent update on write (update)

7 Reserved

MIPS R4000 Microprocessor User's Manual 85

Memory Management

Index Register (0)

The Index register is a 32-bit, read/write register containing six bits to
index an entry in the TLB. The high-order bit of the register shows the
success or failure of a TLB Probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read
(TLBR) or TLB Write Index (TLBWI) instructions.

Figure 4-11 shows the format of the Index register; Table 4-7 describes the
Index register fields.

Figure 4-11 Index Register

Table 4-7 Index Register Field Descriptions

Field Description

P Probe failure. Set to 1 when the previous TLBProbe
(TLBP) instruction was unsuccessful.

Index Index to the TLB entry affected by the TLBRead and
TLBWrite instructions

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

Index Register

31

1

30 6 5 0

25 6

 IndexP 0

Chapter 4

86 MIPS R4000 Microprocessor User's Manual

Random Register (1)

The Random register is a read-only register of which six bits index an entry
in the TLB. This register decrements as each instruction executes, and its
values range between an upper and a lower bound, as follows:

• A lower bound is set by the number of TLB entries reserved for
exclusive use by the operating system (the contents of the
Wired register).

• An upper bound is set by the total number of TLB entries (47
maximum).

The Random register specifies the entry in the TLB that is affected by the
TLB Write Random instruction. The register does not need to be read for
this purpose; however, the register is readable to verify proper operation
of the processor.

To simplify testing, the Random register is set to the value of the upper
bound upon system reset. This register is also set to the upper bound
when the Wired register is written.

Figure 4-12 shows the format of the Random register; Table 4-8 describes
the Random register fields.

Figure 4-12 Random Register

Table 4-8 Random Register Field Descriptions

Field Description

Random TLB Random index

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

Random Register
31 6 5 0

26 6

 Random0

MIPS R4000 Microprocessor User's Manual 87

Memory Management

EntryLo0 (2), and EntryLo1 (3) Registers

The EntryLo register consists of two registers that have identical formats:

• EntryLo0 is used for even virtual pages.

• EntryLo1 is used for odd virtual pages.

The EntryLo0 and EntryLo1 registers are read/write registers. They hold
the physical page frame number (PFN) of the TLB entry for even and odd
pages, respectively, when performing TLB read and write operations.
Figure 4-10 shows the format of these registers.

PageMask Register (5)

The PageMask register is a read/write register used for reading from or
writing to the TLB; it holds a comparison mask that sets the variable page
size for each TLB entry, as shown in Table 4-9.

TLB read and write operations use this register as either a source or a
destination; when virtual addresses are presented for translation into
physical address, the corresponding bits in the TLB identify which virtual
address bits among bits 24:13 are used in the comparison. When the Mask
field is not one of the values shown in Table 4-9, the operation of the TLB
is undefined.

Table 4-9 Mask Field Values for Page Sizes

Page Size
Bit

24 23 22 21 20 19 18 17 16 15 14 13

4 Kbytes 0 0 0 0 0 0 0 0 0 0 0 0

16 Kbytes 0 0 0 0 0 0 0 0 0 0 1 1

64 Kbytes 0 0 0 0 0 0 0 0 1 1 1 1

256 Kbytes 0 0 0 0 0 0 1 1 1 1 1 1

1 Mbyte 0 0 0 0 1 1 1 1 1 1 1 1

4 Mbytes 0 0 1 1 1 1 1 1 1 1 1 1

16 Mbytes 1 1 1 1 1 1 1 1 1 1 1 1

Chapter 4

88 MIPS R4000 Microprocessor User's Manual

Wired Register (6)

The Wired register is a read/write register that specifies the boundary
between the wired and random entries of the TLB as shown in Figure 4-13.
Wired entries are fixed, nonreplaceable entries, which cannot be
overwritten by a TLB write operation. Random entries can be overwritten.

Figure 4-13 Wired Register Boundary

The Wired register is set to 0 upon system reset. Writing this register also
sets the Random register to the value of its upper bound (see Random
register, above). Figure 4-14 shows the format of the Wired register; Table
4-10 describes the register fields.

Figure 4-14 Wired Register

Table 4-10 Wired Register Field Descriptions

Field Description

Wired TLB Wired boundary

0 Reserved. Must be written as zeroes, and returns
zeroes when read.

47

Wired

Range of Random entries

0

TLB

Register
Range of Wired entries

Wired Register
31 6 5 0

26 6

 Wired0

MIPS R4000 Microprocessor User's Manual 89

Memory Management

EntryHi Register (CP0 Register 10)

The EntryHi register holds the high-order bits of a TLB entry for TLB read
and write operations.

The EntryHi register is accessed by the TLB Probe, TLB Write Random,
TLB Write Indexed, and TLB Read Indexed instructions.

Figure 4-9 shows the format of this register.

When either a TLB refill, TLB invalid, or TLB modified exception occurs,
the EntryHi register is loaded with the virtual page number (VPN2) and
the ASID of the virtual address that did not have a matching TLB entry.
(See Chapter 5 for more information about these exceptions.)

Processor Revision Identifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register contains
information identifying the implementation and revision level of the CPU
and CP0. Figure 4-15 shows the format of the PRId register; Table 4-11
describes the PRId register fields.

Figure 4-15 Processor Revision Identifier Register Format

Table 4-11 PRId Register Fields

Field Description

Imp Implementation number

Rev Revision number

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

16 15

PRId Register

31 0

16

Imp

8 8

0

8

Rev

7

Chapter 4

90 MIPS R4000 Microprocessor User's Manual

The low-order byte (bits 7:0) of the PRId register is interpreted as a revision
number, and the high-order byte (bits 15:8) is interpreted as an
implementation number. The implementation number of the R4000
processor is 0x04. The content of the high-order halfword (bits 31:16) of
the register are reserved.

The revision number is stored as a value in the form y.x, where y is a major
revision number in bits 7:4 and x is a minor revision number in bits 3:0.

The revision number can distinguish some chip revisions, however there
is no guarantee that changes to the chip will necessarily be reflected in the
PRId register, or that changes to the revision number necessarily reflect
real chip changes. For this reason, these values are not listed and software
should not rely on the revision number in the PRId register to characterize
the chip.

Config Register (16)

The Config register specifies various configuration options selected on
R4000 processors; Table 4-12 lists these options.

Some configuration options, as defined by Config bits 31:6, are set by the
hardware during reset and are included in the Config register as read-only
status bits for the software to access. Other configuration options are
read/write (as indicated by Config register bits 5:0) and controlled by
software; on reset these fields are undefined.

Certain configurations have restrictions. The Config register should be
initialized by software before caches are used. Caches should be written
back to memory before line sizes are changed, and caches should be
reinitialized after any change is made.

Figure 4-16 shows the format of the Config register; Table 4-12 describes
the Config register fields.

Figure 4-16 Config Register Format

Config Register

2031

2 1

EW SC SMEP

1

19 18 1617 815

1 3

DBIB

1

4 2 0

CM EC

1 3

30 28 27

4

24 23 22

SB

21

SS

2 1

SW

1

BE

1

14

EM

1

13

EB

1

0

12

1

11

IC

3

9 6

DC

5 3

31

CU K0

MIPS R4000 Microprocessor User's Manual 91

Memory Management

Table 4-12 Config Register Fields

Field Description

CM Master-Checker Mode (1 → Master/Checker Mode is enabled).

EC

System clock ratio:
0 → processor clock frequency divided by 2
1 → processor clock frequency divided by 3
2 → processor clock frequency divided by 4
3 → processor clock frequency divided by 6 (R4400 processor only)
4 → processor clock frequency divided by 8 (R4400 processor only)

EP

Transmit data pattern (pattern for write-back data):
0 → D Doubleword every cycle
1 → DDx 2 Doublewords every 3 cycles
2 → DDxx 2 Doublewords every 4 cycles
3 → DxDx 2 Doublewords every 4 cycles
4 → DDxxx 2 Doublewords every 5 cycles
5 → DDxxxx 2 Doublewords every 6 cycles
6 → DxxDxx 2 Doublewords every 6 cycles
7 → DDxxxxxx 2 Doublewords every 8 cycles
8 → DxxxDxxx 2 Doublewords every 8 cycles

SB

Secondary Cache line size:
0 → 4 words
1 → 8 words
2 → 16 words
3 → 32 words

SS
Split Secondary Cache Mode

0 → instruction and data mixed in secondary cache (joint cache)
1 → instruction and data separated by SCAddr(17)

SW
Secondary Cache port width

0 → 128-bit data path to S-cache
1 → Reserved

EW
System Port width

0 → 64-bit
1, 2, 3 → Reserved

SC
Secondary Cache present

0 → S-cache present
1 → no S-cache present

Chapter 4

92 MIPS R4000 Microprocessor User's Manual

Table 4-12 (cont.) Config Register Fields

Field Name Description

SM
Dirty Shared coherency state

0 → Dirty Shared coherency state is enabled
1 → Dirty Shared state is disabled

BE
BigEndianMem

0 → kernel and memory are little endian
1 → kernel and memory are big endian

EM
ECC mode enable

0 → ECC mode enabled
1 → parity mode enabled

EB
Block ordering

0 → sequential
1 → sub-block

0 Reserved. Must be written as zeroes, returns zeroes when read.

IC
Primary I-cache Size (I-cache size = 212+IC bytes). In the R4000 processor,
this is set to 8 Kbytes; in the R4400 processor, this is set to 16 Kbytes.

DC
Primary D-cache Size (D-cache size = 212+DC bytes). In the R4000 processor,
this is set to 8 Kbytes, in the R4400 processor, this is set to 16 Kbytes.

IB
Primary I-cache line size

0 → 16 bytes
1 → 32 bytes

DB
Primary D-cache line size

0 → 16 bytes
1 → 32 bytes

CU
Update on Store Conditional

0 → Store Conditional uses coherency algorithm specified by TLB
1 → SC uses cacheable coherent update on write

K0 kseg0 coherency algorithm (see EntryLo0 and EntryLo1 registers and the C
field of Table 4-6)

MIPS R4000 Microprocessor User's Manual 93

Memory Management

Load Linked Address (LLAddr) Register (17)

The read/write Load Linked Address (LLAddr) register contains the physical
address read by the most recent Load Linked instruction.

This register is for diagnostic purposes only, and serves no function
during normal operation.

Figure 4-17 shows the format of the LLAddr register; PAddr represents bits
of the physical address, PA(35:4).

Figure 4-17 LLAddr Register Format

Cache Tag Registers [TagLo (28) and TagHi (29)]

The TagLo and TagHi registers are 32-bit read/write registers that hold
either the primary cache tag and parity, or the secondary cache tag and
ECC during cache initialization, cache diagnostics, or cache error
processing. The Tag registers are written by the CACHE and MTC0
instructions.

The P and ECC fields of these registers are ignored on Index Store Tag
operations. Parity and ECC are computed by the store operation.

Figure 4-18 shows the format of these registers for primary cache
operations. Figure 4-19 shows the format of these registers for secondary
cache operations.

Table 4-13 lists the field definitions of the TagLo and TagHi registers.

LLAddr Register
31 0

PAddr(35:4)

32

Chapter 4

94 MIPS R4000 Microprocessor User's Manual

Figure 4-18 TagLo and TagHi Register (P-cache) Formats

Figure 4-19 TagLo and TagHi Register (S-cache) Formats

Table 4-13 Cache Tag Register Fields

Field Description

PTagLo Specifies the physical address bits 35:12

PState Specifies the primary cache state

P Specifies the primary tag even parity bit

STagLo Specifies the physical address bits 35:17

SState Specifies the secondary cache state

VIndex Specifies the virtual index of the associated Primary cache line,
vAddr(14:12)

ECC ECC for the STag, SState, and VIndex fields

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Undefined The TagHi register should not be used.

31 0

32

TagLo

TagHi

31

1

0

24

P

8 7

PState

6 5 1

52

0PTagLo

Undefined

31 0

32

Undefined

TagLo

TagHi

31

7

7 0

19

ECCSTagLo

13 12

SState

10 9

VIndex

6

33

MIPS R4000 Microprocessor User's Manual 95

Memory Management

Virtual-to-Physical Address Translation Process

During virtual-to-physical address translation, the CPU compares the
8-bit ASID (if the Global bit, G, is not set) of the virtual address to the ASID
of the TLB entry to see if there is a match. One of the following
comparisons are also made:

• In 32-bit mode, the highest 7-to-19 bits (depending upon the
page size) of the virtual address are compared to the contents
of the TLB virtual page number.

• In 64-bit mode, the highest 15-to-27 bits (depending upon the
page size) of the virtual address are compared to the contents
of the TLB virtual page number.

If a TLB entry matches, the physical address and access control bits (C, D,
and V) are retrieved from the matching TLB entry. While the V bit of the
entry must be set for a valid translation to take place, it is not involved in
the determination of a matching TLB entry.

Figure 4-20 illustrates the TLB address translation process.

Chapter 4

96 MIPS R4000 Microprocessor User's Manual

Figure 4-20 TLB Address Translation

User
Mode?

VPN
Match?

ASID
Match?

G
= 1?

Valid

V
= 1?

D
= 1?

No

Yes

Yes

Yes

No

No

Yes

Write?
Yes

No
Yes

TLB
Invalid

TLB
Mod

Exception

TLB
Refill

Exception

VPN
and

ASID

Virtual Address (Input)

C =
010?

Yes No

Access
Main Access

Cache

Physical Address (Output)

Memory

No

Valid

Dirty

Non-
cacheable

Global

No

No

Mode?
Sup Address

Error

Exception

Yes No

Yes

Unmapped
Access

Yes

Exception

No

No

No

Yes

32-bit
address?

Yes

XTLB
Refill

No

Address
Error

Yes

Address?

For valid
address space, see
the section describing
Operating Modes
in this chapter.

Valid
Address?

Valid
Address?

MIPS R4000 Microprocessor User's Manual 97

Memory Management

TLB Misses

If there is no TLB entry that matches the virtual address, a TLB miss
exception occurs.† If the access control bits (D and V) indicate that the
access is not valid, a TLB modification or TLB invalid exception occurs. If
the C bits equal 0102, the physical address that is retrieved accesses main
memory, bypassing the cache.

TLB Instructions

Table 4-14 lists the instructions that the CPU provides for working with
the TLB. See Appendix A for a detailed description of these instructions.

Table 4-14 TLB Instructions

† TLB miss exceptions are described in Chapter 5.

Op Code Description of Instruction

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random

Chapter 4

98 MIPS R4000 Microprocessor User's Manual

MIPS R4000 Microprocessor User's Manual 99

CPU Exception Processing

5

This chapter describes the CPU exception processing, including an
explanation of exception processing, followed by the format and use of
each CPU exception register.

The chapter concludes with a description of each exception’s cause,
together with the manner in which the CPU processes and services these
exceptions. For information about Floating-Point Unit exceptions, see
Chapter 7.

Chapter 5

100 MIPS R4000 Microprocessor User's Manual

5.1 How Exception Processing Works
The processor receives exceptions from a number of sources, including
translation lookaside buffer (TLB) misses, arithmetic overflows, I/O
interrupts, and system calls. When the CPU detects one of these
exceptions, the normal sequence of instruction execution is suspended
and the processor enters Kernel mode (see Chapter 4 for a description of
system operating modes).

The processor then disables interrupts and forces execution of a software
exception processor (called a handler) located at a fixed address. The
handler saves the context of the processor, including the contents of the
program counter, the current operating mode (User or Supervisor), and
the status of the interrupts (enabled or disabled). This context is saved so
it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the Exception Program Counter
(EPC) register with a location where execution can restart after the
exception has been serviced. The restart location in the EPC register is the
address of the instruction that caused the exception or, if the instruction
was executing in a branch delay slot, the address of the branch instruction
immediately preceding the delay slot.

The registers described later in the chapter assist in this exception
processing by retaining address, cause and status information.

For a description of the exception handling process, see the description of
the individual exception contained in this chapter, or the flowcharts at the
end of this chapter.

MIPS R4000 Microprocessor User's Manual 101

CPU Exception Processing

5.2 Exception Processing Registers
This section describes the CP0 registers that are used in exception
processing. Table 5-1 lists these registers, along with their number—each
register has a unique identification number that is referred to as its register
number. For instance, the ECC register is register number 26. The
remaining CP0 registers are used in memory management, as described in
Chapter 4.

Software examines the CP0 registers during exception processing to
determine the cause of the exception and the state of the CPU at the time
the exception occurred. The registers in Table 5-1 are used in exception
processing, and are described in the sections that follow.

Table 5-1 CP0 Exception Processing Registers

CPU general registers are interlocked and the result of an instruction can
normally be used by the next instruction; if the result is not available right
away, the processor stalls until it is available. CP0 registers and the TLB
are not interlocked, however; there may be some delay before a value
written by one instruction is available to following instructions. For more
information please see Appendix F.

Register Name Reg. No.

Context 4

BadVAddr (Bad Virtual Address) 8

Count 9

Compare register 11

Status 12

Cause 13

EPC (Exception Program Counter) 14

WatchLo (Memory Reference Trap Address Low) 18

WatchHi (Memory Reference Trap Address High) 19

XContext 20

ECC 26

CacheErr (Cache Error and Status) 27

ErrorEPC (Error Exception Program Counter) 30

Chapter 5

102 MIPS R4000 Microprocessor User's Manual

Context Register (4)

The Context register is a read/write register containing the pointer to an
entry in the page table entry (PTE) array; this array is an operating system
data structure that stores virtual-to-physical address translations. When
there is a TLB miss, the CPU loads the TLB with the missing translation
from the PTE array. Normally, the operating system uses the Context
register to address the current page map which resides in the kernel-
mapped segment, kseg3. The Context register duplicates some of the
information provided in the BadVAddr register, but the information is
arranged in a form that is more useful for a software TLB exception
handler. Figure 5-1 shows the format of the Context register; Table 5-2
describes the Context register fields.

Figure 5-1 Context Register Format

Table 5-2 Context Register Fields

The 19-bit BadVPN2 field contains bits 31:13 of the virtual address that
caused the TLB miss; bit 12 is excluded because a single TLB entry maps
to an even-odd page pair. For a 4-Kbyte page size, this format can directly
address the pair-table of 8-byte PTEs. For other page and PTE sizes,
shifting and masking this value produces the appropriate address.

Field Description

BadVPN2
This field is written by hardware on a miss. It contains
the virtual page number (VPN) of the most recent
virtual address that did not have a valid translation.

PTEBase

This field is a read/write field for use by the operating
system. It is normally written with a value that allows
the operating system to use the Context register as a
pointer into the current PTE array in memory.

23 22 4 331 0

9

PTEBase BadVPN2

19 4

0

Context Register

23 22 4 363 0

41

PTEBase BadVPN2

19 4

0

32-bit
Mode

64-bit
Mode

MIPS R4000 Microprocessor User's Manual 103

CPU Exception Processing

Bad Virtual Address Register (BadVAddr) (8)

The Bad Virtual Address register (BadVAddr) is a read-only register that
displays the most recent virtual address that caused one of the following
exceptions: TLB Invalid, TLB Modified, TLB Refill, Virtual Coherency
Data Access, or Virtual Coherency Instruction Fetch.

Figure 5-2 shows the format of the BadVAddr register.

Figure 5-2 BadVAddr Register Format

Note: The BadVAddr register does not save any information for bus errors,
since bus errors are not addressing errors.

Count Register (9)

The Count register acts as a timer, incrementing at a constant rate—half the
maximum instruction issue rate—whether or not an instruction is
executed, retired, or any forward progress is made through the pipeline.

This register can be read or written. It can be written for diagnostic
purposes or system initialization; for example, to synchronize processors.

Figure 5-3 shows the format of the Count register.

Figure 5-3 Count Register Format

BadVAddr Register
31 0

32

Bad Virtual Address

63 0

64

Bad Virtual Address

32-bit
Mode

64-bit
Mode

Count Register
31 0

32

 Count

Chapter 5

104 MIPS R4000 Microprocessor User's Manual

Compare Register (11)

The Compare register acts as a timer (see also the Count register); it
maintains a stable value that does not change on its own.

When the value of the Count register equals the value of the Compare
register, interrupt bit IP(7) in the Cause register is set. This causes an
interrupt as soon as the interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer
interrupt.

For diagnostic purposes, the Compare register is a read/write register. In
normal use however, the Compare register is write-only. Figure 5-4 shows
the format of the Compare register.

Figure 5-4 Compare Register Format

Compare Register
31 0

32

Compare

MIPS R4000 Microprocessor User's Manual 105

CPU Exception Processing

Status Register (12)

The Status register (SR) is a read/write register that contains the operating
mode, interrupt enabling, and the diagnostic states of the processor. The
following list describes the more important Status register fields; Figures
5-5 and 5-6 show the format of the entire register, including descriptions
of the fields. Some of the important fields include:

• The 8-bit Interrupt Mask (IM) field controls the enabling of eight
interrupt conditions. Interrupts must be enabled before they
can be asserted, and the corresponding bits are set in both the
Interrupt Mask field of the Status register and the Interrupt
Pending field of the Cause register. For more information, refer
to the Interrupt Pending (IP) field of the Cause register and
Chapter 15, which describes the interrupts.

• The 4-bit Coprocessor Usability (CU) field controls the usability
of 4 possible coprocessors. Regardless of the CU0 bit setting,
CP0 is always usable in Kernel mode.

• The 9-bit Diagnostic Status (DS) field is used for self-testing,
and checks the cache and virtual memory system.

• The Reverse-Endian (RE) bit, bit 25, reverses the endianness of
the machine. The processor can be configured as either little-
endian or big-endian at system reset; reverse-endian selection
is used in Kernel and Supervisor modes, and in the User mode
when the RE bit is 0. Setting the RE bit to 1 inverts the User
mode endianness.

Status Register Format

Figure 5-5 shows the format of the Status register. Table 5-3 describes the
Status register fields. Figure 5-6 and Table 5-4 provide additional
information on the Diagnostic Status (DS) field. All bits in the DS field
except TS are readable and writable.

Figure 5-5 Status Register

Status Register

CU

 4

IM7 - IM0

31 1528 27 25 24 16

9

8 7 5 4 3 2 1 0

KSU ERL EXL IE

8 2 1 1 1

(Cu3:.Cu0)
RE

26

1

DS KX UX

6

SX

1 1 111

RP FR

Chapter 5

106 MIPS R4000 Microprocessor User's Manual

Table 5-3 Status Register Fields

Field Description

CU

Controls the usability of each of the four coprocessor unit
numbers. CP0 is always usable when in Kernel mode,
regardless of the setting of the CU0 bit.

1 → usable
0 → unusable

RP

Enables reduced-power operation by reducing the internal
clock frequency. The clock divisor is programmable at boot
time.

0 → full speed
1→ reduced clock

FR
Enables additional floating-point registers

0 → 16 registers
1 → 32 registers

RE Reverse-Endian bit, valid in User mode.

DS Diagnostic Status field (see Figure 5-6).

IM

Interrupt Mask: controls the enabling of each of the external,
internal, and software interrupts. An interrupt is taken if
interrupts are enabled, and the corresponding bits are set in
both the Interrupt Mask field of the Status register and the
Interrupt Pending field of the Cause register.

0 → disabled
1→ enabled

KX

Enables 64-bit addressing in Kernel mode. The extended-
addressing TLB refill exception is used for TLB misses on
kernel addresses.

0 → 32−bit
1 → 64−bit

SX

Enables 64-bit addressing and operations in Supervisor
mode. The extended-addressing TLB refill exception is used
for TLB misses on supervisor addresses.

0 → 32−bit
1 → 64−bit

MIPS R4000 Microprocessor User's Manual 107

CPU Exception Processing

Table 5-3 (cont.) Status Register Fields

Field Description

UX

Enables 64-bit addressing and operations in User mode.
The extended-addressing TLB refill exception is used for
TLB misses on user addresses.

0 → 32−bit
1 → 64−bit

KSU

Mode bits
102 → User
012 → Supervisor
002 → Kernel

ERL

Error Level; set by the processor when Reset, Soft Reset,
NMI, or Cache Error exception are taken.

0 → normal
1 → error

EXL

Exception Level; set by the processor when any exception
other than Reset, Soft Reset, NMI, or Cache Error exception
are taken.

0 → normal
1 → exception

IE
Interrupt Enable

0 → disable interrupts
1 → enables interrupts

Chapter 5

108 MIPS R4000 Microprocessor User's Manual

Figure 5-6 Status Register DS Field

Table 5-4 Status Register Diagnostic Status Bits

Bit Description

BEV

Controls the location of TLB refill and general exception
vectors.

0 → normal
1→ bootstrap

TS 1→ Indicates TLB shutdown has occurred (read-only).

SR 1→ Indicates a Reset* signal or NMI has caused a Soft Reset
exception

CH

Hit (tag match and valid state) or miss indication for last
CACHE Hit Invalidate, Hit Write Back Invalidate, Hit Write
Back, Hit Set Virtual, or Create Dirty Exclusive for a
secondary cache.

0 → miss
1 → hit

CE Contents of the ECC register set or modify the check bits of the
caches when CE = 1; see description of the ECC register.

DE

Specifies that cache parity or ECC errors cannot cause
exceptions.

0 → parity/ECC remain enabled
1 → disables parity/ECC

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

Diagnostic Status Field
24 22 21 20 19 18 17 16

TS SR CH CE DE

2 1 1 1 1 1 1

BEV

23

1

0 0

MIPS R4000 Microprocessor User's Manual 109

CPU Exception Processing

Status Register Modes and Access States

Fields of the Status register set the modes and access states described in the
sections that follow.

Interrupt Enable: Interrupts are enabled when all of the following
conditions are true:

• IE = 1

• EXL = 0

• ERL = 0

If these conditions are met, the settings of the IM bits enable the interrupt.

Operating Modes: The following CPU Status register bit settings are
required for User, Kernel, and Supervisor modes (see Chapter 4 for more
information about operating modes).

• The processor is in User mode when KSU = 102, EXL = 0, and
ERL = 0.

• The processor is in Supervisor mode when KSU = 012, EXL = 0,
and ERL = 0.

• The processor is in Kernel mode when KSU = 002, or EXL = 1,
or ERL = 1.

32- and 64-bit Modes: The following CPU Status register bit settings select
32- or 64-bit operation for User, Kernel, and Supervisor operating modes.
Enabling 64-bit operation permits the execution of 64-bit opcodes and
translation of 64-bit addresses. 64-bit operation for User, Kernel and
Supervisor modes can be set independently.

• 64-bit addressing for Kernel mode is enabled when KX = 1.
64-bit operations are always valid in Kernel mode.

• 64-bit addressing and operations are enabled for Supervisor
mode when SX = 1.

• 64-bit addressing and operations are enabled for User mode
when UX = 1.

Kernel Address Space Accesses: Access to the kernel address space is
allowed when the processor is in Kernel mode.

Supervisor Address Space Accesses: Access to the supervisor address
space is allowed when the processor is in Kernel or Supervisor mode, as
described above in the section above titled, Operating Modes.

Chapter 5

110 MIPS R4000 Microprocessor User's Manual

User Address Space Accesses: Access to the user address space is allowed
in any of the three operating modes.

Status Register Reset

The contents of the Status register are undefined at reset, except for the
following bits in the Diagnostic Status field:

• TS = 0

• ERL and BEV = 1

The SR bit distinguishes between the Reset exception and the Soft Reset
exception (caused either by Reset* or Nonmaskable Interrupt [NMI]).

Cause Register (13)

The 32-bit read/write Cause register describes the cause of the most recent
exception.

Figure 5-7 shows the fields of this register; Table 5-5 describes the Cause
register fields. A 5-bit exception code (ExcCode) indicates one of the
causes, as listed in Table 5-6.

All bits in the Cause register, with the exception of the IP(1:0) bits, are read-
only; IP(1:0) are used for software interrupts.

Table 5-5 Cause Register Fields

Field Description

BD
Indicates whether the last exception taken occurred in a branch delay slot.

1 → delay slot
0 → normal

CE Coprocessor unit number referenced when a Coprocessor Unusable
exception is taken.

IP
Indicates an interrupt is pending.

1 → interrupt pending
0 → no interrupt

ExcCode Exception code field (see Table 5-6)

0 Reserved. Must be written as zeroes, and returns zeroes when read.

MIPS R4000 Microprocessor User's Manual 111

CPU Exception Processing

Figure 5-7 Cause Register Format

Table 5-6 Cause Register ExcCode Field

Exception
Mnemonic Description

Code Value

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14 VCEI Virtual Coherency Exception instruction

15 FPE Floating-Point exception

16–22 – Reserved

23 WATCH Reference to WatchHi/WatchLo address

24–30 – Reserved

31 VCED Virtual Coherency Exception data

Cause Register

 1

IP7

31 1527 16

2 12

8 7 6 2 0

8 1 251

0Exc
Code

1

00

282930

BD 0 CE IP0

Chapter 5

112 MIPS R4000 Microprocessor User's Manual

Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is a read/write register that
contains the address at which processing resumes after an exception has
been serviced.

For synchronous exceptions, the EPC register contains either:

• the virtual address of the instruction that was the direct cause
of the exception, or

• the virtual address of the immediately preceding branch or
jump instruction (when the instruction is in a branch delay
slot, and the Branch Delay bit in the Cause register is set).

The processor does not write to the EPC register when the EXL bit in the
Status register is set to a 1.

Figure 5-8 shows the format of the EPC register.

Figure 5-8 EPC Register Format

EPC Register
31 0

EPC

32

63 0

EPC

64

32-bit
Mode

64-bit
Mode

MIPS R4000 Microprocessor User's Manual 113

CPU Exception Processing

WatchLo (18) and WatchHi (19) Registers

R4000 processors provide a debugging feature to detect references to a
selected physical address; load and store operations to the location
specified by the WatchLo and WatchHi registers cause a Watch exception
(described later in this chapter).

Figure 5-9 shows the format of the WatchLo and WatchHi registers;
Table 5-7 describes the WatchLo and WatchHi register fields.

Figure 5-9 WatchLo and WatchHi Register Formats

Table 5-7 WatchHi and WatchLo Register Fields

Field Description

PAddr1 Bits 35:32 of the physical address

PAddr0 Bits 31:3 of the physical address

R Trap on load references if set to 1

W Trap on store references if set to 1

0 Reserved. Must be written as zeroes, and returns
zeroes when read.

 WatchLo Register
31

29 1

R WPAddr0

1 1

3 01

WatchHi Register

2

31

28 4

4 03

0 PAddr1

0

Chapter 5

114 MIPS R4000 Microprocessor User's Manual

XContext Register (20)

The read/write XContext register contains a pointer to an entry in the page
table entry (PTE) array, an operating system data structure that stores
virtual-to-physical address translations. When there is a TLB miss, the
operating system software loads the TLB with the missing translation
from the PTE array. The XContext register duplicates some of the
information provided in the BadVAddr register, and puts it in a form useful
for a software TLB exception handler. The XContext register is for use with
the XTLB refill handler, which loads TLB entries for references to a 64-bit
address space, and is included solely for operating system use. The
operating system sets the PTE base field in the register, as needed.
Normally, the operating system uses the Context register to address the
current page map, which resides in the kernel-mapped segment kseg3.
Figure 5-10 shows the format of the XContext register; Table 5-8 describes
the XContext register fields.

Figure 5-10 XContext Register Format

The 27-bit BadVPN2 field has bits 39:13 of the virtual address that caused
the TLB miss; bit 12 is excluded because a single TLB entry maps to an
even-odd page pair. For a 4-Kbyte page size, this format may be used
directly to address the pair-table of 8-byte PTEs. For other page and PTE
sizes, shifting and masking this value produces the appropriate address.

Table 5-8 XContext Register Fields

Field Description

BadVPN2 The Bad Virtual Page Number/2 field is written by hardware on a miss. It
contains the VPN of the most recent invalidly translated virtual address.

R

The Region field contains bits 63:62 of the virtual address.
002 = user
012 = supervisor
112 = kernel.

PTEBase
The Page Table Entry Base read/write field is normally written with a value
that allows the operating system to use the Context register as a pointer into
the current PTE array in memory.

XContext Register
31 30 4 363 0

31

PTEBase BadVPN2

27 4

0R

2

33 32

MIPS R4000 Microprocessor User's Manual 115

CPU Exception Processing

Error Checking and Correcting (ECC) Register (26)

The 8-bit Error Checking and Correcting (ECC) register reads or writes either
secondary-cache data ECC bits or primary-cache data parity bits for cache
initialization, cache diagnostics, or cache error processing. (Tag ECC and
parity are loaded from and stored to the TagLo register.)

The ECC register is loaded by the Index Load Tag CACHE operation.
Content of the ECC register is:

• written into the primary data cache on store instructions
(instead of the computed parity) when the CE bit of the Status
register is set

• substituted for the computed instruction parity for the CACHE
operation Fill

• XORed into the secondary cache computed ECC for the
following primary data cache CACHE operations: Index Write
Back Invalidate, Hit Write Back, and Hit Write Back Invalidate.

Figure 5-11 shows the format of the ECC register; Table 5-9 describes the
register fields.

Figure 5-11 ECC Register Format

Table 5-9 ECC Register Fields

Field Description

ECC
An 8-bit field specifying the ECC bits read from or
written to a secondary cache, or the even byte parity bits
to be read from or written to a primary cache.

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

ECC Register
31

24 8

8 07

0 ECC

Chapter 5

116 MIPS R4000 Microprocessor User's Manual

Cache Error (CacheErr) Register (27)

The 32-bit read-only CacheErr register processes ECC errors in the
secondary cache and parity errors in the primary cache. Parity errors
cannot be corrected.

All single- and double-bit ECC errors in the secondary cache tag and data
are detected; single-bit errors in the cache tag are automatically corrected.
Single-bit ECC errors in the secondary cache data are not automatically
corrected.

The CacheErr register holds cache index and status bits that indicate the
source and nature of the error; it is loaded when a Cache Error exception
is asserted.

Figure 5-12 shows the format of the CacheErr register and Table 5-10
describes the CacheErr register fields.

Figure 5-12 CacheErr Register Format

Table 5-10 CacheErr Register Fields

Field Description

ER
Type of reference

0 → instruction
1 → data

EC
Cache level of the error

0 → primary
1 → secondary

ED
Indicates if a data field error occurred

0 → no error
1 → error

ET
Indicates if a tag field error occurred

0 → no error
1 → error

CacheErr Register

31

EI

19

2 0

ER ES

1

30 28 25

1

24 23 22 21

0

1 1

SIdx

3

PIDxEBEE

111

ETEDEC

1 1

262729

1

EW

MIPS R4000 Microprocessor User's Manual 117

CPU Exception Processing

Table 5-10 (cont.) CacheErr Register Fields

Field Description

ES

Indicates the error occurred while accessing primary or secondary cache in
response to an external request.

0 → internal reference
1 → external reference

EE This bit is set if the error occurred on the SysAD bus.

EB
This bit is set if a data error occurred in addition to the instruction error
(indicated by the remainder of the bits). If so, this requires flushing the
data cache after fixing the instruction error.

EI
This bit is set on a secondary data cache ECC error while refilling the
primary cache on a store miss. The ECC handler must first do an Index
Store Tag to invalidate the incorrect data from the primary data cache.

EW

This bit is only available on the R4400 processor. It is set on an
multiprocessor cache error when the CacheErr register is already holding
the values of a previous cache error. This bit could be set by the processor
from the time the CacheErr register is loaded due to an error until the time
that an ERET instruction is executed. Once the EW bit is set, it can only be
cleared by a reset. The following errors set the EW bit:

• Secondary cache tag errors arising from an external request
(multibit errors only)

• Secondary cache data errors arising from an external update
• Primary cache tag errors arising from an external request

SIdx
Bits pAddr(21:3) of the reference that encountered the error (which is not
necessarily the same as the address of the doubleword in error, but is
sufficient to locate that doubleword in the secondary cache).

PIdx Bits vAddr(14:12) of the doubleword in error (used with SIdx to construct
a virtual index for the primary caches).

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Chapter 5

118 MIPS R4000 Microprocessor User's Manual

Error Exception Program Counter (Error EPC) Register (30)

The ErrorEPC register is similar to the EPC register, except that ErrorEPC
is used on ECC and parity error exceptions. It is also used to store the
program counter (PC) on Reset, Soft Reset, and nonmaskable interrupt
(NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which
instruction processing can resume after servicing an error. This address
can be:

• the virtual address of the instruction that caused the exception

• the virtual address of the immediately preceding branch or
jump instruction, when this address is in a branch delay slot.

There is no branch delay slot indication for the ErrorEPC register.

Figure 5-13 shows the format of the ErrorEPC register.

Figure 5-13 ErrorEPC Register Format

ErrorEPC Register
31 0

ErrorEPC

32

63 0

ErrorEPC

64

32-bit
Mode

64-bit
Mode

MIPS R4000 Microprocessor User's Manual 119

CPU Exception Processing

5.3 Processor Exceptions
This section describes the processor exceptions—it describes the cause of
each exception, its processing by the hardware, and servicing by a handler
(software). The types of exception, with exception processing operations,
are described in the next section.

Exception Types

This section gives sample exception handler operations for the following
exception types:

• reset

• soft reset

• nonmaskable interrupt (NMI)

• cache error

• remaining processor exceptions

When the EXL bit in the Status register is 0, either User, Supervisor, or
Kernel operating mode is specified by the KSU bits in the Status register.
When the EXL bit is a 1, the processor is in Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, which means
the system is in Kernel mode. After saving the appropriate state, the
exception handler typically changes KSU to Kernel mode and resets the
EXL bit back to 0. When restoring the state and restarting, the handler
restores the previous value of the KSU field and sets the EXL bit back to 1.

Returning from an exception, also resets the EXL bit to 0 (see the ERET
instruction in Appendix A).

In the following sections, sample hardware processes for various
exceptions are shown, together with the servicing required by the handler
(software).

Chapter 5

120 MIPS R4000 Microprocessor User's Manual

Reset Exception Process

Figure 5-14 shows the Reset exception process.

Figure 5-14 Reset Exception Processing

Cache Error Exception Process

Figure 5-15 shows the Cache Error exception process.

Figure 5-15 Cache Error Exception Processing

T: undefined
Random ← TLBENTRIES–1
Wired ← 0
Config ← CM || EC || EP || SB || SS || SW || EW || SC || SM || BE || EM || EB || 0 || IC

 || DC || undefined6

ErrorEPC ← RestartPC /* If the instruction is in a branch delay slot, RestartPC */
 /* holds the value of PC-4, otherwise RestartPC = PC */

If R4400 then
CacheErr ← undefined8 || 0 || undefined23 /* Set EW bit to 0 */

endif
SR ← SR31:23 || 1 || 0 || 0 || SR19:3 || 1 || SR1:0
PC ← 0xFFFF FFFF BFC0 0000

T: ErrorEPC ← RestartPC /* If the instruction is in a branch delay slot, RestartPC */
 /* holds the value of PC-4, otherwise RestartPC = PC */

if R4000 then
CacheErr ← ER || EC || ED || ET || ES || EE || EB || EI || 02 || SIdx || PIdx

else /* R4400 */
CacheErr ← ER || EC || ED || ET || ES || EE || EB || EI || EW || 0 || SIdx || PIdx

endif
SR ← SR31:3 || 1 ||SR1:0
if SR22 = 1 then
 PC ← 0xFFFF FFFF BFC0 0200 + 0x100
else
 PC ← 0xFFFF FFFF A000 0000 + 0x100
endif

MIPS R4000 Microprocessor User's Manual 121

CPU Exception Processing

Soft Reset and NMI Exception Process

Figure 5-16 shows the Soft Reset and NMI exception process.

Figure 5-16 Soft Reset and NMI Exception Processing

General Exception Process

Figure 5-17 shows the process used for exceptions other than Reset, Soft
Reset, NMI, and Cache Error.

Figure 5-17 General Exception Processing (Except Reset, Soft Reset, NMI, and Cache Error)

T: ErrorEPC ← RestartPC /* If the instruction is in a branch delay slot, RestartPC */
 /* holds the value of PC-4, otherwise RestartPC = PC */

SR ← SR31:23 || 1 || 0 || 1 || SR19:3 || 1 || SR1:0
If R4400 then

CacheErr ← CacheErr31:24 || 0 || CacheErr22:0
endif
PC ← 0xFFFF FFFF BFC0 0000

T: if SR1 = 0 then /* if not EXL */
EPC ← RestartPC /* If the instruction is in a branch delay slot, */

 /* RestartPC holds the value of PC-4, */
 /* otherwise RestartPC = PC */

Cause ← BD || 0 || CE || 012 || Cause15:8 || 0 || ExcCode || 02

if TLBrefill then vector ← 0x000
elseif XTLBrefill then vector ← 0x080
else /* not a miss */ vector ← 0x180

else
Cause ← Cause31 || 0 || CE || 012 || Cause15:8 || 0 || ExcCode || 02

vector ← 0x180
endif
SR ← SR31:2 || 1 || SR0 /* EXL */
if SR22 = 1 then
 PC ← 0xFFFF FFFF BFC0 0200 + vector
else
 PC ← 0xFFFF FFFF 8000 0000 + vector
endif

Chapter 5

122 MIPS R4000 Microprocessor User's Manual

Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to the
dedicated Reset exception vector at an uncached and unmapped address.
Addresses for all other exceptions are a combination of a vector offset and
a base address.

The boot-time vectors (when BEV = 1 in the Status register) are at
uncached and unmapped addresses. During normal operation (when
BEV = 0) the regular exceptions have vectors in cached address spaces;
Cache Error is always at an uncached address so that cache error handling
can bypass a suspect cache.

Table 5-11 shows the 64-bit-mode vector base address for all exceptions;
the 32-bit mode address is the low-order 32 bits (for instance, the base
address for NMI in 32-bit mode is 0xBFC0 0000).

Table 5-12 shows the vector offset added to the base address to create the
exception address.

Table 5-11 Exception Vector Base Addresses

Table 5-12 Exception Vector Offsets

Exception
BEV

0 1

Cache Error 0xFFFF FFFF A000 0000 0xFFFF FFFF BFC0 0200

Others 0xFFFF FFFF 8000 0000 0xFFFF FFFF BFC0 0200

Reset, NMI,
Soft Reset 0xFFFF FFFF BFC0 0000

Exception R4000 Processor Vector Offset

TLB refill, EXL = 0 0x000

XTLB refill, EXL = 0 (X = 64-bit TLB) 0x080

Cache Error 0x100

Others 0x180

Reset, Soft Reset, NMI none

MIPS R4000 Microprocessor User's Manual 123

CPU Exception Processing

Priority of Exceptions

The remainder of this chapter describes exceptions in the order of their
priority shown in Table 5-13 with (certain of the exceptions, such as the
TLB exceptions and Instruction/Data exceptions, grouped together for
convenience). While more than one exception can occur for a single
instruction, only the exception with the highest priority is reported.

Table 5-13 Exception Priority Order

Generally speaking, the exceptions described in the following sections are
handled (“processed”) by hardware; these exceptions are then serviced by
software.

Reset (highest priority)

Soft Reset caused by Reset* signal

Nonmaskable Interrupt (NMI) (Soft Reset exception caused by NMI)

Address error –– Instruction fetch

TLB refill –– Instruction fetch

TLB invalid –– Instruction fetch

Cache error –– Instruction fetch

Virtual Coherency –– Instruction fetch

Bus error –– Instruction fetch

Integer overflow, Trap, System Call, Breakpoint, Reserved
Instruction, Coprocessor Unusable, or Floating-Point Exception

Address error –– Data access

TLB refill –– Data access

TLB invalid –– Data access

TLB modified –– Data write

Cache error –– Data access

Watch

Virtual Coherency –– Data access

Bus error –– Data access

Interrupt (lowest priority)

Chapter 5

124 MIPS R4000 Microprocessor User's Manual

Reset Exception

Cause

The Reset exception occurs when the ColdReset*† signal is asserted and
then deasserted. This exception is not maskable.

Processing

The CPU provides a special interrupt vector for this exception:

• location 0xBFC0 0000 in 32-bit mode

• location 0xFFFF FFFF BFC0 0000 in 64-bit mode

The Reset vector resides in unmapped and uncached CPU address space,
so the hardware need not initialize the TLB or the cache to process this
exception. It also means the processor can fetch and execute instructions
while the caches and virtual memory are in an undefined state.

The contents of all registers in the CPU are undefined when this exception
occurs, except for the following register fields:

• In the Status register, SR and TS are cleared to 0, and ERL and
BEV are set to 1. All other bits are undefined.

• Config register is initialized with the boot mode bits read from
the serial input (see Figure 5-14).

• The Random register is initialized to the value of its upper
bound.

• The Wired register is initialized to 0.

• The EW bit in the CacheErr register is cleared (R4400 only).

Reset exception processing is shown in Figure 5-14.

Servicing

The Reset exception is serviced by:

• initializing all processor registers, coprocessor registers, caches,
and the memory system

• performing diagnostic tests

• bootstrapping the operating system

† In the following sections—indeed, throughout this book—a signal followed by an asterisk,
such as Reset*, is low active.

MIPS R4000 Microprocessor User's Manual 125

CPU Exception Processing

Soft Reset Exception

Cause

The Soft Reset exception occurs in response to either the Reset* input
signal or a Nonmaskable Interrupt (NMI)†.

The NMI is caused either by an assertion of the NMI* signal or an external
write to the Int*[6] bit of the Interrupt register.

This exception is not maskable.

Processing

Regardless of the cause, when this exception occurs the SR bit of the Status
register is set, distinguishing this exception from a Reset exception.

The processor does not indicate any distinction between an exception
caused by the Reset* signal or the NMI* signal.

• An exception caused by an NMI can only be taken if the
processor is processing instructions; it is taken at the
instruction boundary. It does not abort any state machines,
preserving the state of the processor for diagnosis.

• An exception caused by assertion of Reset* performs a subset
of the full reset initialization. After a processor is completely
initialized by a Reset exception (caused by ColdReset* or
Power-On), Reset* can be asserted on the processor in any
state, even if the processor is no longer processing instructions.
In this situation the processor does not read or set processor
configuration parameters. It does, however, initialize all other
processor state that requires hardware initialization (for
instance, the state machines and registers), in order that the
CPU can fetch and execute the Reset exception handler located
in uncached and unmapped space. Although no other
processor state is unnecessarily changed, a soft reset sequence
may be forced to alter some state since the exception can be
invoked arbitrarily on a cycle boundary, and abort any
multicycle operation in progress. Since bus, cache, or other
operations may be interrupted, portions of the cache, memory,
or other processor state may be inconsistent.

† In this book, a Soft Reset exception caused by assertion of the Reset* signal is referred to
as a “soft reset” or “warm reset.” A Soft Reset exception caused by a nonmaskable
interrupt (NMI) is referred to as a “nonmaskable interrupt exception.”

Chapter 5

126 MIPS R4000 Microprocessor User's Manual

In both the Reset* and NMI cases the processor jumps to the Reset
exception vector located in unmapped and uncached address space, so
that the cache and TLB contents need not be initialized to service this
exception. Typically, the Reset exception vector is located in PROM, and
system memory does not need to be initialized to handle the exception.

As previously noted, state machines interrupted by Reset* may cause
some register contents to be inconsistent with the other processor state.
Otherwise, on an exception caused by Reset* or NMI the contents of all
registers are preserved, except for:

• EW bit in the CacheErr register, which is reset to 0 (R4400 only)

• ErrorEPC register, which contains the restart PC

• ERL bit of the Status register, which is set to 1

• SR bit of the Status register, which is set to 1

• BEV bit of the Status register, which is set to 1

• TS bit of the Status register, which is set to 0

• PC is set to the reset vector 0xFFFF FFFF BFC0 0000

Soft reset exception processing is shown in Figure 5-16.

Servicing

The exception initiated by Reset* is intended to quickly reinitialize a
previously operating processor after a fatal error such as a Master/
Checker mismatch. The NMI can be used for purposes other than resetting
the processor while preserving cache and memory contents. For example,
the system might use an NMI to cause an immediate, controlled shutdown
when it detects an impending power failure.

The exceptions due to Reset* and NMI appear identical to software; both
exceptions jump to the Reset exception vector and have the Status register
SR bit set. Unless external hardware provides a way to distinguish
between the two, they are serviced by saving the current user-visible
processor state for diagnostic purposes and reinitializing as for the Reset
exception. It is not normally possible to continue program execution after
returning from this exception, since a Reset* signal can be accepted
anytime and an NMI can occur in the midst of another error exception.

MIPS R4000 Microprocessor User's Manual 127

CPU Exception Processing

Address Error Exception

Cause

The Address Error exception occurs when an attempt is made to execute
one of the following:

• load or store a doubleword that is not aligned on a doubleword
boundary

• load, fetch, or store a word that is not aligned on a word
boundary

• load or store a halfword that is not aligned on a halfword
boundary

• reference the kernel address space from User or Supervisor
mode

• reference the supervisor address space from User mode

This exception is not maskable.

Processing

The common exception vector is used for this exception. The AdEL or
AdES code in the Cause register is set, indicating whether the instruction
caused the exception with an instruction reference, load operation, or store
operation shown by the EPC register and BD bit in the Cause register.

When this exception occurs, the BadVAddr register retains the virtual
address that was not properly aligned or that referenced protected
address space. The contents of the VPN field of the Context and EntryHi
registers are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the
exception, unless this instruction is in a branch delay slot. If it is in a
branch delay slot, the EPC register contains the address of the preceding
branch instruction and the BD bit of the Cause register is set as indication.

Address Error exception processing is shown in Figure 5-17.

Servicing

The process executing at the time is handed a UNIX SIGSEGV
(segmentation violation) signal. This error is usually fatal to the process
incurring the exception.

Chapter 5

128 MIPS R4000 Microprocessor User's Manual

TLB Exceptions

Three types of TLB exceptions can occur:

• TLB Refill occurs when there is no TLB entry that matches an
attempted reference to a mapped address space.

• TLB Invalid occurs when a virtual address reference matches a
TLB entry that is marked invalid.

• TLB Modified occurs when a store operation virtual address
reference to memory matches a TLB entry which is marked
valid but is not dirty (the entry is not writable).

The following three sections describe these TLB exceptions.

MIPS R4000 Microprocessor User's Manual 129

CPU Exception Processing

TLB Refill Exception

Cause

The TLB refill exception occurs when there is no TLB entry to match a
reference to a mapped address space. This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for
references to 32-bit address spaces, and one for references to 64-bit address
spaces. The UX, SX, and KX bits of the Status register determine whether
the user, supervisor or kernel address spaces referenced are 32-bit or 64-
bit spaces. All references use these vectors when the EXL bit is set to 0 in
the Status register. This exception sets the TLBL or TLBS code in the
ExcCode field of the Cause register. This code indicates whether the
instruction, as shown by the EPC register and the BD bit in the Cause
register, caused the miss by an instruction reference, load operation, or
store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi
registers hold the virtual address that failed address translation. The
EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally contains a valid location in which
to place the replacement TLB entry. The contents of the EntryLo register
are undefined. The EPC register contains the address of the instruction
that caused the exception, unless this instruction is in a branch delay slot,
in which case the EPC register contains the address of the preceding
branch instruction and the BD bit of the Cause register is set.

TLB Refill exception processing is shown in Figure 5-17.

Servicing

To service this exception, the contents of the Context or XContext register
are used as a virtual address to fetch memory locations containing the
physical page frame and access control bits for a pair of TLB entries. The
two entries are placed into the EntryLo0/EntryLo1 register; the EntryHi and
EntryLo registers are written into the TLB.

It is possible that the virtual address used to obtain the physical address
and access control information is on a page that is not resident in the TLB.
This condition is processed by allowing a TLB refill exception in the TLB
refill handler. This second exception goes to the common exception vector
because the EXL bit of the Status register is set.

Chapter 5

130 MIPS R4000 Microprocessor User's Manual

TLB Invalid Exception

Cause

The TLB invalid exception occurs when a virtual address reference
matches a TLB entry that is marked invalid (TLB valid bit cleared). This
exception is not maskable.

Processing

The common exception vector is used for this exception. The TLBL or
TLBS code in the ExcCode field of the Cause register is set. This indicates
whether the instruction, as shown by the EPC register and BD bit in the
Cause register, caused the miss by an instruction reference, load operation,
or store operation.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi
registers contain the virtual address that failed address translation. The
EntryHi register also contains the ASID from which the translation fault
occurred. The Random register normally contains a valid location in which
to put the replacement TLB entry. The contents of the EntryLo register are
undefined.

The EPC register contains the address of the instruction that caused the
exception unless this instruction is in a branch delay slot, in which case the
EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set.

TLB Invalid exception processing is shown in Figure 5-17.

Servicing

A TLB entry is typically marked invalid when one of the following is true:

• a virtual address does not exist

• the virtual address exists, but is not in main memory (a page
fault)

• a trap is desired on any reference to the page (for example, to
maintain a reference bit)

After servicing the cause of a TLB Invalid exception, the TLB entry is
located with TLBP (TLB Probe), and replaced by an entry with that entry’s
Valid bit set.

MIPS R4000 Microprocessor User's Manual 131

CPU Exception Processing

TLB Modified Exception

Cause

The TLB modified exception occurs when a store operation virtual address
reference to memory matches a TLB entry that is marked valid but is not
dirty and therefore is not writable. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Mod code
in the Cause register is set.

When this exception occurs, the BadVAddr, Context, XContext and EntryHi
registers contain the virtual address that failed address translation. The
EntryHi register also contains the ASID from which the translation fault
occurred. The contents of the EntryLo register are undefined.

The EPC register contains the address of the instruction that caused the
exception unless that instruction is in a branch delay slot, in which case the
EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set.

TLB Modified exception processing is shown in Figure 5-17.

Servicing

The kernel uses the failed virtual address or virtual page number to
identify the corresponding access control information. The page
identified may or may not permit write accesses; if writes are not
permitted, a write protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable
by the kernel in its own data structures. The TLBP instruction places the
index of the TLB entry that must be altered into the Index register. The
EntryLo register is loaded with a word containing the physical page frame
and access control bits (with the D bit set), and the EntryHi and EntryLo
registers are written into the TLB.

Chapter 5

132 MIPS R4000 Microprocessor User's Manual

Cache Error Exception

Cause

The Cache Error exception occurs when either a secondary cache ECC
error, primary cache parity error, or SysAD bus parity/ECC error
condition occurs and error detection is enabled. This exception is not
maskable, but error detection can be disabled if either ERL or DE = 1 in the
Status register.

Processing

The processor sets the ERL bit in the Status register, saves the exception
restart address in the ErrorEPC register, records information about the
error in the CacheErr register, and then transfers to a special vector that is
always in uncached space (Tables 5-11 and 5-12). No other registers are
changed. Cache Error exception processing is shown in Figure 5-15.

Servicing

Unlike other exception conditions, cache errors cannot be avoided while
operating at exception level, so Cache Error exceptions must be handled
from exception level. Any general register used by the handler must be
saved before use and restored before return; this includes the registers
available to regular exception handlers without save/restore. When
ERL=1 in the Status register, the user address region becomes a 231-byte
uncached space mapped directly to physical addresses, allowing the
Cache Error handler to save registers to memory without using a register
to construct the address. The handler can save and restore registers using
operating system-reserved locations in low physical memory by using R0
as the base register for load and store instructions. All errors should be
logged. To correct single-bit ECC errors in the secondary cache, the
system uses the CACHE instruction. Execution then resumes through an
ERET instruction. To correct cache parity errors and non-single-bit ECC
errors in unmodified cache blocks, the system uses the CACHE instruction
to invalidate the cache block, overwrites the old data through a cache miss,
and resumes execution with an ERET. Other errors are not correctable and
are likely to be fatal to the current process. The exception handler cannot
be interrupted by another Cache Error exception because error detection
is disabled while ERL = 1, so the handler should avoid actions which
might cause an unnoticed cache error. The R4400 (but not R4000)
implements the EW bit in the CacheErr register to record a nonrecoverable
error occurring while ERL = 1.

MIPS R4000 Microprocessor User's Manual 133

CPU Exception Processing

Virtual Coherency Exception

Cause

A Virtual Coherency exception occurs when all of the following conditions
are true:

• a primary cache miss hits in the secondary cache

• bits 14:12 of the virtual address were not equal to the
corresponding bits of the PIdx field of the secondary cache tag

• the cache algorithm for the page (from the C field in the TLB)
specifies that the page is cached

This exception is not maskable.

Processing

The common exception vector is used for this exception.

The VCEI or VCED code in the Cause register is set for instruction and data
cache misses respectively.

The BadVAddr register holds the virtual address that caused the exception.

Virtual Coherency exception processing is shown in Figure 5-17.

Servicing

Using the appropriate CACHE instruction(s), the primary cache line at
both the previous and the new virtual index should be invalidated† (and
written back, if necessary), and the PIDx field of the secondary cache
should be written with the new virtual index. Once completed, the
program continues.

Software can avoid the cost of this exception by using consistent virtual
primary cache indexes to access the same physical data.

† When a cache miss occurs, the processor refills the primary cache line at the present virtual
index before taking an exception.

Chapter 5

134 MIPS R4000 Microprocessor User's Manual

Bus Error Exception

Cause

A Bus Error exception is raised by board-level circuitry for events such as
bus time-out, backplane bus parity errors, and invalid physical memory
addresses or access types. This exception is not maskable.

A Bus Error exception occurs either when the SysCmd(5) bit indicates the
data is erroneous (see Chapter 12) or the IvdErr* signal is asserted
(Chapter 12). This can only occur when a cache miss refill, uncached
reference, or an unbuffered write occurs synchronously; a Bus Error
exception resulting from a buffered write transaction must be reported
using the general interrupt mechanism.

Processing

The common interrupt vector is used for a Bus Error exception. The IBE
or DBE code in the ExcCode field of the Cause register is set, signifying
whether the instruction (as indicated by the EPC register and BD bit in the
Cause register) caused the exception by an instruction reference, load
operation, or store operation.

The EPC register contains the address of the instruction that caused the
exception, unless it is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of
the Cause register is set. Bus Error processing is shown in Figure 5-17.

Servicing

The physical address at which the fault occurred can be computed from
information available in the CP0 registers.

• If the IBE code in the Cause register is set (indicating an
instruction fetch reference), the virtual address is contained in
the EPC register.

• If the DBE code is set (indicating a load or store reference), the
instruction that caused the exception is located at the virtual
address contained in the EPC register (or 4+ the contents of the
EPC register if the BD bit of the Cause register is set).

The virtual address of the load and store reference can then be obtained by
interpreting the instruction. The physical address can be obtained by
using the TLBP instruction and reading the EntryLo register to compute

MIPS R4000 Microprocessor User's Manual 135

CPU Exception Processing

the physical page number. The process executing at the time of this
exception is handed a UNIX SIGBUS (bus error) signal, which is usually
fatal.

Integer Overflow Exception

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD,
DADDI or DSUB† instruction results in a 2’s complement overflow. This
exception is not maskable.

Processing

The common exception vector is used for this exception, and the OV code
in the Cause register is set.

The EPC register contains the address of the instruction that caused the
exception unless the instruction is in a branch delay slot, in which case the
EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set.

Integer Overflow exception processing is shown in Figure 5-17.

Servicing

The process executing at the time of the exception is handed a UNIX
SIGFPE/FPE_INTOVF_TRAP (floating-point exception/integer
overflow) signal. This error is usually fatal to the current process.

† See Appendix A for a description of these instructions.

Chapter 5

136 MIPS R4000 Microprocessor User's Manual

Trap Exception

Cause

The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE,
TGEI, TGEUI, TLTI, TLTUI, TEQI, or TNEI† instruction results in a TRUE
condition. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code
in the Cause register is set.

The EPC register contains the address of the instruction causing the
exception unless the instruction is in a branch delay slot, in which case the
EPC register contains the address of the preceding branch instruction and
the BD bit of the Cause register is set.

Trap exception processing is shown in Figure 5-17.

Servicing

The process executing at the time of a Trap exception is handed a UNIX
SIGFPE/FPE_INTOVF_TRAP (floating-point exception/integer
overflow) signal. This error is usually fatal.

† See Appendix A for a description of these instructions.

MIPS R4000 Microprocessor User's Manual 137

CPU Exception Processing

System Call Exception

Cause

A System Call exception occurs during an attempt to execute the
SYSCALL instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Sys code
in the Cause register is set.

The EPC register contains the address of the SYSCALL instruction unless
it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the Status
register is set; otherwise this bit is cleared.

System Call exception processing is shown in Figure 5-17.

Servicing

When this exception occurs, control is transferred to the applicable system
routine.

To resume execution, the EPC register must be altered so that the
SYSCALL instruction does not re-execute; this is accomplished by adding
a value of 4 to the EPC register (EPC register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated
algorithm, beyond the scope of this description, may be required.

Chapter 5

138 MIPS R4000 Microprocessor User's Manual

Breakpoint Exception

Cause

A Breakpoint exception occurs when an attempt is made to execute the
BREAK instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP code
in the Cause register is set.

The EPC register contains the address of the BREAK instruction unless it
is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the Status
register is set, otherwise the bit is cleared.

Breakpoint exception processing is shown in Figure 5-17.

Servicing

When the Breakpoint exception occurs, control is transferred to the
applicable system routine. Additional distinctions can be made by
analyzing the unused bits of the BREAK instruction (bits 25:6), and
loading the contents of the instruction whose address the EPC register
contains. A value of 4 must be added to the contents of the EPC register
(EPC register + 4) to locate the instruction if it resides in a branch delay
slot.

To resume execution, the EPC register must be altered so that the BREAK
instruction does not re-execute; this is accomplished by adding a value of
4 to the EPC register (EPC register + 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the
branch instruction is required to resume execution.

MIPS R4000 Microprocessor User's Manual 139

CPU Exception Processing

Reserved Instruction Exception

Cause

The Reserved Instruction exception occurs when one of the following
conditions occurs:

• an attempt is made to execute an instruction with an undefined
major opcode (bits 31:26)

• an attempt is made to execute a SPECIAL instruction with an
undefined minor opcode (bits 5:0)

• an attempt is made to execute a REGIMM instruction with an
undefined minor opcode (bits 20:16)

• an attempt is made to execute 64-bit operations in 32-bit mode
when in User or Supervisor modes

64-bit operations are always valid in Kernel mode regardless of the value
of the KX bit in the Status register.

This exception is not maskable.

Reserved Instruction exception processing is shown in Figure 5-17.

Processing

The common exception vector is used for this exception, and the RI code
in the Cause register is set.

The EPC register contains the address of the reserved instruction unless it
is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

Servicing

No instructions in the MIPS ISA are currently interpreted. The process
executing at the time of this exception is handed a UNIX SIGILL/
ILL_RESOP_FAULT (illegal instruction/reserved operand fault) signal.
This error is usually fatal.

Chapter 5

140 MIPS R4000 Microprocessor User's Manual

Coprocessor Unusable Exception

Cause

The Coprocessor Unusable exception occurs when an attempt is made to
execute a coprocessor instruction for either:

• a corresponding coprocessor unit that has not been marked
usable, or

• CP0 instructions, when the unit has not been marked usable
and the process executes in either User or Supervisor mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CPU code
in the Cause register is set. The contents of the Coprocessor Usage Error field
of the coprocessor Control register indicate which of the four coprocessors
was referenced. The EPC register contains the address of the unusable
coprocessor instruction unless it is in a branch delay slot, in which case the
EPC register contains the address of the preceding branch instruction.

Coprocessor Unusable exception processing is shown in Figure 5-17.

Servicing

The coprocessor unit to which an attempted reference was made is
identified by the Coprocessor Usage Error field, which results in one of the
following situations:

• If the process is entitled access to the coprocessor, the
coprocessor is marked usable and the corresponding user state
is restored to the coprocessor.

• If the process is entitled access to the coprocessor, but the
coprocessor does not exist or has failed, interpretation of the
coprocessor instruction is possible.

• If the BD bit is set in the Cause register, the branch instruction
must be interpreted; then the coprocessor instruction can be
emulated and execution resumed with the EPC register
advanced past the coprocessor instruction.

• If the process is not entitled access to the coprocessor, the
process executing at the time is handed a UNIX SIGILL/
ILL_PRIVIN_FAULT (illegal instruction/privileged instruction
fault) signal. This error is usually fatal.

MIPS R4000 Microprocessor User's Manual 141

CPU Exception Processing

Floating-Point Exception

Cause

The Floating-Point exception is used by the floating-point coprocessor.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the FPE code
in the Cause register is set.

The contents of the Floating-Point Control/Status register indicate the cause
of this exception.

Floating-Point exception processing is shown in Figure 5-17.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-
Point Control/Status register.

For an unimplemented instruction exception, the kernel should emulate
the instruction; for other exceptions, the kernel should pass the exception
to the user program that caused the exception.

Chapter 5

142 MIPS R4000 Microprocessor User's Manual

Watch Exception

Cause

A Watch exception occurs when a load or store instruction references the
physical address specified in the WatchLo/WatchHi System Control
Coprocessor (CP0) registers. The WatchLo register specifies whether a
load or store initiated this exception.

The CACHE instruction never causes a Watch exception.

The Watch exception is postponed if the EXL bit is set in the Status register,
and Watch is only maskable by setting the EXL bit in the Status register.

Processing

The common exception vector is used for this exception, and the Watch
code in the Cause register is set.

Watch exception processing is shown in Figure 5-17.

Servicing

The Watch exception is a debugging aid; typically the exception handler
transfers control to a debugger, allowing the user to examine the situation.

To continue, the Watch exception must be disabled to execute the faulting
instruction. The Watch exception must then be reenabled. The faulting
instruction can be executed either by interpretation or by setting
breakpoints.

MIPS R4000 Microprocessor User's Manual 143

CPU Exception Processing

Interrupt Exception

Cause

The Interrupt exception occurs when one of the eight interrupt conditions
is asserted. The significance of these interrupts is dependent upon the
specific system implementation.

Each of the eight interrupts can be masked by clearing the corresponding
bit in the Int-Mask field of the Status register, and all of the eight interrupts
can be masked at once by clearing the IE bit of the Status register.

Processing

The common exception vector is used for this exception, and the Int code
in the Cause register is set.

The IP field of the Cause register indicates current interrupt requests. It is
possible that more than one of the bits can be simultaneously set (or even
no bits may be set) if the interrupt is asserted and then deasserted before
this register is read.

Interrupt exception processing is shown in Figure 5-17.

Servicing

If the interrupt is caused by one of the two software-generated exceptions
(SW1 or SW0), the interrupt condition is cleared by setting the
corresponding Cause register bit to 0.

If the interrupt is hardware-generated, the interrupt condition is cleared
by correcting the condition causing the interrupt pin to be asserted.

Chapter 5

144 MIPS R4000 Microprocessor User's Manual

5.4 Exception Handling and Servicing Flowcharts
The remainder of this chapter contains flowcharts for the following
exceptions and guidelines for their handlers:

• general exceptions and their exception handler

• TLB/XTLB miss exception and their exception handler

• cache error exception and its handler

• reset, soft reset and NMI exceptions, and a guideline to their
handler.

Generally speaking, the exceptions are handled by hardware (HW); the
exceptions are then serviced by software (SW).

MIPS R4000 Microprocessor User's Manual 145

CPU Exception Processing

Figure 5-18 General Exception Handler (HW)

PC <- 0xFFFF FFFF BFC0 0200 + 180PC <- 0xFFFF FFFF 8000 0000 + 180

EXL <- 1

BEV
=1 (bootstrap)=0

To General Exception Servicing Guidelines

(unmapped, cached) (unmapped, uncached)

Exceptions other than Reset, Soft Reset, NMI, CacheError or first-level miss
Note: Interrupts can be masked by IE or IMs

and Watch is masked if EXL = 1

Check if exception within

Processor forced to Kernel Mode

(normal)

EPC <- PC

Instr. inYes No

EPC <- (PC - 4)

Br.Dly. Slot?

EXL
(SR1)

=1

=0

BadVA is set only for
TLB- Invalid, Modified,

Note: not set if it is a Bus Error

Cause 31 (BD) <- 1 Cause 31 (BD) <- 0

Refill- and VCED/I exceptions

EnHi, X/Context are set only for
*TLB- Invalid, Modified,
& Refill exceptions

Set Cause Register

EnHi <- VPN2, ASID
Context <- VPN2

EXCCode, CE

Set Watch Register
Set FP Control Status Register *Watch & FP Control Status Register

are only set if the respective exception
occurs.

& interrupt disabled

Comments

another exception

Set BadVA

Chapter 5

146 MIPS R4000 Microprocessor User's Manual

Figure 5-19 General Exception Servicing Guidelines (SW)

MFC0 -
X/Context
EPC
Status
Cause

EXL <- 0

Check CAUSE REG. & Jump to
appropriate Service Code

EXL = 1

MTC0 -
EPC

STATUS

ERET

* Unmapped vector so TLBMod, TLBInv,
TLB Refill exceptions not possible

* EXL=1 so Watch, Interrupt exceptions disabled

*Only CacheError, Reset, Soft Reset, NMI

* OS/System to avoid all other exceptions

* After EXL=0, all exceptions allowed.
(except interrupt if masked by IE or IM
and CacheError if masked by DE)

Comments

 exceptions possible.

KSU<- 00
(optional - only to enable Interrupts while keeping Kernel Mode)

MTC0 -
(Set Status Bits:)

& IE=1

Reset the processor

Status

* PC <- EPC; EXL <- 0

* LLbit <- 0

* ERET is not allowed in the branch delay slot of

* Processor does not execute the instruction which is
in the ERET’s branch delay slot

another Jump Instruction

Optional: Check only if 2nd-level TLB miss

=1

=0

Service Code

bit 21(TS)

MIPS R4000 Microprocessor User's Manual 147

CPU Exception Processing

Figure 5-20 TLB/XTLB Miss Exception Handler (HW)

EXL <- 1

PC <- 0xFFFF FFFF BFC0 0200 + Vec.Off.PC <- 0xFFFF FFFF 8000 0000 + Vec.Off.

=0 (normal) =1

To TLB/XTLB Exception Servicing Guidelines

(unmapped, cached) (unmapped, uncached)

BEV
(SR bit 22)

XTLB NY

Vec. Off. = 0x000Vec. Off. = 0x080 Vec. Off. = 0x180

Instr. inYes

Processor forced to Kernel Mode &

Check if exception within

(bootstrap)

Br.Dly. Slot?

EXL
(SR bit 1)

=1

=0

Instruction?

Points to General ExceptionPoints to Refill Exception

No

Set Cause Reg.

EnHi <- VPN2, ASID
Context <- VPN2

EXCCode, CE and
Set Cause Reg.

EnHi <- VPN2, ASID
Context <- VPN2

EXCCode, CE and

Cause bit 31 (BD) <- 0
EPC <- PCEPC <- (PC - 4)

Set BadVA Set BadVA

another exception

interrupt disabled

EXL
(SR bit 1)

=1

=0

Cause bit 31 (BD) <- 1

Chapter 5

148 MIPS R4000 Microprocessor User's Manual

Figure 5-21 TLB/XTLB Exception Servicing Guidelines (SW)

MFC0 -

CONTEXT

Service Code

ERET

* Unmapped vector so TLBMod, TLBInv,
TLB Refill or VCEP exceptions

* EXL=1 so Watch, Interrupt exceptions disabled

*Only CacheError, Reset, Soft Reset, NMI

* OS/System to avoid all other exceptions

* PC <- EPC; EXL <- 0

* LLbit <- 0

Comments

 exceptions possible.

* There could be a TLB miss again during the mapping

not possible

of the data or instruction address. The processor will
jump to the general exception vector since the EXL is 1.
(Option to complete the first level refill in the general

* Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Write into the TLB

* ERET is not allowed in the branch delay slot of

* Processor does not execute the instruction which is
in the ERET’s branch delay slot

another Jump Instruction

exception handler or ERET to the original instruction
and take the exception again)

MIPS R4000 Microprocessor User's Manual 149

CPU Exception Processing

Figure 5-22 Cache Error Exception Handling (HW) and Servicing Guidelines (SW)

Set CacheErr Reg.

C
ac

he
 E

rr
or

 E
xc

ep
tio

n
H

an
dl

in
g

(H
W

)

ERL <- 1

PC <- 0xFFFF FFFF BFC0 0200 + 100

BEV

PC <- 0xFFFF FFFF A000 0000 + 100

=1=0

(unmapped, uncached) (unmapped, uncached)

Note: Can be masked/disabled by DE (SR16) bit = 1

(bootstrap)(normal)

ErrEPC <- PC

Instr. inYes

No

ErrEPC <- (PC - 4)

Br. Dly. Slot?

S
er

vi
ci

ng
 G

ui
de

lin
es

 (
S

W
)

Service Code

ERET

* ERET is not allowed in the branch delay slot of

* Unmapped Uncached vector so
TLB related & Cache Error Exception not possible

* ERL=1 so Interrupt exceptions disabled

*Only Reset, Soft Reset, NMI

* OS/System to avoid all other exceptions

* Processor does not execute the instruction which is

* PC <- ErrorEPC; ERL <- 0

* LLbit <- 0

Comments

 exceptions possible.

in the ERET’s branch delay slot

another Jump Instruction

Chapter 5

150 MIPS R4000 Microprocessor User's Manual

Figure 5-23 Reset, Soft Reset & NMI Exception Handling (HW) and Servicing Guidelines (SW)

R
es

et
, S

of
t R

es
et

 &
 N

M
I E

xc
ep

tio
n

H
an

dl
in

g
(H

W
)

Random <- TLBENTRIES - 1

Wired <- 0

Config <- Update(31:6)|| Undef(5:0)

Status:
BEV <- 1

TS <- 0

SR<- 0

ERL <- 1

ErrorEPC <- PC

PC <- 0xFFFF FFFF BFC0 0000

Status:
BEV <- 1

TS <- 0

SR<- 1

ERL <- 1

Soft Reset or NMI Exception Reset Exception

NMI Service Code

Soft Reset Service Code

NMI?

Reset Service Code

Yes

No

Status bit 20

= 1

=0

ERET(Optional)

Note: There is no indication from the
processor to differentiate between

there must be a system level indication.

(SR)

R
es

et
, S

of
t R

es
et

 &
 N

M
I

S
er

vi
ci

ng
 G

ui
de

lin
es

 (
S

W
)

NMI & Soft Reset;

CacheErr(EW) <- 0
 (R4400 only)

CacheErr(EW) <- 0
 (R4400 only)

MIPS R4000 Microprocessor User's Manual 151

Floating-Point Unit

6

This chapter describes the MIPS floating-point unit (FPU) features,
including the programming model, instruction set and formats, and the
pipeline.

The FPU, with associated system software, fully conforms to the
requirements of ANSI/IEEE Standard 754–1985, IEEE Standard for Binary
Floating-Point Arithmetic. In addition, the MIPS architecture fully supports
the recommendations of the standard and precise exceptions.

Chapter 6

152 MIPS R4000 Microprocessor User's Manual

6.1 Overview
The FPU operates as a coprocessor for the CPU (it is assigned coprocessor
label CP1), and extends the CPU instruction set to perform arithmetic
operations on floating-point values.

Figure 6-1 illustrates the functional organization of the FPU.

Figure 6-1 FPU Functional Block Diagram

FAdd

Data Cache

FP Bypass
Pipeline Chain

FCU

64
64

+
FP Sqrt

FP Mul FP Div

64

FP Reg File

Control

646464

64

6464

MIPS R4000 Microprocessor User's Manual 153

Floating-Point Unit

6.2 FPU Features
This section briefly describes the operating model, the load/store
instruction set, and the coprocessor interface in the FPU. A more detailed
description is given in the sections that follow.

• Full 64-bit Operation. When the FR bit in the CPU Status
register equals 0, the FPU is in 32-bit mode and contains thirty-
two 32-bit registers that hold single- or, when used in pairs,
double-precision values. When the FR bit in the CPU Status
register equals 1, the FPU is in 64-bit mode and the registers
are expanded to 64 bits wide. Each register can hold single- or
double-precision values. The FPU also includes a 32-bit Control/
Status register that provides access to all IEEE-Standard
exception handling capabilities.

• Load and Store Instruction Set. Like the CPU, the FPU uses a
load- and store-oriented instruction set, with single-cycle load
and store operations. Floating-point operations are started in a
single cycle and their execution overlaps other fixed-point or
floating-point operations.

• Tightly Coupled Coprocessor Interface. The FPU resides on-
chip to form a tightly coupled unit with a seamless integration
of floating-point and fixed-point instruction sets. Since each
unit receives and executes instructions in parallel, some
floating-point instructions can execute at the same single-cycle-
per-instruction rate as fixed-point instructions.

Chapter 6

154 MIPS R4000 Microprocessor User's Manual

6.3 FPU Programming Model
This section describes the set of FPU registers and their data organization.
The FPU registers include Floating-Point General Purpose registers (FGRs)
and two control registers: Control/Status and Implementation/Revision.

Floating-Point General Registers (FGRs)

The FPU has a set of Floating-Point General Purpose registers (FGRs) that
can be accessed in the following ways:

• As 32 general purpose registers (32 FGRs), each of which is 32
bits wide when the FR bit in the CPU Status register equals 0;
or as 32 general purpose registers (32 FGRs), each of which is
64-bits wide when FR equals 1. The CPU accesses these
registers through move, load, and store instructions.

• As 16 floating-point registers (see the next section for a
description of FPRs), each of which is 64-bits wide, when the
FR bit in the CPU Status register equals 0. The FPRs hold
values in either single- or double-precision floating-point
format. Each FPR corresponds to adjacently numbered FGRs
as shown in Figure 6-2.

• As 32 floating-point registers (see the next section for a
description of FPRs), each of which is 64-bits wide, when the
FR bit in the CPU Status register equals 1. The FPRs hold
values in either single- or double-precision floating-point
format. Each FPR corresponds to an FGR as shown in
Figure 6-2.

MIPS R4000 Microprocessor User's Manual 155

Floating-Point Unit

Figure 6-2 FPU Registers

Control/Status Register
31 0 31 0

Implementation/Revision Register

Floating-Point
Control Registers

(FCR)

FCR0FCR31

•
•

Registers (FPR)
(FR = 0)

Floating-Point

FPR0

0

General Purpose Registers

(FGR)

FGR0

FGR1

FGR2

FGR31

FGR30

FGR29

31

FGR3

(least)

(most)

FPR2
(least)

(most)

FPR30

FPR28
FGR28(least)

(most)

(least)

(most)

Floating-Point

0

General Purpose Registers

(FGR)

FGR0

FGR1

FGR2

FGR31

FGR30

FGR29

63

FGR3

FGR28

Floating-Point

•

Registers (FPR)
(FR = 1)

 Floating-Point

FPR0

FPR2

FPR30

FPR28

FPR3

FPR1

FPR29

FPR31

•
•

•
•
•

•
•
•

•

Chapter 6

156 MIPS R4000 Microprocessor User's Manual

Floating-Point Registers

The FPU provides:

• 16 Floating-Point registers (FPRs) when the FR bit in the Status
register equals 0, or

• 32 Floating-Point registers (FPRs) when the FR bit in the Status
register equals 1.

These 64-bit registers hold floating-point values during floating-point
operations and are physically formed from the General Purpose registers
(FGRs). When the FR bit in the Status register equals 1, the FPR references
a single 64-bit FGR.

The FPRs hold values in either single- or double-precision floating-point
format. If the FR bit equals 0, only even numbers (the least register, as
shown in Figure 6-2) can be used to address FPRs. When the FR bit is set
to a 1, all FPR register numbers are valid.

If the FR bit equals 0 during a double-precision floating-point operation,
the general registers are accessed in double pairs. Thus, in a double-
precision operation, selecting Floating-Point Register 0 (FPR0) actually
addresses adjacent Floating-Point General Purpose registers FGR0 and
FGR1.

MIPS R4000 Microprocessor User's Manual 157

Floating-Point Unit

Floating-Point Control Registers

The FPU has 32 control registers (FCRs) that can only be accessed by move
operations. The FCRs are described below:

• The Implementation/Revision register (FCR0) holds revision
information about the FPU.

• The Control/Status register (FCR31) controls and monitors
exceptions, holds the result of compare operations, and
establishes rounding modes.

• FCR1 to FCR30 are reserved.

Table 6-1 lists the assignments of the FCRs.

Table 6-1 Floating-Point Control Register Assignments

 FCR Number Use

FCR0 Coprocessor implementation and revision register

FCR1 to FCR30 Reserved

FCR31 Rounding mode, cause, trap enables, and flags

Chapter 6

158 MIPS R4000 Microprocessor User's Manual

Implementation and Revision Register, (FCR0)

The read-only Implementation and Revision register (FCR0) specifies the
implementation and revision number of the FPU. This information can
determine the coprocessor revision and performance level, and can also be
used by diagnostic software.

Figure 6-3 shows the layout of the register; Table 6-2 describes the
Implementation and Revision register (FCR0) fields.

Figure 6-3 Implementation/Revision Register

Table 6-2 FCR0 Fields

The revision number is a value of the form y.x, where:

• y is a major revision number held in bits 7:4.

• x is a minor revision number held in bits 3:0.

The revision number distinguishes some chip revisions; however, MIPS
does not guarantee that changes to its chips are necessarily reflected by the
revision number, or that changes to the revision number necessarily reflect
real chip changes. For this reason revision number values are not listed,
and software should not rely on the revision number to characterize the
chip.

Field Description

Imp Implementation number (0x05)

Rev Revision number in the form of y.x

0 Reserved. Must be written as zeroes, and returns zeroes
when read.

16 15 7

Implementation/Revision Register (FCR0)

31 0

16

Rev

8 8

8

0 Imp

MIPS R4000 Microprocessor User's Manual 159

Floating-Point Unit

Control/Status Register (FCR31)

The Control/Status register (FCR31) contains control and status
information that can be accessed by instructions in either Kernel or User
mode. FCR31 also controls the arithmetic rounding mode and enables
User mode traps, as well as identifying any exceptions that may have
occurred in the most recently executed instruction, along with any
exceptions that may have occurred without being trapped.

Figure 6-4 shows the format of the Control/Status register, and Table 6-3
describes the Control/Status register fields. Figure 6-5 shows the Control/
Status register Cause, Flag, and Enable fields.

Figure 6-4 FP Control/Status Register Bit Assignments

Table 6-3 Control/Status Register Fields

Field Description

FS When set, denormalized results are flushed to 0 instead of causing an
unimplemented operation exception.

C Condition bit. See description of Control/Status register Condition bit.

Cause Cause bits. See Figure 6-5 and the description of Control/Status register
Cause, Flag, and Enable bits.

Enables Enable bits. See Figure 6-5 and the description of Control/Status register
Cause, Flag, and Enable bits.

Flags Flag bits. See Figure 6-5 and the description of Control/Status register
Cause, Flag, and Enable bits.

RM Rounding mode bits. See Table 6-4 and the description of Control/Status
register Rounding Mode Control bits.

Control/Status Register (FCR31)

31 24 23 22 18 17 12 11 7 6 2 1 0

7 1 5 6 5 5 2

C RMFlagsEnablesCause
0 0 E V Z O U I V Z O U I V Z O U I

25

FS

1

Chapter 6

160 MIPS R4000 Microprocessor User's Manual

Figure 6-5 Control/Status Register Cause, Flag, and Enable Fields

Accessing the Control/Status Register

When the Control/Status register is read by a Move Control From
Coprocessor 1 (CFC1) instruction, all unfinished instructions in the
pipeline are completed before the contents of the register are moved to the
main processor. If a floating-point exception occurs as the pipeline
empties, the FP exception is taken and the CFC1 instruction is re-executed
after the exception is serviced.

The bits in the Control/Status register can be set or cleared by writing to the
register using a Move Control To Coprocessor 1 (CTC1) instruction.
FCR31 must only be written to when the FPU is not actively executing
floating-point operations; this can be ensured by reading the contents of
the register to empty the pipeline.

E Z O U IV

17 16 15 14 13 12

Unimplemented Operation

Invalid Operation
Division by Zero

Inexact Operation

Overflow
Underflow

Bit #

Z O U IV

11 10 9 8 7Bit #

Z O U IV

6 5 4 3 2Bit #

Cause
Bits

Flag
Bits

Enable
Bits

MIPS R4000 Microprocessor User's Manual 161

Floating-Point Unit

IEEE Standard 754

IEEE Standard 754 specifies that floating-point operations detect certain
exceptional cases, raise flags, and can invoke an exception handler when
an exception occurs. These features are implemented in the MIPS
architecture with the Cause, Enable, and Flag fields of the Control/Status
register. The Flag bits implement IEEE 754 exception status flags, and the
Cause and Enable bits implement exception handling.

Control/Status Register FS Bit

When the FS bit is set, denormalized results are flushed to 0 instead of
causing an unimplemented operation exception.

Control/Status Register Condition Bit

When a floating-point Compare operation takes place, the result is stored
at bit 23, the Condition bit, to save or restore the state of the condition line.
The C bit is set to 1 if the condition is true; the bit is cleared to 0 if the
condition is false. Bit 23 is affected only by compare and Move Control To
FPU instructions.

Control/Status Register Cause, Flag, and Enable Fields

Figure 6-5 illustrates the Cause, Flag, and Enable fields of the Control/Status
register.

Cause Bits

Bits 17:12 in the Control/Status register contain Cause bits, as shown in
Figure 6-5, which reflect the results of the most recently executed
instruction. The Cause bits are a logical extension of the CP0 Cause register;
they identify the exceptions raised by the last floating-point operation and
raise an interrupt or exception if the corresponding enable bit is set. If
more than one exception occurs on a single instruction, each appropriate
bit is set.

The Cause bits are written by each floating-point operation (but not by
load, store, or move operations). The Unimplemented Operation (E) bit is
set to a 1 if software emulation is required, otherwise it remains 0. The
other bits are set to 0 or 1 to indicate the occurrence or non-occurrence
(respectively) of an IEEE 754 exception.

Chapter 6

162 MIPS R4000 Microprocessor User's Manual

When a floating-point exception is taken, no results are stored, and the
only state affected is the Cause bit.

Enable Bits

A floating-point exception is generated any time a Cause bit and the
corresponding Enable bit are set. A floating-point operation that sets an
enabled Cause bit forces an immediate exception, as does setting both
Cause and Enable bits with CTC1.

There is no enable for Unimplemented Operation (E). Setting
Unimplemented Operation always generates a floating-point exception.

Before returning from a floating-point exception, software must first clear
the enabled Cause bits with a CTC1 instruction to prevent a repeat of the
interrupt. Thus, User mode programs can never observe enabled Cause
bits set; if this information is required in a User mode handler, it must be
passed somewhere other than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no
exception occurs and the default result defined by IEEE 754 is stored. In
this case, the exceptions that were caused by the immediately previous
floating-point operation can be determined by reading the Cause field.

Flag Bits

The Flag bits are cumulative and indicate that an exception was raised by
an operation that was executed since they were explicitly reset. Flag bits
are set to 1 if an IEEE 754 exception is raised, otherwise they remain
unchanged. The Flag bits are never cleared as a side effect of floating-point
operations; however, they can be set or cleared by writing a new value into
the Status register, using a Move To Coprocessor Control instruction.

When a floating-point exception is taken, the flag bits are not set by the
hardware; floating-point exception software is responsible for setting
these bits before invoking a user handler.

MIPS R4000 Microprocessor User's Manual 163

Floating-Point Unit

Control/Status Register Rounding Mode Control Bits

Bits 1 and 0 in the Control/Status register constitute the Rounding Mode
(RM) field.

As shown in Table 6-4, these bits specify the rounding mode that the FPU
uses for all floating-point operations.

Table 6-4 Rounding Mode Bit Decoding

Rounding
Mode

RM(1:0)
Mnemonic Description

0 RN

Round result to nearest representable
value; round to value with least-
significant bit 0 when the two nearest
representable values are equally near.

1 RZ
Round toward 0: round to value closest to
and not greater in magnitude than the
infinitely precise result.

2 RP
Round toward +∞: round to value closest
to and not less than the infinitely precise
result.

3 RM
Round toward – ∞: round to value closest
to and not greater than the infinitely
precise result.

Chapter 6

164 MIPS R4000 Microprocessor User's Manual

6.4 Floating-Point Formats
The FPU performs both 32-bit (single-precision) and 64-bit (double-
precision) IEEE standard floating-point operations. The 32-bit single-
precision format has a 24-bit signed-magnitude fraction field (f+s) and an
8-bit exponent (e), as shown in Figure 6-6.

Figure 6-6 Single-Precision Floating-Point Format

The 64-bit double-precision format has a 53-bit signed-magnitude fraction
field (f+s) and an 11-bit exponent, as shown in Figure 6-7.

Figure 6-7 Double-Precision Floating-Point Format

As shown in the above figures, numbers in floating-point format are
composed of three fields:

• sign field, s

• biased exponent, e = E + bias

• fraction, f = .b1b2....bp–1

The range of the unbiased exponent E includes every integer between the
two values Emin and Emax inclusive, together with two other reserved
values:

• Emin -1 (to encode 0 and denormalized numbers)

• Emax +1 (to encode ∞ and NaNs [Not a Number])

For single- and double-precision formats, each representable nonzero
numerical value has just one encoding.

31 30 23 22 0

FractionSign Exponent

231 8

s e f

63 62 52 51 0

FractionSign Exponent

521 11

s e f

MIPS R4000 Microprocessor User's Manual 165

Floating-Point Unit

For single- and double-precision formats, the value of a number, v, is
determined by the equations shown in Table 6-5.

Table 6-5 Equations for Calculating Values in Single and Double-Precision
Floating-Point Format

For all floating-point formats, if v is NaN, the most-significant bit of f
determines whether the value is a signaling or quiet NaN: v is a signaling
NaN if the most-significant bit of f is set, otherwise, v is a quiet NaN.

Table 6-6 defines the values for the format parameters; minimum and
maximum floating-point values are given in Table 6-7.

Table 6-6 Floating-Point Format Parameter Values

No. Equation

(1) if E = Emax+1 and f ≠ 0, then v is NaN, regardless of s

(2) if E = Emax+1 and f = 0, then v = (–1)s ∞

(3) if Emin ≤ E ≤ Emax, then v = (–1)s2E(1.f)

(4) if E = Emin–1 and f ≠ 0, then v = (–1)s2Emin(0.f)

(5) if E = Emin–1 and f = 0, then v = (–1)s0

Parameter
Format

Single Double

Emax +127 +1023

Emin –126 –1022

Exponent bias +127 +1023

Exponent width in bits 8 11

Integer bit hidden hidden

f (Fraction width in bits) 24 53

Format width in bits 32 64

Chapter 6

166 MIPS R4000 Microprocessor User's Manual

Table 6-7 Minimum and Maximum Floating-Point Values

6.5 Binary Fixed-Point Format
Binary fixed-point values are held in 2’s complement format. Unsigned
fixed-point values are not directly provided by the floating-point
instruction set. Figure 6-8 illustrates binary fixed-point format; Table 6-8
lists the binary fixed-point format fields.

Figure 6-8 Binary Fixed-Point Format

Field assignments of the binary fixed-point format are:

Table 6-8 Binary Fixed-Point Format Fields

Type Value

Float Minimum 1.40129846e–45

Float Minimum Norm 1.17549435e–38

Float Maximum 3.40282347e+38

Double Minimum 4.9406564584124654e–324

Double Minimum Norm 2.2250738585072014e–308

Double Maximum 1.7976931348623157e+308

Field Description

sign sign bit

integer integer value

31 30 0

Sign

311

Integer

MIPS R4000 Microprocessor User's Manual 167

Floating-Point Unit

6.6 Floating-Point Instruction Set Overview
All FPU instructions are 32 bits long, aligned on a word boundary. They
can be divided into the following groups:

• Load, Store, and Move instructions move data between
memory, the main processor, and the FPU General Purpose
registers.

• Conversion instructions perform conversion operations
between the various data formats.

• Computational instructions perform arithmetic operations on
floating-point values in the FPU registers.

• Compare instructions perform comparisons of the contents of
registers and set a conditional bit based on the results.

• Branch on FPU Condition instructions perform a branch to the
specified target if the specified coprocessor condition is met.

In the instruction formats shown in Tables 6-9 through 6-12, the fmt
appended to the instruction opcode specifies the data format: S specifies
single-precision binary floating-point, D specifies double-precision binary
floating-point, W specifies 32-bit binary fixed-point, and L specifies 64-bit
(long) binary fixed-point.

Table 6-9 FPU Instruction Summary: Load, Move and Store Instructions

OpCode Description

LWC1 Load Word to FPU

SWC1 Store Word from FPU

LDC1 Load Doubleword to FPU

SDC1 Store Doubleword From FPU

MTC1 Move Word To FPU

MFC1 Move Word From FPU

CTC1 Move Control Word To FPU

CFC1 Move Control Word From FPU

DMTC1 Doubleword Move To FPU

DMFC1 Doubleword Move From FPU

Chapter 6

168 MIPS R4000 Microprocessor User's Manual

Table 6-10 FPU Instruction Summary: Conversion Instructions

Table 6-11 FPU Instruction Summary: Computational Instructions

Table 6-12 FPU Instruction Summary: Compare and Branch Instructions

OpCode Description

CVT.S.fmt Floating-point Convert to Single FP

CVT.D.fmt Floating-point Convert to Double FP

CVT.W.fmt Floating-point Convert to 32-bit Fixed Point

CVT.L.fmt Floating-point Convert to 64-bit Fixed Point

ROUND.W.fmt Floating-point Round to 32-bit Fixed Point

ROUND.L.fmt Floating-point Round to 64-bit Fixed Point

TRUNC.W.fmt Floating-point Truncate to 32-bit Fixed Point

TRUNC.L.fmt Floating-point Truncate to 64-bit Fixed Point

CEIL.W.fmt Floating-point Ceiling to 32-bit Fixed Point

CEIL.L.fmt Floating-point Ceiling to 64-bit Fixed Point

FLOOR.W.fmt Floating-point Floor to 32-bit Fixed Point

FLOOR.L.fmt Floating-point Floor to 64-bit Fixed Point

OpCode Description

ADD.fmt Floating-point Add

SUB.fmt Floating-point Subtract

MUL.fmt Floating-point Multiply

DIV.fmt Floating-point Divide

ABS.fmt Floating-point Absolute Value

MOV.fmt Floating-point Move

NEG.fmt Floating-point Negate

SQRT.fmt Floating-point Square Root

OpCode Description

C.cond.fmt Floating-point Compare

BC1T Branch on FPU True

BC1F Branch on FPU False

BC1TL Branch on FPU True Likely

BC1FL Branch on FPU False Likely

MIPS R4000 Microprocessor User's Manual 169

Floating-Point Unit

Floating-Point Load, Store, and Move Instructions

This section discusses the manner in which the FPU uses the load, store
and move instructions listed in Table 6-9; Appendix B provides a detailed
description of each instruction.

Transfers Between FPU and Memory

All data movement between the FPU and memory is accomplished by
using one of the following instructions:

• Load Word To Coprocessor 1 (LWC1) or Store Word From
Coprocessor 1 (SWC1) instructions, which reference a single
32-bit word of the FPU general registers

• Load Doubleword (LDC1) or Store Doubleword (SDC1)
instructions, which reference a 64-bit doubleword.

These load and store operations are unformatted; no format conversions
are performed and therefore no floating-point exceptions can occur due to
these operations.

Transfers Between FPU and CPU

Data can also be moved directly between the FPU and the CPU by using
one of the following instructions:

• Move To Coprocessor 1 (MTC1)

• Move From Coprocessor 1 (MFC1)

• Doubleword Move To Coprocessor 1 (DMTC1)

• Doubleword Move From Coprocessor 1 (DMFC1)

Like the floating-point load and store operations, these operations
perform no format conversions and never cause floating-point exceptions.

Load Delay and Hardware Interlocks

The instruction immediately following a load can use the contents of the
loaded register. In such cases the hardware interlocks, requiring
additional real cycles; for this reason, scheduling load delay slots is
desirable, although it is not required for functional code.

Chapter 6

170 MIPS R4000 Microprocessor User's Manual

Data Alignment

All coprocessor loads and stores reference the following aligned data
items:

• For word loads and stores, the access type is always WORD,
and the low-order 2 bits of the address must always be 0.

• For doubleword loads and stores, the access type is always
DOUBLEWORD, and the low-order 3 bits of the address must
always be 0.

Endianness

Regardless of byte-numbering order (endianness) of the data, the address
specifies the byte that has the smallest byte address in the addressed field.
For a big-endian system, it is the leftmost byte; for a little-endian system,
it is the rightmost byte.

Floating-Point Conversion Instructions

Conversion instructions perform conversions between the various data
formats such as single- or double-precision, fixed- or floating-point
formats. Table 6-10 lists conversion instructions; Appendix B gives a
detailed description of each instruction.

Floating-Point Computational Instructions

Computational instructions perform arithmetic operations on floating-
point values, in registers. Table 6-11 lists the computational instructions
and Appendix B provides a detailed description of each instruction. There
are two categories of computational instructions:

• 3-Operand Register-Type instructions, which perform floating-
point addition, subtraction, multiplication, and division

• 2-Operand Register-Type instructions, which perform floating-
point absolute value, move, negate, and square root operations

Branch on FPU Condition Instructions

Table 6-12 lists the Branch on FPU (coprocessor unit 1) condition
instructions that can test the result of the FPU compare (C.cond)
instructions. Appendix B gives a detailed description of each instruction.

MIPS R4000 Microprocessor User's Manual 171

Floating-Point Unit

Floating-Point Compare Operations

The floating-point compare (C.fmt.cond) instructions interpret the
contents of two FPU registers (fs, ft) in the specified format (fmt) and
arithmetically compare them. A result is determined based on the
comparison and conditions (cond) specified in the instruction.

Table 6-12 lists the compare instructions; Appendix B gives a detailed
description of each instruction. Table 6-13 lists the mnemonics for the
compare instruction conditions.

Table 6-13 Mnemonics and Definitions of Compare Instruction Conditions

Mnemonic Definition Mnemonic Definition

T True F False

OR Ordered UN Unordered

NEQ Not Equal EQ Equal

OLG
Ordered or Less Than or
Greater Than UEQ Unordered or Equal

UGE
Unordered or Greater Than
or Equal OLT Ordered Less Than

OGE Ordered Greater Than ULT Unordered or Less Than

UGT Unordered or Greater Than OLE Ordered Less Than or Equal

OGT Ordered Greater Than ULE
Unordered or Less Than or
Equal

ST Signaling True SF Signaling False

GLE
Greater Than, or Less Than
or Equal NGLE

Not Greater Than or Less
Than or Equal

SNE Signaling Not Equal SEQ Signaling Equal

GL Greater Than or Less Than NGL
Not Greater Than or Less
Than

NLT Not Less Than LT Less Than

GE Greater Than or Equal NGE Not Greater Than or Equal

NLE Not Less Than or Equal LE Less Than or Equal

GT Greater Than NGT Not Greater Than

Chapter 6

172 MIPS R4000 Microprocessor User's Manual

6.7 FPU Instruction Pipeline Overview
The FPU provides an instruction pipeline that parallels the CPU
instruction pipeline. It shares the same eight-stage pipeline architecture
with the CPU (see Chapter 3).

Instruction Execution

Figure 6-9 illustrates the 8-instruction overlap in the FPU pipeline.

Figure 6-9 FPU Instruction Pipeline

Figure 6-9 assumes that one instruction is completed every PCycle. Most
FPU instructions, however, require more than one cycle in the EX stage.
This means the FPU must stall the pipeline if an instruction execution
cannot proceed because of register or resource conflicts.

Figure 6-10 illustrates the effect of a three-cycle stall on the FPU pipeline.

(8-Deep)

Current
 CPU
Cycle

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

IF IS RF EX DF DS TC WB

PCycle
MasterClock

Cycle

MIPS R4000 Microprocessor User's Manual 173

Floating-Point Unit

Figure 6-10 FPU Pipeline Stall

To lessen the performance impact that results from stalling the instruction
pipeline, the FPU allows instructions to overlap so that instruction
execution can proceed as long as there are no resource conflicts, data
dependencies, or exception conditions. The following sections describe
the timing and overlapping of FPU instructions.

Instruction Execution Cycle Time

Unlike the CPU, which executes almost all instructions in a single cycle,
more time may be required to execute FPU instructions.

Table 6-14 gives the minimum latency, in processor pipeline cycles, of each
floating-point operation for the currently implemented configurations.
These latency calculations assume the result of the operation is
immediately used in a succeeding operation.

IF IS RF EX DF

IF IS RF EX DS

IF IS RF DF DS

IF IS stall EX DF DS

IF RF EX DF DS

stall stall

DF

EX

RF

IS

WBTCDS

TC WB

WBTC

TC

WB

WB

TCstall stall stall

stall stall stall

stall stall stall

stall stall stall

Chapter 6

174 MIPS R4000 Microprocessor User's Manual

Table 6-14 Floating-Point Operation Latencies

(a) These operations are illegal.
(b) These operations are undefined.

Operation
Pipeline Cycles

Operation
Pipeline Cycles

S D W L S D W L

ADD.fmt 4 4 (a) (a) CVT.[W,L].fmt 4 4 (a) (a)

SUB.fmt 4 4 (a) (a) C.fmt.cond 3 3 (a) (a)

MUL.fmt 7 8 (a) (a) BC1T (b) 1 (b) (b)

DIV.fmt 23 36 (a) (a) BC1F (b) 1 (b) (b)

SQRT.fmt 54 112 (a) (a) BC1TL (b) 1 (b) (b)

ABS.fmt 2 2 (a) (a) BC1FL (b) 1 (b) (b)

MOV.fmt 1 1 (a) (a) LWC1 (b) 3 (b) (b)

NEG.fmt 2 2 (a) (a) SWC1 (b) 1 (b) (b)

ROUND.[W,L].fmt 4 4 (a) (a) LDC1 (b) 3 (b) (b)

TRUNC.[W,L].fmt 4 4 (a) (a) SDC1 (b) 1 (b) (b)

CEIL.[W,L].fmt 4 4 (a) (a) MTC1 (b) 3 (b) (b)

FLOOR.[W,L].fmt 4 4 (a) (a) MFC1 (b) 3 (b) (b)

CVT.S.fmt (a) 4 6 7 CTC1 (b) 3 (b) (b)

CVT.D.fmt 2 (a) 5 4 CFC1 (b) 2 (b) (b)

MIPS R4000 Microprocessor User's Manual 175

Floating-Point Unit

Scheduling FPU Instructions

The floating-point architecture permits the overlapping of floating-point
load, store, and move instructions with some of the other processor
operations.

To permit this, the FPU coprocessor implements three separate operation
(op) units:

• divider

• multiplier

• adder (for remaining operations)

The multiplier and divider can overlap adder operations; however, they
use the adder on their final cycles, which imposes some limitations.

The multiplier can begin a new double-precision multiplication every four
cycles, and a new single-precision multiplication every three cycles. The
adder generally begins a new operation one cycle before the previous
cycle completes; therefore, a floating-point addition or subtraction can
start every three cycles.

The FPU coprocessor pipeline is fully bypassed and interlocked.

FPU Pipeline Overlapping

Each of the three op units is controlled by an FPU resource scheduler,
which issues instructions under constraints described in the following
section. Table 6-15 lists the pipe stages used in each of the op units
(although not all stages are used by each unit).

Table 6-15 FPU Operational Unit Pipe Stages

Stage Description

A FPU Adder Mantissa Add stage

E FPU Adder Exception Test stage

EX CPU EX stage

M FPU Multiplier 1st stage

N FPU Multiplier 2nd stage

R FPU Adder Result Round stage

S FPU Adder Operand Shift stage

U FPU Unpack stage

Chapter 6

176 MIPS R4000 Microprocessor User's Manual

Instruction Scheduling Constraints

The FPU resource scheduler is kept from issuing instructions to the FPU
op units (adder, multiplier, and divider) by the limitations in their micro-
architectures. If any of the following constraints are violated, the op unit
assumes the outstanding instruction in its pipe is discarded, and then
continues operation on the most recently issued instruction.

FPU Divider Constraints

The FPU divider can handle only one non-overlapped division instruction
in its pipe at any one time.

FPU Multiplier Constraints

The FPU multiplier allows up to two pipelined MUL.[S,D] instructions to
be processed as long as the following constraints are met:

• Two idle cycles are required after a MUL.S instruction (as
shown in Figure 6-11).

• Three idle cycles are required after MUL.D instruction (as
shown in Figure 6-12).

These figures are not meant to imply that back-to-back multiplications are
allowed. Rather, as shown in Figure 6-11, instructions I2 and I3 are illegal
and I5, I6, I7, and I8 are successive stages of I4, referenced to I1.

Figure 6-12 is similar, in that I6, I7, and I8 are successive stages of I5.

Figure 6-11 MUL.S Instruction Scheduling in the FPU Multiplier

U M M M N N/A R

U M M M M N N/A R

U M M M M N N/A R

U M M M M N N/A R

U M M M M N N/A R

U M M M M N N/A R

U M M M M N N/A R

MUL.S

MUL.[S.D]

MUL.[S.D]

MUL.[S.D]

MUL.[S.D]

MUL.[S.D]

MUL.[S.D]

No

No

Yes

Yes

Yes

Yes

U M M M M N N/A R YesMUL.[S.D]

I1

I2

I3

I4

I5

I6

I7

I8

Legal to Issue?

– – – – – – – – – – – – – – – – –

 – – – – – – – – – – – – – –

– – – – – –

– – – – – – – – –

– – – – – – – – – – –

– – –

MIPS R4000 Microprocessor User's Manual 177

Floating-Point Unit

Figure 6-12 MUL.D Instruction Scheduling in the FPU Multiplier

FPU Adder Constraints

Following are the constraints that must be met in the FPU adder op unit.

Cycle Overlap. The adder op unit must allow a clock cycle overlap
between each newly issued instruction and the instruction being
completed, as shown in Figure 6-13.

Figure 6-13 Instruction Cycle Overlap in FPU Adder

U M M M M N N/A R

U M M M M N N/A R

U M M M M N N/A R

U M M M M N N/A R

U M M M M N N/A R

U M M M M N N/A R

MUL.D

MUL.[S.D]

MUL.[S.D]

MUL.[S.D]

MUL.[S.D]

MUL.[S.D]

MUL.[S.D]

No

No

No

Yes

Yes

Yes

U M M M M N N/A R Yes

U M M M M N N/A R

MUL.[S.D]

I1

I2

I3

I4

I5

I6

I7

I8

Legal to Issue?

– – – – – – – – – – – – – – – – –

 – – – – – – – – – – – – – –

– – – – – –

– – – – – – – – –

– – – – – – – – – – –

– – –

U S+A A+R R+S

NEG.[S,D]

ADD.[S,D]

NOP

NOP

C.COND.[S,D]

NOP

SQRT.[S,D]

U S

U

U

U A R

U

U E A+R . . . A+R R

NOP U

. . .

NOP U

U S A RADD.[S,D]

. . .

Chapter 6

178 MIPS R4000 Microprocessor User's Manual

Resource Conflict. The adder must allow the cleanup stages (A, R) of a
multiplication instruction to be pipelined with the execution of an
ADD.[S,D], SUB.[S,D], or C.COND.[S,D] instruction, as long as no two
instructions simultaneously attempt to use the same A and R pipe stages.
For instance, Figure 6-14 shows a resource conflict between the mantissa
add (A, stage 7) of instructions 1, 5, and 6. This figure also shows the
resource conflict between result round (R), stage 8, of instructions 1, 5, and
6. The multiplication cleanup cycles (A, R) can neither overlap nor
pipeline with any other instruction currently in the adder pipe.

Figures 6-14 through 6-17 show these constraints.

Figure 6-14 MUL.D and ADD.[S,D] Cycle Conflict in FPU Adder

Figure 6-15 MUL.S and ADD.[S,D] Cycle Conflict in FPU Adder

– – – – – – – – – – – – – – – – –

 – – – – – – – – – – – – – –

– –

– –

– – – – – – – – – – – – – – – – – – – –

U M M M M NMUL.D

U S+A A+R R+SADD.[S,D]

U S+A A+R R+S

U S+A A+R R+S

U S+A

U R+S

U S+A A+R R+S

U S+A A+R R+S

Yes

Yes

No

No

Yes

Yes

Yes

1 2 3 4 5 6 7 8 9 10 11
Stage#

I1

I2

I3

I4

I5

I6

I7

I8

S+A A+R

A+R R+S

N/A R

Indicates a resource conflict

Legal to Issue?

– – – – – – – – – – –

– – – – – – – – –

– –

U M M M NMUL.S

U S+A A+R R+SADD.[S,D]

U S+A A+R R+S

U S+A R+S

U R+S

U S+A A+R R+S

U S+A A+R R+S

U S+A A+R R+S

Yes

No

No

Yes

Yes

Yes

Yes

1 2 3 4 5 6 7 8 9 10 11
Stage#

S+A A+R

N/A R

A+R

Indicates a resource conflict

I1

I2

I3

I4

I5

I6

I7

I8

Legal to Issue?

– – – – – – – – – – – – – – – – –

 – – – – – – – – – – – – – –

– – – – – – – – – – –

– – – – – – – – –

– –

– – – – – – – – – – – – – – – – – – – –

MIPS R4000 Microprocessor User's Manual 179

Floating-Point Unit

†While there is no resource conflict in issuing this CMP.[S,D] instruction, the hardware does
not allow it.

Figure 6-16 MUL.D and CMP.[S,D] Cleanup Cycle Conflict in FPU Adder

†While there is no resource conflict in issuing this CMP.[S,D] instruction, the hardware does
not allow it.

Figure 6-17 MUL.S and CMP.[S,D] Cleanup Cycle Conflict in FPU Adder

– – – – – – – – – – – – – – – – –

 – – – – – – – – – – – – – –

– – – – – – – – – – –

– – – – – – – – –

– –

– –

– – – – – – – – – – – – – – – – – – – –

U M M M M N N/A RMUL.D

U A RCMP.[S,D] Yes

Yes

No†

No

Yes

Yes

Yes

1 2 3 4 5 6 7 8 9 10
Stage#

U A R

U A R

U A R

U A R

U A R

U A R
Indicates a resource conflict

I1

I2

I3

I4

I5

I6

I7

I8

Legal to Issue?

– – – – – – – – – – – – – – – – –

 – – – – – – – – – – – – – –

– – – – – – – – – – –

– – – – – – – – –

– –

– –

– – – – – – – – – – – – – – – – – – – –

U M M M N N/A RMUL.S

U A RCMP.[S,D] Yes

No†

No

Yes

Yes

Yes

Yes

1 2 3 4 5 6 7 8 9 10
Stage#

U A R

U A R

U A R

U A R

U A R

U A R
Indicates a resource conflict

I1

I2

I3

I4

I5

I6

I7

I8

Legal to Issue?

Chapter 6

180 MIPS R4000 Microprocessor User's Manual

Prep and Cleanup Cycle Overlap. Τhe adder does not allow the
preparation (U stage) and cleanup cycles (N, A, R) of a division instruction
to be pipelined with any other instruction; however, the adder does allow
the last cycle of preparation or cleanup to be overlapped one clock by the
following instruction’s U stage (the CPU EX cycle). Figure 6-18 shows this
process.

Figure 6-18 Adder Prep and Cleanup Cycle Overlap

A+D R+D. . .DIV.D

or

U A R+D D D D A+D R+D A R

DIV.D U A S+R S+D D . . . D A+D R+D A+D R+D A R

NOP U

NOP U
. . .

NOP

U S+A A+R R+SADD.[S,D]

U

. . .

.
NOP U

U A RCMP.[S,D]

MIPS R4000 Microprocessor User's Manual 181

Floating-Point Unit

Instruction Latency, Repeat Rate, and Pipeline Stage Sequences

Table 6-16 lists the latency and repeat rate between instructions, together
with the sequence of pipeline stages for each instruction. For example, the
latency of the ADD.[S,D] is 4, which means it takes four processor cycles
to complete. The Repeat Rate column indicates how soon an instruction
can be repeated; for example, an ADD.[S,D] can be repeated after the
conclusion of the third pipeline stage.

Table 6-16 Latency, Repeat Rate, and Pipe Stages of FPU Instructions

Instruction Type Latency
Repeat

Rate
Pipeline Stage

Sequence

MOV.[S,D] 1 1 EX

ADD.[S,D] 4 3 U→ S+A→ A+R→ R+S

SUB.[S,D] 4 3 U→ S+A→ A+R→ R+S

C.COND.[S,D] 3 2 U→ A→ R

NEG.[S,D] 2 1 U→ S

ABS.[S,D] 2 1 U→ S

CVT.S.W 6 5 U→ A→ R→ S→ A→ R

CVT.D.W 5 4 U→ S→ A→ R→ S

CVT.S.L 7 6 U→ A→ R→ S→ S→ A→ R

CVT.D.L 4 3 U→ A→ R→ S

CVT.D.S 2 1 U→ S

CVT.S.D 4 3 U→ S→ A→ R

CVT.[W,L].[S,D] or
ROUND.[W,L].[S,D] or
TRUNC.[W,L].[S,D] or
CEIL.[W,L].[S,D] or
FLOOR.[W,L].[S,D]

4 3 U→ S→ A→ R

MUL.S 7 3 U→ E/M→ M→ M→ N→ N/A→ R

MUL.D 8 4 U→ E/M→ M→ M→ M→ N→ N/A→ R

DIV.S 23 22 U→ S+A→ S+R→ S→ D...D→ D/A→
D/R→ D/A→ D/R→A→R

DIV.D 36 35 U→ A→ R→ D...D→ D/A→ D/R→ D/A →
D/R→ A→ R

SQRT.S 2–54 2–53 U→ E→ A+R→...→ A+R→ A→ R

SQRT.D 2–112 2–111 U→ E→ A+R→...→ A+R→ A→ R

Chapter 6

182 MIPS R4000 Microprocessor User's Manual

Resource Scheduling Rules

The FPU Resource Scheduler issues instructions while adhering to the
rules described below. These scheduling rules optimize op unit
executions; if the rules are not followed, the hardware interlocks to
guarantee correct operation.

DIV.[S,D] can start only when all of the following conditions are met in
the RF stage:

• The divider is either idle, or in its second-to-last execution cycle.

• The adder is either idle, or in its second-to-last execution cycle.

• The multiplier is either idle, or in its second-to-last execution
cycle.

Idle means an operation unit—adder, multiplier or divider—is either not
processing any instruction, or is currently in its last execution cycle
completing an instruction.

MIPS R4000 Microprocessor User's Manual 183

Floating-Point Unit

MUL.[S,D] can start only when all of the following conditions are met in
the RF stage:

• The multiplier is one of the following:

- idle, or in its second-to-last execution cycle.

- not within the first two execution cycles (EX, EX+1) if the
most recent instruction in the multiplier pipe is MUL.S

- not within the first three execution cycles (EX...EX+2) if
the most recent instruction in the multiplier pipe is
MUL.D

• The adder is one of the following:

- idle, or in its second-to-last execution cycle.

- not processing the first execution cycle (EX) of CVT.S.L

• The adder is not processing a square root instruction

• The divider is one of the following:

- idle, or in its second-to-last execution cycle.

- in the first 8 execution cycles (EX...EX+7) of a DIV.S

- in the first 21 execution cycles, except for the second
execution cycle, (cycles EX, EX+2...EX+20) of a DIV.D)

Chapter 6

184 MIPS R4000 Microprocessor User's Manual

 SQRT.[S,D] can start only when all of the following conditions are met in
the RFstage:

• The divider is either idle, or in its second-to-last execution cycle.

• The adder is either idle, or in its second-to-last execution cycle.

• The multiplier is either idle, or in its second-to-last execution
cycle.

CVT.fmt, NEG.[S,D] or ABS.[S,D] instructions can only start when all of
the following conditions are met in the RF stage:

• The adder is either idle, or in its second-to-last execution cycle.

• The multiplier is either idle, or in its second-to-last execution
cycle.

• The divider is one of the following:

- idle, or in its second-to-last execution cycle.

- in the third through eighth execution cycle (EX+2...EX+7)
of a DIV.S

- in the third through twenty-first execution cycle
(EX+2...EX+20) of a DIV.D

MIPS R4000 Microprocessor User's Manual 185

Floating-Point Unit

ADD.[S,D], SUB.[S,D] or C.COND.[S,D] can only start when all of the
following conditions are met in the RF stage:

• The adder is either idle, or in its second-to-last execution cycle.

• The multiplier is one of the following:

- idle, or in its second-to-last execution cycle.

- not in the third or fourth execution cycles (EX+2...EX+3)
if the most recent instruction in the multiplier pipe is
MUL.S

- not in the fourth or fifth execution cycles (EX+3...EX+4) if
the most recent instruction in the multiplier pipe is
MUL.D

• The divider is one of the following:

- idle, or in its second-to-last execution cycle.

- in the third through eighth execution cycle (EX+2...EX+7)
of a DIV.S

- in the third through twenty-first execution cycle
(EX+2...EX+20) of a DIV.D

Chapter 6

186 MIPS R4000 Microprocessor User's Manual

MIPS R4000 Microprocessor User's Manual 187

Floating-Point Exceptions

7

This chapter describes FPU floating-point exceptions, including FPU
exception types, exception trap processing, exception flags, saving and
restoring state when handling an exception, and trap handlers for IEEE
Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handle either
the operands or the results of a floating-point operation in its normal way.
The FPU responds by generating an exception to initiate a software trap or
by setting a status flag.

Chapter 7

188 MIPS R4000 Microprocessor User's Manual

7.1 Exception Types
The FP Control/Status register described in Chapter 6 contains an Enable bit
for each exception type; exception Enable bits determine whether an
exception will cause the FPU to initiate a trap or set a status flag.

• If a trap is taken, the FPU remains in the state found at the
beginning of the operation and a software exception handling
routine executes.

• If no trap is taken, an appropriate value is written into the FPU
destination register and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:

• Inexact (I)

• Underflow (U)

• Overflow (O)

• Division by Zero (Z)

• Invalid Operation (V)

Cause bits, Enables, and Flag bits (status flags) are used.

The FPU adds a sixth exception type, Unimplemented Operation (E), to
use when the FPU cannot implement the standard MIPS floating-point
architecture, including cases in which the FPU cannot determine the
correct exception behavior. This exception indicates the use of a software
implementation. The Unimplemented Operation exception has no Enable
or Flag bit; whenever this exception occurs, an unimplemented exception
trap is taken (if the FPU interrupt input to the CPU is enabled).

Figure 7-1 illustrates the Control/Status register bits that support
exceptions.

MIPS R4000 Microprocessor User's Manual 189

Floating-Point Exceptions

Figure 7-1 Control/Status Register Exception/Flag/Trap/Enable Bits

Each of the five IEEE Standard 754 exceptions (V, Z, O, U, I) is associated
with a trap under user control, and is enabled by setting one of the five
Enable bits. When an exception occurs, the corresponding Cause bit is set.
If the corresponding Enable bit is not set, the Flag bit is also set. If the
corresponding Enable bit is set, the Flag bit is not set and the FPU generates
an interrupt to the CPU. Subsequent exception processing allows a trap to
be taken.

7.2 Exception Trap Processing
When a floating-point exception trap is taken, the Cause register indicates
the floating-point coprocessor is the cause of the exception trap. The
Floating-Point Exception (FPE) code is used, and the Cause bits of the
floating-point Control/Status register indicate the reason for the floating-
point exception. These bits are, in effect, an extension of the system
coprocessor Cause register.

E Z O U IV

17 16 15 14 13 12

Unimplemented Operation

Invalid Operation
Division by Zero

Inexact Operation

Overflow
Underflow

Bit #

Z O U IV

11 10 9 8 7Bit #

Z O U IV

6 5 4 3 2Bit #

Cause
Bits

Flag
Bits

Enable
Bits

Chapter 7

190 MIPS R4000 Microprocessor User's Manual

7.3 Flags
A Flag bit is provided for each IEEE exception. This Flag bit is set to a 1 on
the assertion of its corresponding exception, with no corresponding
exception trap signaled.

The Flag bit is reset by writing a new value into the Status register; flags
can be saved and restored by software either individually or as a group.

When no exception trap is signaled, floating-point coprocessor takes a
default action, providing a substitute value for the exception-causing
result of the floating-point operation. The particular default action taken
depends upon the type of exception. Table 7-1 lists the default action taken
by the FPU for each of the IEEE exceptions.

Table 7-1 Default FPU Exception Actions

Field Description
Rounding

Mode
Default action

I
Inexact
exception

Any Supply a rounded result

U
Underflow
exception

RN
Modify underflow values to 0 with the sign of the
intermediate result

RZ
Modify underflow values to 0 with the sign of the
intermediate result

RP
Modify positive underflows to the format’s smallest positive
finite number; modify negative underflows to -0

RM
Modify negative underflows to the format’s smallest
negative finite number; modify positive underflows to 0

O
Overflow
exception

RN
Modify overflow values to ∞ with the sign of the
intermediate result

RZ
Modify overflow values to the format’s largest finite number
with the sign of the intermediate result

RP
Modify negative overflows to the format’s most negative
finite number; modify positive overflows to + ∞

RM
Modify positive overflows to the format’s largest finite
number; modify negative overflows to – ∞

Z
Division by
zero

Any Supply a properly signed ∞

V
Invalid
operation

Any Supply a quiet Not a Number (NaN)

MIPS R4000 Microprocessor User's Manual 191

Floating-Point Exceptions

The FPU detects the eight exception causes internally. When the FPU
encounters one of these unusual situations, it causes either an IEEE
exception or an Unimplemented Operation exception (E).

Table 7-2 lists the exception-causing situations and contrasts the behavior
of the FPU with the requirements of the IEEE Standard 754.

Table 7-2 FPU Exception-Causing Conditions

† The IEEE Standard 754 specifies an inexact exception on overflow only if the overflow
trap is disabled.

‡ Exponent underflow sets the U and I Cause bits if both the U and I Enable bits are not set
and the FS bit is set; otherwise exponent underflow sets the E Cause bit.

FPA Internal
Result

IEEE
Standard

754

Trap
Enable

Trap
Disable

Notes

Inexact result I I I Loss of accuracy

Exponent overflow O,I† O,I O,I Normalized exponent > Emax

Division by zero Z Z Z Zero is (exponent = Emin-1,
mantissa = 0)

Overflow on convert V E E Source out of integer range

Signaling NaN
source V V V

Invalid operation V V V 0/0, etc.

Exponent underflow U E UI‡ Normalized exponent < Emin

Denormalized or
QNaN None E E Denormalized is (exponent =

Emin-1 and mantissa <> 0)

Chapter 7

192 MIPS R4000 Microprocessor User's Manual

7.4 FPU Exceptions
The following sections describe the conditions that cause the FPU to
generate each of its exceptions, and details the FPU response to each
exception-causing condition.

Inexact Exception (I)

The FPU generates the Inexact exception if one of the following occurs:

• the rounded result of an operation is not exact, or

• the rounded result of an operation overflows, or

• the rounded result of an operation underflows and both the
Underflow and Inexact Enable bits are not set and the FS bit is
set.

The FPU usually examines the operands of floating-point operations
before execution actually begins, to determine (based on the exponent
values of the operands) if the operation can possibly cause an exception. If
there is a possibility of an instruction causing an exception trap, the FPU
uses a coprocessor stall to execute the instruction.

It is impossible, however, for the FPU to predetermine if an instruction will
produce an inexact result. If Inexact exception traps are enabled, the FPU
uses the coprocessor stall mechanism to execute all floating-point
operations that require more than one cycle. Since this mode of execution
can impact performance, Inexact exception traps should be enabled only
when necessary.

Trap Enabled Results: If Inexact exception traps are enabled, the result
register is not modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to
the destination register if no other software trap occurs.

MIPS R4000 Microprocessor User's Manual 193

Floating-Point Exceptions

Invalid Operation Exception (V)

The Invalid Operation exception is signaled if one or both of the operands
are invalid for an implemented operation. When the exception occurs
without a trap, the MIPS ISA defines the result as a quiet Not a Number
(NaN). The invalid operations are:

• Addition or subtraction: magnitude subtraction of infinities,
such as: (+ ∞) + (– ∞) or (– ∞) – (– ∞)

• Multiplication: 0 times ∞, with any signs

• Division: 0/0, or ∞/∞, with any signs

• Comparison of predicates involving < or > without ?, when the
operands are unordered

• Comparison or a Convert From Floating-point Operation on a
signaling NaN.

• Any arithmetic operation on a signaling NaN. A move (MOV)
operation is not considered to be an arithmetic operation, but
absolute value (ABS) and negate (NEG) are considered to be
arithmetic operations and cause this exception if one or both
operands is a signaling NaN.

• Square root: √x, where x is less than zero

Software can simulate the Invalid Operation exception for other
operations that are invalid for the given source operands. Examples of
these operations include IEEE Standard 754-specified functions
implemented in software, such as Remainder: x REM y, where y is 0 or x is
infinite; conversion of a floating-point number to a decimal format whose
value causes an overflow, is infinity, or is NaN; and transcendental
functions, such as ln (–5) or cos–1(3). Refer to Appendix B for examples or
for routines to handle these cases.

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: A quiet NaN is delivered to the destination
register if no other software trap occurs.

Chapter 7

194 MIPS R4000 Microprocessor User's Manual

Division-by-Zero Exception (Z)

The Division-by-Zero exception is signaled on an implemented divide
operation if the divisor is zero and the dividend is a finite nonzero number.
Software can simulate this exception for other operations that produce a
signed infinity, such as ln(0), sec(π/2), csc(0), or 0–1.

Trap Enabled Results: The result register is not modified, and the source
registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly
signed infinity.

Overflow Exception (O)

The Overflow exception is signaled when the magnitude of the rounded
floating-point result, with an unbounded exponent range, is larger than
the largest finite number of the destination format. (This exception also
sets the Inexact exception and Flag bits.)

Trap Enabled Results: The result register is not modified, and the source
registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is determined by
the rounding mode and the sign of the intermediate result (as listed in
Table 7-1).

MIPS R4000 Microprocessor User's Manual 195

Floating-Point Exceptions

Underflow Exception (U)

Two related events contribute to the Underflow exception:

• creation of a tiny nonzero result between ±2Emin which can
cause some later exception because it is so tiny

• extraordinary loss of accuracy during the approximation of
such tiny numbers by denormalized numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but
requires they be detected the same way for all operations.

Tininess can be detected by one of the following methods:

• after rounding (when a nonzero result, computed as though
the exponent range were unbounded, would lie strictly
between ±2Emin)

• before rounding (when a nonzero result, computed as though
the exponent range and the precision were unbounded, would
lie strictly between ±2Emin).

The MIPS architecture requires that tininess be detected after rounding.

Loss of accuracy can be detected by one of the following methods:

• denormalization loss (when the delivered result differs
from what would have been computed if the exponent
range were unbounded)

• inexact result (when the delivered result differs from what
would have been computed if the exponent range and
precision were both unbounded).

The MIPS architecture requires that loss of accuracy be detected as an
inexact result.

Trap Enabled Results: If Underflow or Inexact traps are enabled, or if the
FS bit is not set, then an Unimplemented exception (E) is generated, and
the result register is not modified.

Trap Disabled Results: If Underflow and Inexact traps are not enabled
and the FS bit is set, the result is determined by the rounding mode and
the sign of the intermediate result (as listed in Table 7-1).

Chapter 7

196 MIPS R4000 Microprocessor User's Manual

Unimplemented Instruction Exception (E)

Any attempt to execute an instruction with an operation code or format
code that has been reserved for future definition sets the Unimplemented bit
in the Cause field in the FPU Control/Status register and traps. The operand
and destination registers remain undisturbed and the instruction is
emulated in software. Any of the IEEE Standard 754 exceptions can arise
from the emulated operation, and these exceptions in turn are simulated.

The Unimplemented Instruction exception can also be signaled when
unusual operands or result conditions are detected that the implemented
hardware cannot handle properly. These include:

• Denormalized operand, except for Compare instruction

• Quiet Not a Number operand, except for Compare instruction

• Denormalized result or Underflow, when either Underflow or
Inexact Enable bits are set or the FS bit is not set.

• Reserved opcodes

• Unimplemented formats

• Operations which are invalid for their format (for instance,
CVT.S.S)

NOTE: Denormalized and NaN operands are only trapped if the
instruction is a convert or computational operation. Moves do not trap
if their operands are either denormalized or NaNs.

The use of this exception for such conditions is optional; most of these
conditions are newly developed and are not expected to be widely used in
early implementations. Loopholes are provided in the architecture so that
these conditions can be implemented with assistance provided by
software, maintaining full compatibility with the IEEE Standard 754.

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: This trap cannot be disabled.

MIPS R4000 Microprocessor User's Manual 197

Floating-Point Exceptions

7.5 Saving and Restoring State
Sixteen doubleword coprocessor load or store operations save or restore
the coprocessor floating-point register state in memory. The remainder of
control and status information can be saved or restored through Move To/
From Coprocessor Control Register instructions, and saving and restoring
the processor registers. Normally, the Control/Status register is saved first
and restored last.

When the coprocessor Control/Status register (FCR31) is read, and the
coprocessor is executing one or more floating-point instructions, the
instruction(s) in progress are either completed or reported as exceptions.
The architecture requires that no more than one of these pending
instructions can cause an exception. If the pending instruction cannot be
completed, this instruction is placed in the Exception register, if present.
Information indicating the type of exception is placed in the Control/Status
register. When state is restored, state information in the status word
indicates that exceptions are pending.

Writing a zero value to the Cause field of Control/Status register clears all
pending exceptions, permitting normal processing to restart after the
floating-point register state is restored.

The Cause field of the Control/Status register holds the results of only one
instruction; the FPU examines source operands before an operation is
initiated to determine if this instruction can possibly cause an exception. If
an exception is possible, the FPU executes the instruction in stall mode to
ensure that no more than one instruction (that might cause an exception)
is executed at a time.

Chapter 7

198 MIPS R4000 Microprocessor User's Manual

7.6 Trap Handlers for IEEE Standard 754 Exceptions
The IEEE Standard 754 strongly recommends that users be allowed to
specify a trap handler for any of the five standard exceptions that can
compute; the trap handler can either compute or specify a substitute result
to be placed in the destination register of the operation.

By retrieving an instruction using the processor Exception Program Counter
(EPC) register, the trap handler determines:

• exceptions occurring during the operation

• the operation being performed

• the destination format

On Overflow or Underflow exceptions (except for conversions), and on
Inexact exceptions, the trap handler gains access to the correctly rounded
result by examining source registers and simulating the operation in
software.

On Overflow or Underflow exceptions encountered on floating-point
conversions, and on Invalid Operation and Divide-by-Zero exceptions, the
trap handler gains access to the operand values by examining the source
registers of the instruction.

The IEEE Standard 754 recommends that, if enabled, the overflow and
underflow traps take precedence over a separate inexact trap. This
prioritization is accomplished in software; hardware sets the bits for both
the Inexact exception and the Overflow or Underflow exception.

MIPS R4000 Microprocessor User's Manual 199

R4000 Processor Signal Descriptions

8

This chapter describes the signals used by and in conjunction with the
R4000 processor. The signals include the System interface, the Clock/
Control interface, the Secondary Cache interface, the Interrupt interface,
the Joint Test Action Group (JTAG) interface, and the Initialization
interface.

Signals are listed in bold, and low active signals have a trailing asterisk—
for instance, the low-active Read Ready signal is RdRdy*. The signal
description also tells if the signal is an input (the processor receives it) or
output (the processor sends it out).

Figure 8-1 illustrates the functional groupings of the processor signals.

Chapter 8

200 MIPS R4000 Microprocessor User's Manual

Figure 8-1 R4000 Processor Signals

SysAD(63:0)

SysADC(7:0)

SysCmd(8:0)

SysCmdP

ValidIn*

ValidOut*

ExtRqst*

Release*

WrRdy*

IvdAck* (3)

IvdErr* (3)

TClock(1:0)

RClock(1:0)

MasterClock

MasterOut

SyncOut

SyncIn

IOOut

IOIn VCCOk

ColdReset*

Reset*
Fault*

VccP

VssP

Status(7:0) (4)

VccSense (1)

VssSense (1)

SCData (127:0)

SCDChk (15:0)

SCTag (24:0)

SCTChk (6:0)

SCAddr (17:1)

SCAddr0 (w,x,y,z)

SCAPar(2:0)

SCWr(w,x,y,z)*

SCDCS*

SCTCS*

Int(5:1)* (2)

Int0*

NMI*

ModeClock

ModeIN

JTDI

JTDO

JTMS

JTCK

(1) = R4000SC and R4000MC only (2) = R4000PC only

SCOE*

In
iti

al
iz

at
io

n
In

te
rf

ac
e

S
ec

on
da

ry
 C

ac
he

 In
te

rf
ac

e
(1

)
In

te
rr

up
t I

nt
er

fa
ce

S
ys

te
m

 In
te

rf
ac

e
C

lo
ck

/C
on

tr
ol

 In
te

rf
ac

e

R4000
Logic

Symbol

64

8

9

2

2

8

128

16

25

7

17

4

3

4

5

RdRdy*

(3) = R4000MC only

JT
A

G
In

te
rf

ac
e

(4) = R4400 only

MIPS R4000 Microprocessor User's Manual 201

R4000 Processor Signal Descriptions

8.1 System Interface Signals
System interface signals provide the connection between the R4000
processor and the other components in the system. IvdAck* and IvdErr*
signals are applicable only on R4000MC; on the R4000SC they must be tied
to Vcc. The remaining signals are available on all three of the package
configurations.

Table 8-1 lists the system interface signals.

Table 8-1 System Interface Signals

Name Definition Direction Description

ExtRqst* External request Input

An external agent asserts ExtRqst* to
request use of the System interface. The
processor grants the request by asserting
Release*.

IvdAck*
Invalidate
acknowledge Input

An external agent asserts IvdAck* to
signal successful completion of a
processor invalidate or update request
(R4000MC only; tie to Vcc on R4000SC).

IvdErr* Invalidate error Input

An external agent asserts IvdErr* to
signal unsuccessful completion of a
processor invalidate or update request
(R4000MC only; tie to Vcc on R4000SC).

Release* Release interface Output

In response to the assertion of ExtRqst*,
the processor asserts Release*, signalling
to the requesting device that the System
interface is available.

RdRdy* Read ready Input

The external agent asserts RdRdy* to
indicate that it can accept processor read,
invalidate, or update requests in both
secondary-cache and no-secondary-cache
mode; or can accept a read followed by
write request, a read followed by a
potential update request, or a read
followed by a potential update followed
by a write request in secondary cache
mode.

SysAD(63:0)
System address/
data bus

Input/
Output

A 64-bit address and data bus for
communication between the processor
and an external agent.

Chapter 8

202 MIPS R4000 Microprocessor User's Manual

Table 8-1 (cont.) System Interface Signals

†. The SysADC(7:0) bits map to the SysAD bus in this manner:SysADC(7) covers
SysAD(63:56), SysADC(6) coversSysAD(55:48), and so on down toSysADC(0), which
coversSysAD(7:0).

Name Definition Direction Description

SysADC(7:0)
System address/
data check bus Input/Output

An 8-bit bus containing
check bits for the SysAD
bus.†

SysCmd(8:0)
System command/
data identifier Input/Output

A 9-bit bus for command
and data identifier
transmission between the
processor and an external
agent.

SysCmdP
System command/
data identifier bus
parity

Input/Output

A single, even-parity bit for
the SysCmd bus. When the
System interface is set to
parity mode, the processor
also indicates a secondary
cache ECC error by
corrupting the state of the
SysCmdP signal.

ValidIn* Valid input Input

The external agent asserts
ValidIn* when it is driving a
valid address or data on the
SysAD bus and a valid
command or data identifier
on the SysCmd bus.

ValidOut* Valid output Output

The processor asserts
ValidOut* when it is
driving a valid address or
data on the SysAD bus and a
valid command or data
identifier on the SysCmd
bus.

WrRdy* Write ready Input
An external agent asserts
WrRdy* when it can accept
a processor write request.

MIPS R4000 Microprocessor User's Manual 203

R4000 Processor Signal Descriptions

8.2 Clock/Control Interface Signals
The Clock/Control interface signals make up the interface for clocking
and maintenance. Table 8-2 lists the Clock/Control interface signals.

Table 8-2 Clock/Control Interface Signals

Name Definition Direction Description

IOOut I/O output Output

Output slew rate control
feedback loop output. Must be
connected to IOIn through a
delay loop that models the I/O
path from the processor to an
external agent.

IOIn I/O input Input
Output slew rate control
feedback loop input (see
IOOut).

MasterClock Master clock Input
Master clock input that
establishes the processor
operating frequency.

MasterOut Master clock out Output Master clock output aligned
with MasterClock.

RClock(1:0) Receive clocks Output
Two identical receive clocks that
establish the System interface
frequency.

SyncOut
Synchronization
clock out Output

Synchronization clock output.
Must be connected to SyncIn
through an interconnect that
models the interconnect
between MasterOut, TClock,
RClock, and the external agent.

SyncIn
Synchronization
clock in Input Synchronization clock input.

TClock(1:0) Transmit clocks Output
Two identical transmit clocks
that establish the System
interface frequency.

Fault* Fault Output

The processor asserts Fault* to
indicate a mismatch output of
boundary comparators, and
indication of System interface
input parity or ECC errors.

Chapter 8

204 MIPS R4000 Microprocessor User's Manual

Table 8-2 (cont.) Clock/Control Interface Signals

Name Definition Direction Description

Status(7:0) Status Output
An 8-bit bus that indicates the
current operational status of the
processor. R4400 only.

VccP Quiet Vcc for PLL Input Quiet Vcc for the internal phase
locked loop.

VccSense Vcc sense Input/
Output

A special pin used only in
component testing and
characterization,VccSense
provides a separate, direct
connection from the on-chip Vcc
node to a package pin, without
connecting to the in-package
power planes. Test fixtures treat
VccSense as an analog output
pin; the voltage at this pin
directly exhibits the behavior of
the on-chip Vcc. Thus,
characterization engineers can
easily observe the effects of ∆i/
∆t noise, transmission line
reflections, etc. VccSense
should be connected to Vcc in
functional system designs.

VssP Quiet Vss for PLL Input Quiet Vss for the internal phase
locked loop.

VssSense Vss sense Input/
Output

VssSense provides a separate,
direct connection from the on-
chip Vss node to a package pin
without having to connect to the
in-package ground planes.
VssSense should be connected
to Vss in functional system
designs.

MIPS R4000 Microprocessor User's Manual 205

R4000 Processor Signal Descriptions

8.3 Secondary Cache Interface Signals
Secondary Cache interface signals constitute the interface between the
R4000 processor and secondary cache. These signals are available only on
the R4000MC and R4000SC. Table 8-3 lists the Secondary Cache interface
signals.

Table 8-3 Secondary Cache Interface Signals

Name Definition Direction Description

SCAddr(17:1)
Secondary cache
address bus Output

The 18-bit address bus for the
secondary cache. Bit 0 has four
output lines, (SCAddr0W:Z), to
provide additional drive current.

SCAddr0W
Secondary cache
address LSB Output

SCAddr0X
Secondary cache
address LSB Output

SCAddr0Y
Secondary cache
address LSB Output

SCAddr0Z
Secondary cache
address LSB Output

SCAPar(2:0)
Secondary cache
address parity
bus

Output

A 3-bit bus that carries the parity
of the SCAddr bus and the cache
control line SCWr*. The
individual bit definitions are:

SCAPar2
Secondary cache
address parity
bus

Output Even parity for SCAddr(17:12)
and SCWr*

SCAPar1
Secondary cache
address parity
bus

Output Even parity for SCAddr(11:6) and
SCDCS*

SCAPar0
Secondary cache
address parity
bus

Output Even parity for SCAddr(5:0) and
SCTCS*

SCData(127:0)
Secondary cache
data bus Input/Output

A 128-bit bus used to read or write
cache data from and to the
secondary cache data RAM.

Chapter 8

206 MIPS R4000 Microprocessor User's Manual

Table 8-3 (cont.) Secondary Cache Interface Signals

Name Definition Direction Description

SCDChk(15:0)
Secondary cache
data ECC bus Input/Output

A 16-bit bus that carries two 8-bit
ECC fields that cover the 128 bits
of SCData from/to secondary
cache. SCDChk(15:8)
corresponds to SCData(127:64)
and SCDChk(7:0) corresponds to
SCData(63:0).

SCDCS*
Secondary cache
data chip select Output Chip select enable signal for the

secondary cache data RAM.

SCOE*
Secondary cache
output enable Output Output enable for the secondary

cache data and tag RAM.

SCTag(24:0)
Secondary cache
tag bus Input/Output

A 25-bit bus used to read or write
cache tags from and to the
secondary cache.

SCTChk(6:0)
Secondary cache
tag ECC bus Input/Output

A 7-bit bus that carries an ECC
field covering the SCTag from and
to the secondary cache.

SCTCS*
Secondary cache
tag chip select Output Chip select enable signal for the

secondary cache tag RAM.

SCWrW*
Secondary cache
write enable Output Write enable for the secondary

cache data and tag RAM.

SCWrX*
Secondary cache
write enable Output Write enable for the secondary

cache data and tag RAM.

SCWrY*
Secondary cache
write enable Output Write enable for the secondary

cache data and tag RAM.

SCWrZ*
Secondary cache
write enable Output Write enable for the secondary

cache data and tag RAM.

MIPS R4000 Microprocessor User's Manual 207

R4000 Processor Signal Descriptions

8.4 Interrupt Interface Signals
The Interrupt interface signals make up the interface used by external
agents to interrupt the R4000 processor. Int*(5:1) are available only on the
R4000PC; Int*(0) and NMI* are available on all three configurations. Table
8-4 lists the Interrupt interface signals.

Table 8-4 Interrupt Interface Signals

8.5 JTAG Interface Signals
The JTAG interface signals make up the interface that provides the JTAG
boundary scan mechanism. Table 8-5 lists the JTAG interface signals.

Table 8-5 JTAG Interface Signals

Name Definition Direction Description

Int*(5:1) Interrupt Input
Five of six general processor interrupts, bit-
wise ORed with bits 5:1 of the interrupt
register. R4000PC only.

Int*(0) Interrupt Input One of six general processor interrupts, bit-
wise ORed with bit 0 of the interrupt register.

NMI*
Nonmaskable
interrupt Input Nonmaskable interrupt, ORed with bit 6 of the

interrupt register.

Name Definition Direction Description

JTDI JTAG data in Input Data is serially scanned in through this pin.

JTCK TAG clock input Input
The processor outputs a serial clock on
JTCK. On the rising edge of JTCK, both
JTDI and JTMS are sampled.

JTDO JTAG data out Output Data is serially scanned out through this pin.

JTMS JTAG command Input JTAG command signal, indicating the
incoming serial data is command data.

Chapter 8

208 MIPS R4000 Microprocessor User's Manual

8.6 Initialization Interface Signals
The Initialization interface signals make up the interface by which an
external agent initializes the processor operating parameters. These
signals are available on each of the three processor configurations. Table
8-6 lists the Initialization interface signals.

Table 8-6 Initialization Interface Signals

†. A warm reset restarts processor, but does not affect clocks; it preserves the processor in-
ternal state. A description of warm reset is given in Chapter 9.

Name Definition Direction Description

ColdReset* Cold reset Input

This signal must be asserted for a
power on reset or a cold reset. The
clocks SClock, TClock, and RClock
begin to cycle and are synchronized
with the deasserted edge of
ColdReset*. ColdReset* must be
deasserted synchronously with
MasterOut.

ModeClock Boot mode clock Output
Serial boot-mode data clock output;
runs at the system clock frequency
divided by 256: (MasterClock/256).

ModeIn Boot mode data in Input Serial boot-mode data input.

Reset* Reset Input

This signal must be asserted for any
reset sequence. It can be asserted
synchronously or asynchronously for
a cold reset, or synchronously to
initiate a warm† reset. Reset* must be
deasserted synchronously with
MasterOut.

VCCOk Vcc is OK Input

When asserted, this signal indicates to
the processor that the +5 volt power
supply has been above 4.75 volts for
more than 100 milliseconds and will
remain stable. The assertion of
VCCOk initiates the initialization
sequence.

MIPS R4000 Microprocessor User's Manual 209

R4000 Processor Signal Descriptions

8.7 Signal Summary

Table 8-7 R4000SC/MC Processor Signal Summary

Description Name I/O
Asserted

State
3-State

Secondary cache data bus SCData(127:0) I/O High Yes

Secondary cache data ECC bus SCDChk(15:0) I/O High Yes

Secondary cache tag bus SCTag(24:0) I/O High Yes

Secondary cache tag ECC bus SCTChk(6:0) I/O High Yes

Secondary cache address bus SCAddr(17:1) O High No

Secondary cache address LSB SCAddr0Z O High No

Secondary cache address LSB SCAddr0Y O High No

Secondary cache address LSB SCAddr0X O High No

Secondary cache address LSB SCAddr0W O High No

Secondary cache address parity bus SCAPar(2:0) O High No

Secondary cache output enable SCOE* O Low No

Secondary cache write enable SCWrZ* O Low No

Secondary cache write enable SCWrY* O Low No

Secondary cache write enable SCWrX* O Low No

Secondary cache write enable SCWrW* O Low No

Secondary cache data chip select SCDCS* O Low No

Secondary cache tag chip select SCTCS* O Low No

System address/data bus SysAD(63:0) I/O High Yes

System address/data check bus SysADC(7:0) I/O High Yes

System command/data identifier bus SysCmd(8:0) I/O High Yes

System command/data identifier bus parity SysCmdP I/O High Yes

Valid input ValidIn* I Low No

Valid output ValidOut* O Low No

External request ExtRqst* I Low No

Release interface Release* O Low No

Read ready RdRdy* I Low No

Write ready WrRdy* I Low No

Invalidate acknowledge IvdAck* I Low No

Invalidate error IvdErr* I Low No

Chapter 8

210 MIPS R4000 Microprocessor User's Manual

Table 8-7 (cont.) R4000SC/MC Processor Signal Summary

Description Name I/O
Asserted

State
3-State

Interrupt Int*(0) I Low No

Nonmaskable interrupt NMI* I Low No

Boot mode data in ModeIn I High No

Boot mode clock ModeClock O High No

JTAG data in JTDI I High No

JTAG data out JTDO O High No

JTAG command JTMS I High No

JTAG clock input JTCK I High No

Transmit clocks TClock(1:0) O High No

Receive clocks RClock(1:0) O High No

Master clock MasterClock I High No

Master clock out MasterOut O High No

Synchronization clock out SyncOut O High No

Synchronization clock in SyncIn I High No

I/O output IOOut O High No

I/O input IOIn I High No

Vcc is OK VCCOk I High No

Cold reset ColdReset* I Low No

Reset Reset* I Low No

Fault Fault* O Low No

Quiet Vcc for PLL VccP I High No

Quiet Vss for PLL VssP I High No

Status Status(7:0) O High No

Vcc sense VccSense I/O N/A No

Vss sense VssSense I/O N/A No

MIPS R4000 Microprocessor User's Manual 211

R4000 Processor Signal Descriptions

Table 8-8 R4000PC Processor Signal Summary

Description Name I/O
Asserted

State
3-State

System address/data bus SysAD(63:0) I/O High Yes

System address/data check bus SysADC(7:0) I/O High Yes

System command/data identifier bus SysCmd(8:0) I/O High Yes

System command/data identifier bus parity SysCmdP I/O High Yes

Valid input ValidIn* I Low No

Valid output ValidOut* O Low No

External request ExtRqst* I Low No

Release interface Release* O Low No

Read ready RdRdy* I Low No

Write ready WrRdy* I Low No

Interrupts Int*(5:1) I Low No

Interrupt Int*(0) I Low No

Nonmaskable interrupt NMI* I Low No

Boot mode data in ModeIn I High No

Boot mode clock ModeClock O High No

JTAG data in JTDI I High No

JTAG data out JTDO O High No

JTAG command JTMS I High No

JTAG clock input JTCK I High No

Transmit clocks TClock(1:0) O High No

Receive clocks RClock(1:0) O High No

Master clock MasterClock I High No

Master clock out MasterOut O High No

Synchronization clock out SyncOut O High No

Synchronization clock in SyncIn I High No

I/O output IOOut O High No

I/O input IOIn I High No

Vcc is OK VCCOk I High No

Chapter 8

212 MIPS R4000 Microprocessor User's Manual

Table 8-8 (cont.) R4000PC Processor Signal Summary

Description Name I/O
Asserted

State
3-State

Cold reset ColdReset* I Low No

Reset Reset* I Low No

Fault Fault* O Low No

Quiet Vcc for PLL VccP I High No

Quiet Vss for PLL VssP I High No

MIPS R4000 Microprocessor User's Manual 213

Initialization Interface

9

This chapter describes the R4000 Initialization interface. This includes the
reset signal description and types, initialization sequence, with signals
and timing dependencies, and boot modes, which are set at initialization
time.

Signal names are listed in bold letters—for instance the signal VCCOk
indicates +5 voltage is stable. Low-active signals are indicated by a
trailing asterisk, such as ColdReset*, the power-on/cold reset signal.

Chapter 9

214 MIPS R4000 Microprocessor User's Manual

9.1 Functional Overview
The R4000 processor has the following three types of resets; they use the
VCCOk, ColdReset*, and Reset* input signals.

• Power-on reset: starts when the power supply is turned on and
completely reinitializes the internal state machine of the
processor without saving any state information.

• Cold reset: restarts all clocks, but the power supply remains
stable. A cold reset completely reinitializes the internal state
machine of the processor without saving any state information.

• Warm reset: restarts processor, but does not affect clocks. A
warm reset preserves the processor internal state.

The operation of each type of reset is described in sections that follow.
Refer to Figures 9-1, 9-2, and 9-3 later in this chapter for timing diagrams
of the power-on, cold, and warm resets.

The Initialization interface is a serial interface that operates at the
frequency of the MasterClock divided by 256: (MasterClock/256). This
low-frequency operation allows the initialization information to be stored
in a low-cost EPROM.

MIPS R4000 Microprocessor User's Manual 215

Initialization Interface

9.2 Reset Signal Description
This section describes the three reset signals, VCCOk, ColdReset*, and
Reset*.

VCCOk: When asserted†, VCCOk indicates to the processor that the +5
volt power supply (Vcc) has been above 4.75 volts for more than 100
milliseconds (ms) and is expected to remain stable. The assertion of
VCCOk initiates the reading of the boot-time mode control serial stream
(described in Initialization Sequence, in this chapter).

ColdReset*: The ColdReset* signal must be asserted (low) for either a
power-on reset or a cold reset. The clocks SClock, TClock, and RClock
begin to cycle and are synchronized with the deasserted edge (high) of
ColdReset*. ColdReset* must be deasserted synchronously with
MasterClock.

Reset*: the Reset* signal must be asserted for any reset sequence. It can
be asserted synchronously or asynchronously for a cold reset, or
synchronously to initiate a warm reset. Reset* must be deasserted
synchronously with MasterClock.

ModeIn: Serial boot mode data in.

ModeClock: Serial boot mode data out, at the MasterClock frequency
divided by 256 (MasterClock/256).

† Asserted means the signal is true, or in its valid state. For example, the low-active Reset*
signal is said to be asserted when it is in a low (true) state; the high-active VCCOk signal
is true when it is asserted high.

Chapter 9

216 MIPS R4000 Microprocessor User's Manual

Power-on Reset

The sequence for a power-on reset is listed below.

1. Power-on reset applies a stable Vcc of at least 4.75 volts from the
+5 volt power supply to the processor. It also supplies a stable,
continuous system clock at the processor operational frequency.

2. After at least 100 ms of stable Vcc and MasterClock, the VCCOk
signal is asserted to the processor. The assertion of VCCOk
initializes the processor operating parameters. After the mode
bits have been read in, the processor allows its internal phase
locked loops to lock, stabilizing the processor internal clock,
PClock, the SyncOut-SyncIn clock path (described in Chapter
10), and the master clock output, MasterOut. Note that when
JTAG is not used, JTCK must be tied low at the rising edge of
VCCOk for the processor to properly reset. If JTAG is used, JTCK
may be toggled during power-up.

3. ColdReset* is asserted for at least 64K (216) MasterClock cycles
after the assertion of VCCOk. Once the processor reads the boot-
time mode control serial data stream, ColdReset* can be
deasserted. ColdReset* must be deasserted synchronously with
MasterClock.

4. The deassertion of ColdReset* synchronizes the rising edges of
SClock and TClock with the rising edge of the next MasterClock,
aligning SClock, TClock, and RClock (which is 90 degrees ahead
of phase with SClock and TClock) of all processors in a
multiprocessor system. However, these clocks are only
guaranteed to be stabilized 64 MasterClock cycles after
ColdReset* is deasserted.

5. After ColdReset* is deasserted synchronously and SClock,
TClock, and RClock have stabilized, Reset* is deasserted to allow
the processor to begin running. (Reset* must be held asserted for
at least 64 MasterClock cycles after the deassertion of
ColdReset*.) Reset* must be deasserted synchronously with
MasterClock.

NOTE: ColdReset* must be asserted when VCCOk asserts. The
behavior of the processor is undefined if VCCOk asserts while
ColdReset* is deasserted.

MIPS R4000 Microprocessor User's Manual 217

Initialization Interface

Cold Reset

A cold reset can begin anytime after the processor has read the
initialization data stream, causing the processor to start with the Reset
exception. For information about saving processor states, see the
description of the Reset exception in Chapter 5.

A cold reset requires the same sequence as a power-on reset except that the
power is presumed to be stable before the assertion of the reset inputs and
the deassertion of VCCOk.

To begin the reset sequence, VCCOk must be deasserted for a minimum
of at least 64 MasterClock cycles before reassertion.

Warm Reset

To execute a warm reset, the Reset* input is asserted synchronously with
MasterClock. It is then held asserted for at least 64 MasterClock cycles
before being deasserted synchronously with MasterClock. The processor
internal clocks, PClock and SClock, and the System interface clocks,
TClock and RClock, are not affected by a warm reset. The boot-time
mode control serial data stream is not read by the processor on a warm
reset. A warm reset forces the processor to start with a Soft Reset
exception. For information about saving processor states, see the
description of the Soft Reset exception in Chapter 5.

The master clock output, MasterOut, can be used to generate any reset-
related signals for the processor that must be synchronous with
MasterClock.†

After a power-on reset, cold reset, or warm reset, all processor internal
state machines are reset, and the processor begins execution at the reset
vector. All processor internal states are preserved during a warm reset,
although the precise state of the caches depends on whether or not a cache
miss sequence has been interrupted by resetting the processor state
machines.

† Since MasterOut is undefined until after the serial PROM is read, reset logic must not
depend on MasterOut before the boot PROM is read.

Chapter 9

218 MIPS R4000 Microprocessor User's Manual

9.3 Initialization Sequence
The boot-mode initialization sequence begins immediately after VCCOk
is asserted. As the processor reads the serial stream of 256 bits through the
ModeIn pin, the boot-mode bits initialize all fundamental processor
modes (the signals used are described in Chapter 8).

The initialization sequence is listed below.

1. The system deasserts the VCCOk signal. The ModeClock output
is held asserted.

2. The processor synchronizes the ModeClock output at the time
VCCOk is asserted. The first rising edge of ModeClock occurs
256 MasterClock cycles after VCCOk is asserted.

3. Each bit of the initialization stream is presented at the ModeIn pin
after each rising edge of the ModeClock. The processor samples
256 initialization bits from the ModeIn input.

 Figures 9-1, 9-2, and 9-3 on the next three pages show the timing diagrams
for the power-on, warm, and cold resets.

M
IP

S R
4000 M

icroprocessor U
ser's M

anual
219

Figure 9-1 P
ow

er-on R
eset

Power-on Reset (POR)

MasterClock

VCCOK

ModeClock

ModeIn

ColdReset*

Reset*

MasterOut

SyncOut

TClock

RClock

TDS

Undefined

Undefined

Vcc

TMDS

TDS

> 100ms

TDS

256 MClk cycles

5.25V
4.75V

TDS

Bit 0

TMDH

> 64K MClk cycles*
> 64 MClk cycles

Bit

TDS

Bit 1

256

cycles

MClk

Reset*

(MClk)

255

Undefined

Undefined

TClock and RClock are stable
after 64 MClk cycles

*Considering multiple processing variables and systems-
related variables that cannot be duplicated on the tester, a larger

number greater than or equal to 100 ms is recommended

F
or all div. m

odes, assum
e the rising edges are

synchronized to this edge ofM
asterC

lock
.

Wavy lines indicate one or more identical
cycles, not shown due to space constraints

M
IP

S R
4000 M

icroprocessor U
ser's M

anual
220

Figure 9-2 C
old R

eset

TClock and RClock are stable
after 64 MClk cycles

MasterClock

VCCOK

ModeClock

ModeIn

ColdReset*

Reset*

MasterOut

SyncOut

TClock

RClock

Vcc

> 64
TDS

256 MClk cycles
256

cycles

MClk

TDS

cycles

TMDS

TDS

256 MClk cycles

TDS

Bit 0

TMDH

> 64K MClk cycles*
> 64 MClk cycles

BitBit 1

256

cycles

MClk

255

TDS

TDS

MClk

(MClk)

Cold Reset

Undefined

Undefined

Undefined

Undefined

*Considering multiple processing variables and systems-
related variables that cannot be duplicated on the tester, a larger

number greater than or equal to 100 ms is recommended

F
or all div. m

odes, assum
e the rising edges are

synchronized to this edge ofM
asterC

lock
.

Wavy lines indicate one or more identical
cycles, not shown due to space constraints

M
IP

S R
4000 M

icroprocessor U
ser's M

anual
221

Figure 9-3 W
arm

 R
eset

MasterClock

VCCOK

ModeClock

ModeIn

ColdReset*

Reset*

MasterOut

SyncOut

TClock

RClock

Vcc

TDSTDS

256 MClk cycles

> 64 MClk cycles

(MClk)

Warm Reset

Undefined

Undefined

Undefined

Undefined

Wavy lines indicate one or more identical
cycles, not shown due to space constraints

Chapter 9

222 MIPS R4000 Microprocessor User's Manual

9.4 Boot-Mode Settings
Table 9-1 lists the processor boot-mode settings. The following rules apply
to the boot-mode settings listed in this table:

• Bit 0 of the stream is presented to the processor when VCCOk
is first asserted.

• Selecting a reserved value results in undefined processor
behavior.

• Bits 65 to 255 are reserved bits.

• Zeros must be scanned in for all reserved bits.

Table 9-1 Boot-Mode Settings

Serial Bit Value Mode Setting

0
BlkOrder: Secondary Cache Mode block read response ordering
0 Sequential ordering
1 Subblock ordering

1

EIBParMode: Specifies nature of System interface check bus

0 Single error correcting, double error detecting (SECDED) error
checking and correcting mode

1 Byte parity

2
EndBIt: Specifies byte ordering
0 Little-endian ordering
1 Big-endian ordering

3

DShMdDis: Dirty shared mode; enables the transition to dirty shared state
on a successful processor update
0 Dirty shared mode enabled
1 Dirty shared mode disabled

4
NoSCMode: Specifies presence of secondary cache
0 Secondary cache present
1 No secondary cache present

5:6
SysPort: System Interface port width, bit 6 most significant
0 64 bits
1-3 Reserved

7
SC64BitMd: Secondary cache interface port width
0 128 bits
1 Reserved

8
EISpltMd: Specifies secondary cache organization
0 Secondary cache unified
1 Secondary cache split

MIPS R4000 Microprocessor User's Manual 223

Initialization Interface

Table 9-1 (cont.) Boot-Mode Settings

Serial Bit Value Mode Setting

9:10

SCBlkSz: Secondary cache line length, bit 10 most significant
0 4 words
1 8 words
2 16 words
3 32 words

11:14

XmitDatPat: System interface data rate, bit 14 most significant
0 D
1 DDx
2 DDxx
3 DxDx
4 DDxxx
5 DDxxxx
6 DxxDxx
7 DDxxxxxx
8 DxxxDxxx
9-15 Reserved

15:17

SysCkRatio: PClock to SClock divisor, frequency relationship between
SClock, RClock, and TClock and PClock, bit 17 most significant
0 Divide by 2
1 Divide by 3
2 Divide by 4
3 Divide by 6 (R4400 processor only)
4 Divide by 8 (R4400 processor only)
5-7 Reserved

18 SIMasterMd: Master/Checker Mode (see mode bit 42); used in R4400 only.

19

TimIntDis: Timer Interrupt enable allows timer interrupts, otherwise the
interrupt used by the timer becomes a general purpose interrupt
0 Timer Interrupt enabled
1 Timer Interrupt disabled

20

PotUpdDis: Potential update enable allows potential updates to be issued.
Otherwise, only compulsory updates are issued
0 Potential updates enabled
1 Potential updates disabled

21:24

TWrSUp: Secondary cache write deassertion delay, TWrSup in PCycles, bit
24 most significant
0-2 Undefined
3-15 Number of PClock cycles: Min 3, Max 15

Chapter 9

224 MIPS R4000 Microprocessor User's Manual

Table 9-1 (cont.) Boot-Mode Settings

Serial Bit Value Mode Setting

25:26
TWr2Dly: Secondary cache write assertion delay 2, TWr2Dly in PCycles, bit
26 most significant
0
1-3

Undefined
Number of PClock cycles: Min 1, Max 3

27:28

TWr1Dly: Secondary cache write assertion delay 1, TWr1Dly in PCycles, bit
28 most significant
0
1-3

Undefined
Number of PClock cycles; Min 1, Max 3

29

TWrRc: Secondary cache write recovery time, TWrRc in PCycles, either 0 or
1 cycle
0
1

0 cycle
1 cycle

30:32
TDis: Secondary cache disable time, TDis in PCycles, bit 32 most significant
0-1
2-7

Undefined
Number of PClock cycles: Min 2, Max 7

33:36

TRd2Cyc: Secondary cache read cycle time 2, TRdCyc2 in PCycles, bit 36 most
significant
0-1
2-15

Undefined
Number of PClock cycles: Min 2, Max 15

37:40

TRd1Cyc: Secondary cache read cycle time 1, TRdCyc1 in PCycles, bit 40 most
significant
0-3
4-15

Undefined
Number of PClock cycles: Min 4, Max 15

41

NoMPmode: Secondary cache line is not invalidated

0
NoMPmode off: after a secondary cache miss, the
existing valid cache line is invalidated (following
writeback if necessary)

1

NoMPmode on: after a secondary cache miss, the
existing valid cache line is not invalidated.
Available on the R4000SC and R4400SC, to
improve performance.

MIPS R4000 Microprocessor User's Manual 225

Initialization Interface

Table 9-1 (cont.) Boot-Mode Settings

Serial Bit Value Mode Setting

42

SCMasterMd: selects the type of Master/Checker mode (also see
description of mode bit 18). Used in R4400 only.

SCMasterMd
(Bit 42)

SIMasterMd
(Bit 18) Mode

0 0 Complete Master
(required for single-chip operation)

1 1 Complete Listener
(paired with Complete Master)

1 0 System Interface Master
(SIMaster)

0 1 Secondary Cache Master
(SCMaster, paired with SIMaster)

43:45 0 Reserved

46
Pkg179: R4000 Processor Package type
0 Large (447 pin)
1 Small (179 pin)

47:49

CycDivisor: This mode determines the clock divisor for the reduced
power mode. When the RP bit in the Status register is set to 1, the pipeline
clock is divided by one of the following values. Bit 49 is the most
significant.
0
1
2
3
4-7

Divide by 2
Divide by 4
Divide by 8
Divide by 16
Reserved

50:52

Drv0_50, Drv0_75, Drv1_00: Drive the outputs out in n x MasterClock
period. Bit 52 is the most significant. Combinations not defined below are
reserved.
1
2
4

Drive at 0.50 x MasterClock period
Drive at 0.75 x MasterClock period
Drive at 1.00 x MasterClock period

53:56

InitP: Initial values for the state bits that determine the pull-down ∆i/∆t
and switching speed of the output buffers. Bit 53 is the most significant.

0
1-14
15

Fastest pull-down rate
Intermediate pull-down rates
Slowest pull-down rate

Chapter 9

226 MIPS R4000 Microprocessor User's Manual

Table 9-1 (cont.) Boot-Mode Settings

Serial Bit Value Mode Setting

57:60

InitN: Initial values for the state bits that determine the pull-up ∆i/∆t and
switching speed of the output buffers. Bit 57 is the most significant.
0
1-14
15

Slowest pull-up rate
Intermediate pull-up rates
Fastest pull-up rate

61

EnblDPLLR: Enables the negative feedback loop that determines the
∆i/∆t and switching speed of the output buffers during ColdReset.
0
1

Disable ∆i/∆t mechanism
Enable ∆i/∆t mechanism

62

EnblDPLL: Enables the negative feedback loop that determines the ∆i/∆t
and switching speed of the output buffers during ColdReset and during
normal operation.
0
1

Disable ∆i/∆t control mechanism
Enable ∆i/∆t control mechanism

63

DsblPLL: Disables the phase-locked loops (PLLs) that match MasterClock
and produce RClock, TClock, SClock, and the internal clocks.
0
1

Enable PLLs
Disable PLLs

64
SRTristate: Controls when output-only pins are tristated
0 Only when ColdReset* is asserted
1 When Reset* or ColdReset* are asserted

65:255 Reserved. Scan in zeros.

MIPS R4000 Microprocessor User's Manual 227

Clock Interface

10

This chapter describes the clock signals (“clocks”) used in the R4000
processor and the processor status reporting mechanism.

The subject matter includes basic system clocks, system timing
parameters, connecting clocks to a phase-locked system, connecting clocks
to a system without phase locking, and processor status outputs.

Chapter 10

228 MIPS R4000 Microprocessor User's Manual

10.1 Signal Terminology
The following terminology is used in this chapter (and book) when
describing signals:

• Rising edge indicates a low-to-high transition.

• Falling edge indicates a high-to-low transition.

• Clock-to-Q delay is the amount of time it takes for a signal to
move from the input of a device (clock) to the output of the
device (Q).

Figures 10-1 and 10-2 illustrate these terms.

Figure 10-1 Signal Transitions

Figure 10-2 Clock-to-Q Delay

1 2 3 4

high-to-low
transition low-to-high

transition

single clock cycle

clock input

Q
data in

data out

Clock-to-Q
delay

MIPS R4000 Microprocessor User's Manual 229

Clock Interface

10.2 Basic System Clocks
The various clock signals used in the R4000 processor are described below,
starting with MasterClock, upon which the processor bases all internal
and external clocking.

MasterClock

The processor bases all internal and external clocking on the single
MasterClock input signal. The processor generates the clock output
signal, MasterOut, at the same frequency as MasterClock and aligns
MasterOut with MasterClock, if SyncIn is connected to SyncOut.

MasterOut

The processor generates the clock output signal, MasterOut, at the same
frequency as MasterClock and aligns MasterOut with MasterClock, if
SyncIn is connected to SyncOut. MasterOut clocks external logic, such as
the reset logic.

SyncIn/SyncOut

The processor generates SyncOut at the same frequency as MasterClock
and aligns SyncIn with MasterClock.

SyncOut must be connected to SyncIn either directly, or through an
external buffer. The processor can compensate for both output driver and
input buffer delays (and, when necessary, delay caused by an external
buffer) when aligning SyncIn with MasterClock. Figure 10-7 gives an
illustration of SyncOut connected to SyncIn through an external buffer.

PClock

The processor generates an internal clock, PClock, at twice the frequency
of MasterClock and precisely aligns every other rising edge of PClock
with the rising edge of MasterClock.

All internal registers and latches use PClock.

Chapter 10

230 MIPS R4000 Microprocessor User's Manual

SClock

The R4000 processor divides PClock by 2, 3, or 4 (as programmed at boot-
mode initialization) to generate the internal clock signal, SClock. The
R4400 processor divides PClock by 2, 3, 4, 6 or 8 (as programmed at boot-
mode initialization) to generate SClock. The processor uses SClock to
sample data at the system interface and to clock data into the processor
system interface output registers.

The first rising edge of SClock, after ColdReset* is deasserted, is aligned
with the first rising edge of MasterClock.

TClock

TClock (transmit clock) clocks the output registers of an external agent,†

and can be a global system clock for any other logic in the external agent.

TClock is the same frequency as SClock. When SyncIn is shorted to
SyncOut, the edges of TClock align precisely with the edges of SClock
and MasterClock.

When a delay is added between SyncIn and SyncOut, the TClock at the
pins leads SClock (and thus MasterClock) by the same amount of delay.

If the delay between SyncIn and SyncOut is matched to an external delay
between TClock at the processor and TClock at the external logic, the
TClock at the external logic aligns to SClock and MasterClock.

RClock

The external agent uses RClock (receive clock) to clock its input registers.
The processor generates RClock at the same frequency as TClock, but
RClock always leads TClock and SClock by 25 percent of SClock cycle
time. The relationship between RClock and TClock is independent of the
delay between SyncIn and SyncOut.

PClock-to-SClock Division

Figure 10-3 shows the clocks for a PClock-to-SClock division by 2; Figure
10-4 shows the clocks for a PClock-to-SClock division by 4.

† External agent is defined in Chapter 12.

MIPS R4000 Microprocessor User's Manual 231

Clock Interface

Figure 10-3 Processor Clocks, PClock-to-SClock Division by 2

Cycle 1 2 3 4

MasterClock

tMCkHigh

tMCkLow

tMCkP

MasterOut

PClock

SClock

TClock

RClock

SysAD Driven D D D D

tDM

tDO

SysAD Received D D D D

tDS

tDH

Chapter 10

232 MIPS R4000 Microprocessor User's Manual

Figure 10-4 Processor Clocks, PClock-to-SClock Division by 4

cycle 1 2 3 4

MasterClock

SyncOut

PClock

SClock

TClock

RClock

SysAD Driven D D

tDM

tDO

SysAD Received D D

tDS

tDH

MIPS R4000 Microprocessor User's Manual 233

Clock Interface

10.3 System Timing Parameters
As shown in Figures 10-3 and 10-4, data provided to the processor must be
stable a minimum of tDS nanoseconds (ns) before the rising edge of SClock
and be held valid for a minimum of tDH ns after the rising edge of SClock.

Alignment to SClock

Processor data becomes stable a minimum of tDM ns and a maximum of
tDO ns after the rising edge of SClock. This drive-time is the sum of the
maximum delay through the processor output drivers together with the
maximum clock-to-Q delay of the processor output registers.

Alignment to MasterClock

Certain processor inputs (specifically VCCOk, ColdReset*, and Reset*)
are sampled based on MasterClock, while others (specifically, Status(7:0))
are output based on MasterClock. The same setup, hold, and drive-off
parameters, tDS, tDH, tDM, and tDO, shown in Figures 10-3 and 10-4, apply
to these inputs and outputs, but they are measured by MasterClock
instead of SClock.

Phase-Locked Loop (PLL)

The processor aligns SyncOut, PClock, SClock, TClock, and RClock with
internal phase-locked loop (PLL) circuits that generate aligned clocks
based on SyncOut/SyncIn. By their nature, PLL circuits are only capable
of generating aligned clocks for MasterClock frequencies within a limited
range.

Clocks generated using PLL circuits contain some inherent inaccuracy, or
jitter; a clock aligned with MasterClock by the PLL can lead or trail
MasterClock by as much as the related maximum jitter allowed by the
individual vendor.

Chapter 10

234 MIPS R4000 Microprocessor User's Manual

10.4 Connecting Clocks to a Phase-Locked System
When the processor is used in a phase-locked system, the external agent
must phase lock its operation to a common MasterClock. In such a system,
the delivery of data and data sampling have common characteristics, even
if the components have different delay values. For example, transmission
time (the amount of time a signal takes to move from one component to
another along a trace on the board) between any two components A and B
of a phase-locked system can be calculated from the following equation:

Transmission Time = (SClock period) – (tDO for A) – (tDS for B) –

(Clock Jitter for A Max) – (Clock Jitter for B Max)

Figure 10-5 shows a block-level diagram of a phase-locked system using
the R4000 processor.

Figure 10-5 R4000 Processor Phase-Locked System

MasterClock

R4000

TClock

RClock

SysAD

SysCmd

MasterClock

SyncOut

SyncIn

MasterClock

External Agent

SysCmd

SysAD

MIPS R4000 Microprocessor User's Manual 235

Clock Interface

10.5 Connecting Clocks to a System without Phase Locking
When the R4000 processor is used in a system in which the external agent
cannot lock its phase to a common MasterClock, the output clocks RClock
and TClock can clock the remainder of the system. Two clocking
methodologies are described in this section: connecting to a gate-array
device or connecting to discrete CMOS logic devices.

Connecting to a Gate-Array Device

When connecting to a gate-array device, both RClock and TClock are
used within the gate-array. The gate array internally buffers RClock and
uses this buffered version to clock registers that sample processor outputs.

These sampling registers should be immediately followed by staging
registers clocked by an internally buffered version of TClock. This
buffered version of TClock should be the global system clock for the logic
inside the gate array and the clock for all registers that drive processor
inputs. Figure 10-6 is a block diagram of this circuit.

Staging registers place a constraint on the sum of the clock-to-Q delay of
the sample registers and the setup time of the staging registers inside the
gate arrays, as shown in the following equation:

Figure 10-6 is a block diagram of a system without phase lock, using the
R4000 processor with an external agent implemented as a gate array.

Clock-to-Q Delay + Setup of Staging Register
– (Maximum Clock Jitter for RClock)
– (Maximum Delay Mismatch for Internal Clock 0.25 (RClock period)
 Buffers on RClock and TClock)

Chapter 10

236 MIPS R4000 Microprocessor User's Manual

Figure 10-6 Gate-Array System without Phase Lock, using the R4000 Processor

MasterClock

R4000

TClock

RClock

SysAD

SysCmd

MasterClock

SyncOut

SyncIn

CE

CE

Gate
Array

Sampling
Register

Staging
Register

Sampling
Register

Staging
Register

MIPS R4000 Microprocessor User's Manual 237

Clock Interface

In a system without phase lock, the transmission time for a signal from the
processor to an external agent composed of gate arrays can be calculated
from the following equation:

Transmission Time = (75 percent of TClock period) – (tDO for R4000)

+ (Minimum External Clock Buffer Delay)

– (External Sample Register Setup Time)

– (Maximum Clock Jitter for R4000 Internal Clocks)

– (Maximum Clock Jitter for RClock)

The transmission time for a signal from an external agent composed of gate
arrays to the processor in a system without phase lock can be calculated
from the following equation:

Transmission Time = (TClock period) – (tDS for R4000)

– (Maximum External Clock Buffer Delay)

– (Maximum External Output Register Clock-to-Q Delay)

– (Maximum Clock Jitter for TClock)

– (Maximum Clock Jitter for R4000 Internal Clocks)

Chapter 10

238 MIPS R4000 Microprocessor User's Manual

Connecting to a CMOS Logic System

The processor uses matched delay clock buffers to generate aligned clocks
to external CMOS logic. A matched delay clock buffer is inserted in the
SyncOut/SyncIn alignment path of the processor, skewing SyncOut,
MasterOut, RClock, and TClock to lead MasterClock by the buffer delay
amount, while leaving PClock aligned with MasterClock.

The remaining matched delay clock buffers are available to generate a
buffered version of TClock aligned with MasterClock. Alignment error
of this buffered TClock is the sum of the maximum delay mismatch of the
matched delay clock buffers, and the maximum clock jitter of TClock.

As the global system clock for the discrete logic that forms the external
agent, the buffered version of TClock clocks registers that sample
processor outputs, as well as clocking the registers that drive the processor
inputs.

The transmission time for a signal from the processor to an external agent
composed of discrete CMOS logic devices can be calculated from the
following equation:

Transmission Time = (TClock period) – (tDO for R4000)

– (External Sample Register Setup Time)

– (Maximum External Clock Buffer Delay Mismatch)

– (Maximum Clock Jitter for R4000 Internal Clocks)

– (Maximum Clock Jitter for TClock)

Figure 10-7 is a block diagram of a system without phase lock, employing
the R4000 processor and an external agent composed of both a gate array
and discrete CMOS logic devices.

MIPS R4000 Microprocessor User's Manual 239

Clock Interface

Figure 10-7 Gate Array and CMOS System without Phase Lock, using the R4000 Processor

MemoryMemory

CE CE

Control

MasterClock

Gate
Array

Sample

Registers

R4000

TClock

RClock

SysAD

SysCmd

MasterClock

SyncOut

SyncIn

Chapter 10

240 MIPS R4000 Microprocessor User's Manual

The transmission time for a signal from an external agent composed of
discrete CMOS logic devices can be calculated from the following
equation:

Transmission Time = (TClock period) – (tDS for R4000)

– (Maximum External Output Register Clock-to-Q Delay)

– (Maximum External Clock Buffer Delay Mismatch)

– (Maximum Clock Jitter for R4000 Internal Clocks)

– (Maximum Clock Jitter for TClock)

In this clocking methodology, the hold time of data driven from the
processor to an external sampling register is a critical parameter. To
guarantee hold time, the minimum output delay of the processor, tDM,
must be greater than the sum of:

minimum hold time for the external sampling register

+ maximum clock jitter for R4000 internal clocks

+ maximum clock jitter for TClock

+ maximum delay mismatch of the external clock buffers

MIPS R4000 Microprocessor User's Manual 241

Clock Interface

10.6 Processor Status Outputs
The R4400 processor provides eight status outputs, Status(7:0), aligned
with each rising edge of MasterClock. At time T (the first PCycle of
MasterClock when status is examined) these status outputs indicate
whether the machine was running or stalled during the previous T-2 and
T-3 PCycles, as follows:

• If the machine was stalled during the T-2 or T-3 PCycles, the
status outputs indicate the type of stall which occurred (listed
in Table 10-1).

• If the machine was running during the T-2 or T-3 PCycles, the
status outputs describe the type of instruction which occupied
the WriteBack pipeline stage during the T-2 or T-3 PCycles, and
which was successfully completed (listed in Table 10-1).

• The status outputs also indicate if an instruction in the T-2 or
T-3 PCycle was killed, and if so, states the cause (listed in
Table 10-1.

The Status(7:0) bits are treated as two fields, as follows:

• The Status(7:4) field indicates the internal status of the
processor during PCycle T-3.

• The Status(3:0) bits indicate the internal status of the processor
during the PCycle T-2.

Chapter 10

242 MIPS R4000 Microprocessor User's Manual

Table 10-1 shows the encoding of processor’s status for pins Status(7:4) or
Status(3:0).

Table 10-1 Encoding of R4400 Processor Internal State by Status(7:4) or Status(3:0)

Status(7:4) or
Status(3:0)

Cycle Processor Internal Status

0 Run cycle Other integer instruction (not load/store/conditional
branch. Includes ERET and Jump instructions.)

1 Run cycle Load

2 Run cycle Untaken conditional branch

3 Run cycle Taken conditional branch

4 Run cycle Store

5 Reserved

6 Stall cycle MP stall

7 Run cycle Integer instruction killed by slip

8 Stall cycle Other stall type

9 Stall cycle Primary instruction cache stall

a Stall cycle Primary data cache stall

b Stall cycle Secondary cache stall

c Run cycle Other floating-point instruction (not load, store, or
conditional branch)

d Run cycle Instruction killed by branch, jump, or ERET

e Run cycle Instruction killed by exception

f Run cycle Floating-point instruction killed by slip

MIPS R4000 Microprocessor User's Manual 243

Cache Organization, Operation, and Coherency

11

This chapter describes in detail the cache memory: its place in the R4000
memory organization, individual operations of the primary and
secondary caches, cache interactions, and an example of a cache coherency
request cycle. The chapter concludes with a description of R4000
processor synchronization in a multiprocessor environment.

This chapter uses the following terminology:

• The primary cache may also be referred to as the P-cache.

• The secondary cache may also be referred to as the S-cache.

• The primary data cache may also be referred to as the D-cache.

• The primary instruction cache may also be referred to as the
I-cache.

These terms are used interchangeably throughout this book.

Chapter 11

244 MIPS R4000 Microprocessor User's Manual

11.1 Memory Organization
Figure 11-1 shows the R4000 system memory hierarchy. In the logical
memory hierarchy, caches lie between the CPU and main memory. They
are designed to make the speedup of memory accesses transparent to the
user. Each functional block in Figure 11-1 has the capacity to hold more
data than the block above it. For instance, physical main memory has a
larger capacity than the secondary cache. At the same time, each
functional block takes longer to access than any block above it. For
instance, it takes longer to access data in main memory than in the CPU
on-chip registers.

Figure 11-1 Logical Hierarchy of Memory

RegistersRegisters

Main Memory

Primary Cache

R4000 CPU

I-cache D-cache

Increasing Data
Capacity

S-cache

Disk, CD-ROM,
Tape, etc.

R
eg

is
te

rs
C

ac
he

s
M

em
or

y
P

er
ip

he
ra

ls

Faster Access
Time

MIPS R4000 Microprocessor User's Manual 245

Cache Organization, Operation, and Coherency

The R4000 processor has two on-chip primary caches: one holds
instructions (the instruction cache), the other holds data (the data cache).
Off-chip, the R4000 processor supports a secondary cache on the R4000SC
and MC models.

11.2 Overview of Cache Operations
As described earlier, caches provide fast temporary data storage, and they
make the speedup of memory accesses transparent to the user. In general,
the processor accesses cache-resident instructions or data through the
following procedure:

1. The processor, through the on-chip cache controller, attempts to access
the next instruction or data in the primary cache.

2. The cache controller checks to see if this instruction or data is present
in the primary cache.

• If the instruction/data is present, the processor retrieves it.
This is called a primary-cache hit.

• If the instruction/data is not present in the primary cache, the
cache controller must retrieve it from the secondary cache or
memory. This is called a primary-cache miss.

3. If a primary-cache miss occurs, the cache controller checks to see if the
instruction/data is in the secondary cache.

• If the instruction/data is present in the secondary cache, it is
retrieved and written into the primary cache.

• If the instruction/data is not present in the secondary cache, it
is retrieved as a cache line (a block whose size set in the Config
register; see the section titled Variable-Length Cache Lines in
this chapter for available cache line lengths) from memory and
is written into both the secondary cache and the appropriate
primary cache.

4. The processor retrieves the instruction/data from the primary cache
and operation continues.

It is possible for the same data to be in three places simultaneously: main
memory, secondary cache, and primary cache. This data is kept consistent
through the use of write back methodology; that is, modified data is not
written back to memory until the cache line is replaced.

Chapter 11

246 MIPS R4000 Microprocessor User's Manual

11.3 R4000 Cache Description
As Figure 11-1 shows, the R4000 contains separate primary instruction and
data caches. Figure 11-1 also shows that the R4000 supports a secondary
cache that can be split into separate portions, one portion containing data
and the other portion containing instructions, or it can be a joint cache,
holding combined instructions and data.

This section describes the organization of on-chip primary caches and the
optional off-chip secondary cache. Table 11-1 lists the cache and cache
coherency support for the three R4000 models.

Table 11-1 R4000 Cache and Coherency Support

Figure 11-2 provides block diagrams of the three R4000 models:

• R4000PC, which supports only the primary cache

• R4000SC and R4000MC, which support both primary and
secondary caches

R4000
Model

Support
Primary
Cache?

Support
Secondary

Cache?

Support
Cache

Coherency?

R4000PC Yes No No

R4000SC Yes Yes No

R4000MC Yes Yes Yes

MIPS R4000 Microprocessor User's Manual 247

Cache Organization, Operation, and Coherency

Figure 11-2 Cache Support in the R4000PC, R4000SC, and R4000MC

R4000PC

I-cache

Cache Controller

D-cache

Primary
Caches

Main Memory

R4000SC/MC

I-cache

Cache Controller

D-cache

Primary
Caches

Main Memory

Secondary Cache I-cache primary instruction cache
D-cache primary data cache

Primary Cache Only

Primary and Secondary Cache

Chapter 11

248 MIPS R4000 Microprocessor User's Manual

Secondary Cache Size

Table 11-2 lists the range of secondary cache sizes. The secondary cache is
user-configurable at boot time through the boot-mode bits (see Chapter 9);
it can be a joint cache, containing both data and instructions in a single
cache, or split into separate data and instruction caches.

Table 11-2 Secondary Cache Sizes

Variable-Length Cache Lines

A cache line is the smallest unit of information that can be fetched from the
cache, and that is represented by a single tag.† A primary cache line can
be either 4 or 8 words in length; a secondary cache line can be either 4, 8,
16, or 32 words in length. Primary cache line length is set in the Config
register; see Chapter 4 for more information. Secondary cache line length
is set at boot time through the boot-mode bits, as described in Chapter 9.

Upon a cache miss in both primary and secondary caches, the missing
secondary cache line is loaded first from memory into the secondary
cache, whereupon the appropriate subset of the secondary cache line is
loaded into the primary cache.

The primary cache line length can never be longer than that of the
secondary cache; it must always be less than or equal to the secondary
cache line length. This means the secondary cache cannot have a 4-word
line length while the primary cache has an 8-word line length.

Cache Organization and Accessibility

This section describes the organization of the primary and secondary
caches, including the manner in which they are mapped, the addressing
(either virtual or physical) used to index the cache, and composition of the
cache lines. The primary instruction and data caches are indexed with a
virtual address (VA), while the secondary cache is indexed with a physical
address (PA).

† Primary and secondary cache tags are described in the following sections.

Cache Minimum Size Maximum Size

Secondary Joint Cache 128 Kbytes 4 Mbytes

Secondary Split I-Cache 128 Kbytes 2 Mbytes

Secondary Split D-Cache 128 Kbytes 2 Mbytes

MIPS R4000 Microprocessor User's Manual 249

Cache Organization, Operation, and Coherency

Organization of the Primary Instruction Cache (I-Cache)

Each line of primary I-cache data (although it is actually an instruction, it
is referred to as data to distinguish it from its tag) has an associated 26-bit
tag that contains a 24-bit physical address, a single valid bit, and a single
parity bit. Byte parity is used on I-cache data.

The R4000 processor primary I-cache has the following characteristics:

• direct-mapped

• indexed with a virtual address

• checked with a physical tag

• organized with either a 4-word (16-byte) or 8-word (32-byte)
cache line.

Figure 11-3 shows the format of an 8-word (32-byte) primary I-cache line.

Figure 11-3 R4000 8-Word Primary I-Cache Line Format

 24

25 0

1

P

2324

V PTag

1

PTag Physical tag (bits 35:12 of the physical address)
V Valid bit
Data Cache data
P Even parity for the PTag and V fields
DataP Even parity; 1 parity bit per byte of data

 8

71 06364

 64

DataP Data

Data

DataP Data

DataP Data

DataP

Chapter 11

250 MIPS R4000 Microprocessor User's Manual

Organization of the Primary Data Cache (D-Cache)

Each line of primary D-cache data has an associated 29-bit tag that
contains a 24-bit physical address, 2-bit cache line state, a write-back bit, a
parity bit for the physical address and cache state fields, and a parity bit
for the write-back bit. Byte parity is used on D-cache data.

The R4000 processor primary D-cache has the following characteristics:

• write-back

• direct-mapped

• indexed with a virtual address

• checked with a physical tag

• organized with either a 4-word (16-byte) or 8-word (32-byte)
cache line.

Figure 11-4 shows the format of a 8-word (32-byte) primary D-cache line.

Figure 11-4 R4000 8-Word Primary Data Cache Line Format

W’ Even parity for the write-back bit
W Write-back bit (set if cache line has been written)
P Even parity for the PTag and CS fields
CS Primary cache state:

 0 = Invalid in all R4000 configurations

 1 = Shared (either Clean or Dirty) in R4000MC configuration only

 2 = Clean Exclusive in R4000SC and MC configurations only

 3 = Dirty Exclusive in all R4000 configurations
PTag Physical tag (bits 35:12 of the physical address)
DataP Even parity for the data
Data Cache data

 24

28 0

1

W’

2627

W PTag

1

P CS

1 2

25 24 23

 8

71 06364

 64

DataP Data

Data

DataP Data

DataP Data

DataP Data

DataP Data

DataP Data

MIPS R4000 Microprocessor User's Manual 251

Cache Organization, Operation, and Coherency

In all R4000 processors, the W (write-back) bit, not the cache state,
indicates whether or not the primary cache contains modified data that
must be written back to memory or to the secondary cache.

Accessing the Primary Caches

Figure 11-5 shows the virtual address (VA) index into the primary caches.
Each instruction and data cache range in size from 8 Kbytes to 32 Kbytes;
therefore, the number of virtual address bits used to index the cache
depends on the cache size. For example, VA(12:4) accesses a 8-Kbyte page
tag in a cache with a 4-word line (VA(12) addresses 8 Kbytes and VA(4)
provides quadword resolution); similarly, VA(14:5) accesses an 8-word
tag: VA(5) provides octalword access in a 32-Kbyte cache (VA(14)
addresses 32 Kbytes).

Figure 11-5 Primary Cache Data and Tag Organization

Tags

VA(12:n*) for 8 Kbyte
to

VA(14:n*) for 32 Kbyte

VA(12:n*)
to

VA(14:n*)

Data

W W’ State P

Data

64

Tag line

Data line

Tag

*n = 4 for 4-word lines
n = 5 for 8-word lines

Chapter 11

252 MIPS R4000 Microprocessor User's Manual

Organization of the Secondary Cache

Each secondary cache line has an associated 19-bit tag that contains bits
35:17 of the physical address, a 3-bit primary cache index, VA(14:12), and
a 3-bit cache line state. These 25 bits are protected by a 7-bit ECC code.

The secondary cache is accessible to the processor and to the system
interface; by setting the appropriate boot-mode bits, it can be configured
at chip reset as a joint cache, or as separate I- and D-caches.

Figure 11-6 shows the format of the R4000 processor secondary-cache line.
The size of the secondary cache line is set in the SB field of the Config
register.

Figure 11-6 R4000 Secondary Cache Line Format

 19

31 0

CS

7

ECC

24 1925 22 21

PIdx STag

3 3

ECC ECC for secondary tag
CS Secondary-cache state

 0 = Invalid
 1 = reserved
 2 = reserved
 3 = reserved
 4 = Clean Exclusive
 5 = Dirty Exclusive
 6 = Shared
 7 = Dirty Shared

PIdx Primary cache index (bits 14:12 of the virtual address)
STag Physical tag (bits 35:17 of the physical address)

18

MIPS R4000 Microprocessor User's Manual 253

Cache Organization, Operation, and Coherency

The R4000 processor secondary cache has the following characteristics:

• write-back

• direct-mapped

• indexed with a physical address

• checked with a physical tag

• organized with either a 4-word (16-byte), 8-word (32-byte),
16-word (64-byte), or 32-word (128-byte) cache line.

The secondary cache state (CS) bits indicate whether:

• the cache line data and tag are valid

• the data is potentially present in the caches of other processors
(shared versus exclusive)

• the processor is responsible for updating main memory (clean
versus dirty).

The PIdx field provides the processor with an index to the virtual address
of primary cache lines that may contain data from the secondary cache
line.

The PIdx field also detects a cache alias. Cache aliasing occurs when the
physical address tag matches during a data reference to the secondary
cache, but the PIdx field does not match in the virtual address. This
indicates that the cache reference was made from a different virtual
address than the one that created the secondary-cache line, and the
processor signals a Virtual Coherency exception.

Chapter 11

254 MIPS R4000 Microprocessor User's Manual

Accessing the Secondary Cache

Figure 11-7 shows the physical address (PA) index into the secondary
cache. The secondary cache ranges in size from 128 Kbytes to 4 Mbytes,
and the number of physical address bits used to index the cache depends
upon the cache size. For instance, PA(16:4) accesses the tags in a 128-Kbyte
secondary cache with 4-word lines; PA(21:5) accesses the tags in a 4-Mbyte
secondary cache with 8-word lines.

The processor always uses PA(35:17) from the secondary cache, regardless
of the S-cache size. This makes it important to initialize all secondary
cache tag address bits with a valid physical address, regardless of the size
of the S-cache.

Figure 11-7 Secondary Cache Data and Tag Organization

Tags

PA(16:n*) for 128 Kbyte
to

PA(21:n*) for 4 Mbyte
PA(16:n*)

to
PA(21:n*)

Data

ECC CS PIdx Tag

Data

Tag line

Data line

*n = 4 for 4-word lines
n = 5 for 8-word lines
n = 6 for 16-word lines
n = 7 for 32-word lines

MIPS R4000 Microprocessor User's Manual 255

Cache Organization, Operation, and Coherency

11.4 Cache States
The four terms below are used to describe the state of a cache line:

• Exclusive: a cache line that is present in exactly one cache in
the system is exclusive, and may be in one of the exclusive
states.

• Dirty: a cache line that contains data that has changed since it
was loaded from memory is dirty, and must be in one of the
dirty or shared states.

• Clean: a cache line that contains data that has not changed
since it was loaded from memory is clean, and may be in one
of the clean states.

• Shared: a cache line that is present in more than one cache in
the system.

Each primary and secondary cache line in the R4000 system is in one of the
states described in Table 11-3. Table 11-3 also lists with the types of cache
and the R4000 models in which the various states may be found.

Table 11-3 Cache States

Cache
Line
State

Description
Where the

State is
Used

Available on
the Following
R4000 Models

Invalid

A cache line that does not contain valid
information must be marked invalid, and
cannot be used. For example, a cache line is
marked invalid if the same information,
located in another cache, is modified. A cache
line in any other state than invalid is assumed
to contain valid information.

Primary or
Secondary
Cache

R4000PC
R4000SC
R4000MC

Shared A cache line that is present in more than one
cache in the system is shared.

Primary or
Secondary
Cache

R4000MC
only

Dirty
Shared

A dirty shared cache line contains valid
information and can be present in another
cache. This cache line is inconsistent with
memory and is owned by the processor (see the
section titled Cache Line Ownership in this
chapter).

Secondary
cache only

R4000MC
only

Chapter 11

256 MIPS R4000 Microprocessor User's Manual

Table 11-3 (cont.) Cache States

Primary Cache States

Each primary data cache line is in one of the following states:

• invalid

• shared

• clean exclusive

• dirty exclusive

Each primary instruction cache line is in one of the following states:

• invalid

• valid

Secondary Cache States

Each secondary cache line is in one of the following states:

• invalid

• shared

• dirty shared

• clean exclusive

• dirty exclusive

Cache
Line
State

Description
Where the

State is
Used

Available on
the Following
R4000 Models

Clean
Exclusive

A clean exclusive cache line contains valid
information and this cache line is not present in
any other cache. The cache line is consistent
with memory and is not owned by the
processor (see the section titled Cache Line
Ownership in this chapter).

Primary or
Secondary
Cache

R4000SC
R4000MC

Dirty
Exclusive

A dirty exclusive cache line contains valid
information and is not present in any other
cache. The cache line is inconsistent with
memory and is owned by the processor (see the
section titled Cache Line Ownership in this
chapter).

Primary or
Secondary
Cache

R4000PC
R4000SC
R4000MC

MIPS R4000 Microprocessor User's Manual 257

Cache Organization, Operation, and Coherency

Mapping States Between Caches

Secondary cache states correspond, or map, to primary cache states (this
mapping is listed in Table 11-6, later on in this chapter). For example, the
secondary cache shared and dirty shared states map to the primary cache
shared state.

Therefore, when the primary cache line is filled from the secondary cache,
the state of the secondary cache line is also mapped into the primary cache;
in the case described above, the shared or dirty shared secondary state is
mapped to the shared primary cache state.

As shown in Figure 11-8, a primary cache line in the R4000PC model can
be in either an invalid or dirty exclusive state. In the R4000SC model, a
primary cache line can be in the invalid, clean exclusive, or dirty exclusive
state. In the R4000MC model, the primary cache line can be invalid, clean
exclusive, dirty exclusive, or shared.

Figure 11-8 Primary Cache States Available to Each Type of Processor

R4000MC

Invalid State

R4000PC

Dirty Exclusive State

Invalid State

R4000SC

Clean Exclusive State

Dirty Exclusive State

Invalid State

Clean Exclusive State

Dirty Exclusive State

Shared State

Chapter 11

258 MIPS R4000 Microprocessor User's Manual

11.5 Cache Line Ownership
A processor becomes the owner of a cache line after it writes to that cache
line (that is, by entering the dirty exclusive or dirty shared state), and is
responsible for providing the contents of that line on a read request.
There can only be one owner for each cache line.

The ownership of a cache line is set and maintained through the rules
described below.

• A processor assumes ownership of the cache line if the state of
the secondary cache line is dirty shared or dirty exclusive.

• A processor that owns a cache line is responsible for writing
the cache line back to memory if the line is replaced during the
execution of a Write-back or Write-back Invalidate cache
instruction. For read responses to a processor coherent read
request (both of these terms are defined in Chapter 12) in which
the data is returned in the dirty shared or dirty exclusive state,
the cache state is set when the last word of read response data
is returned. Therefore, the processor assumes ownership of the
cache line when the last word of response data is returned.

• For processor coherent write requests, the state of the cache
line changes to invalid if the cache line is replaced, or to either
clean exclusive or shared if the cache line is retained (provided
the cache line was written back to memory). In either case, the
cache state transition occurs when the last word of write data is
transmitted to the external agent. Therefore, the processor
gives up ownership of the cache line when the last word of
write data is transmitted to the external agent (Chapter 12
defines external agent).

• Memory always owns clean cache lines.

• The processor gives up ownership of a cache line when the
state of the cache line changes to invalid, shared, or clean
exclusive.

MIPS R4000 Microprocessor User's Manual 259

Cache Organization, Operation, and Coherency

11.6 Cache Write Policy
The R4000 processor manages its primary and secondary caches by using
a write-back policy; that is, it stores write data into the caches, instead of
writing it directly to memory.† Some time later this data is independently
written into memory. In the R4000 implementation, a modified cache line
is not written back to memory until the cache line is replaced either in the
course of satisfying a cache miss, or during the execution of a Write-back
CACHE instruction.

If a primary cache line is in either the dirty exclusive or shared state and
that cache line has been modified (the W bit is set), the processor writes
this cache line back to memory (or the secondary cache, if it is present)
when the line is replaced, either in the course of satisfying a cache miss or
during the execution of a Write-back or Write-back Invalidate CACHE
instruction.

If a secondary cache line is in either the dirty exclusive or dirty shared
state, the processor writes this cache line back to memory when the line is
replaced, either in the course of satisfying a cache miss or during the
execution of a Write-back CACHE instruction.

Many systems, in particular multiprocessor systems, or systems
employing I/O devices that are capable of DMA, require the system to
behave as if the caches are always consistent both with memory and with
each other. Schemes for maintaining consistency between more than one
cache, or between caches and memory, are defined by the system cache
coherency protocols (see the section titled Cache Coherency Overview
later in this chapter). In the R4000 system, when the content of a cache line
is inconsistent with memory, it is classified as dirty and is written back to
memory according to the rules of the cache write-back policy.

When the processor writes a cache line back to memory, it does not
ordinarily retain a copy of the cache line, and the state of the cache line is
changed to invalid. However, there is one exception. The processor
retains a copy of the cache line if a cache line is written back by the Hit
Write-back cache instruction. The processor changes the retained cache
line state to either clean exclusive if the secondary cache state was dirty
exclusive before the write, or shared if the secondary cache state was dirty
shared before the write. The processor signals this line retention during a
write by setting SysCmd(2) to a 1, as described in Chapter 12.

† An alternative to this is a write-through cache, in which information is written
simultaneously to cache and memory.

Chapter 11

260 MIPS R4000 Microprocessor User's Manual

11.7 Cache State Transition Diagrams
The following sections describe the cache state diagrams that illustrate the
cache state transitions for both the primary and secondary caches. Figures
11-9 and 11-10 are state diagrams of the primary and secondary caches,
respectively.

When an external agent supplies a cache line, the initial state of the cache
line is specified by the external agent (see Chapter 12 for a definition of an
external agent). Otherwise, the processor changes the state of the cache
line during one of the following events:

• A store to a clean exclusive cache line causes the state to be
changed to dirty exclusive in both the primary and secondary
caches.

• A store to a shared cache line—that is a line marked shared in
the primary cache and either shared or dirty shared in the
secondary cache—causes the processor to issue either an
invalidate request or an update request (depending on the
coherency attribute in the TLB entry for the page containing
the cache line). And update page attribute causes an update
request to be issued; a sharable page attribute causes an
invalidate request to be issued.

- Upon successful completion of an invalidate, the
processor completes the store and changes the state of the
cache line to dirty exclusive in both the primary and
secondary caches.

- Upon successful completion of an update, the processor
completes the store and changes the state of the cache line
to shared in the primary cache and dirty shared in the
secondary cache if dirty shared mode is enabled. Dirty
shared mode is programmable through the boot-time
mode control interface (see Chapter 9 for a description of
boot mode bits). If dirty shared mode is not enabled, the
state of the primary and secondary caches are left in a
shared state, after successful completion of an update.

• A store to a dirty exclusive line remains in a dirty exclusive
state.

These state diagrams do not cover the initial state of the system since the
initial state is system dependent.

MIPS R4000 Microprocessor User's Manual 261

Cache Organization, Operation, and Coherency

Figure 11-9 Primary Data Cache State Diagram

If the system is in no-secondary-cache mode, the cache state provided by
the system is ignored, and the primary data cache state is set to dirty
exclusive.

Write hit
Read hit

Write hit [update]
Read hit

Update received

Clean
Exclusive

Dirty
Exclusive

Invalid

Shared

I/O invalidate received

I/O invalidate received
Read hit

Write hit

Write hit [sharable]

Bus read [intervention]

Bus read

Invalidate received

Chapter 11

262 MIPS R4000 Microprocessor User's Manual

Figure 11-10 Secondary Cache State Diagram

Bus read [intervention]

Read hit

Read hit,
Write hit

Bus read [intervention]
Write hit [update],

Read hit

Read hit,
Update received

Invalidate
received

I/O
invalidate
received

Invalid

Write hit
Update

received
Write hit

[invalidate]

Bus
read

I/O
invalidate
received

Invalidate
received

Write hit
[update]

Dirty
Shared

Shared

Dirty
Exclusive

Clean
Exclusive

Write hit [invalidate]

MIPS R4000 Microprocessor User's Manual 263

Cache Organization, Operation, and Coherency

The state of a secondary cache line is provided by the external agent and
is set as follows:

Case 1. If the cache line is not present in another cache, it should be loaded
in the clean exclusive state.

Case 2. If the cache line is retained by another cache and the state of the
line in that cache remains shared or dirty shared, the line should
be loaded in the shared state.

Case 3. If the cache line is retained by another cache and the cache
relinquishes ownership to the processor making the read request,
the line should be returned in the dirty shared state.

Case 4. If the cache line is retained by another cache and ownership is
relinquished to memory, the line should be loaded in the shared
state.

Case 5. If the cache line is relinquished by another cache and ownership
is transferred to the processor making the read request, the line
should be loaded in the dirty exclusive or dirty shared state.

For case 1, if the refill occurs on a store miss, the processor changes the
cache line state to dirty exclusive. For each of the remaining cases listed
above, the R4000 processor passes the state received from the external
agent to the secondary cache.

The invalid state is never used for a refill. Software, however, should
initialize the secondary cache to the invalid state after the system is
powered up.

Chapter 11

264 MIPS R4000 Microprocessor User's Manual

11.8 Cache Coherency Overview
Systems using more than one R4000MC processor must have a mechanism
to maintain data consistency throughout a multi-cache, multiprocessor
system. This mechanism is called a cache coherency protocol.

Cache Coherency Attributes

Cache coherency attributes are necessary to ensure the consistency of data
throughout the multitude of caches that can be present in the
multiprocessor environment.

Bits in the translation look-aside buffer (TLB) control coherency on a per-
page basis. Specifically, the TLB contains 3 bits per entry that provide five
possible coherency attributes; they are listed below and described more
fully in the following sections.

• uncached (R4000PC, R4000SC, R4000MC)

• noncoherent (R4000PC, R4000SC, R4000MC)

• sharable (R4000MC only, with secondary cache)

• update (R4000MC only, with secondary cache)

• exclusive (R4000MC only, with secondary cache)

Only uncached or noncoherent attributes can be used by an R4000PC or an
R4000SC processor.

Table 11-4 summarizes the behavior of the processor on load misses, store
misses, and store hits to shared cache lines for each of the five coherency
attributes listed above. The following sections describe in detail the five
coherency attributes.

Table 11-4 Coherency Attributes and Processor Behavior

† These should not occur under normal circumstances.

Attribute Load Miss Store Miss Store Hit Shared

Uncached Main memory read Main memory write NA

Noncoherent Noncoherent read Noncoherent read Invalidate †

Exclusive Coherent read exclusive Coherent read exclusive Invalidate †

Sharable Coherent read Coherent read exclusive Invalidate

Update Coherent read Coherent read Update

MIPS R4000 Microprocessor User's Manual 265

Cache Organization, Operation, and Coherency

Uncached

Lines within an uncached page are never in a cache. When a page has the
uncached coherency attribute, the processor issues a doubleword, partial-
doubleword, word, or partial-word read or write request directly to main
memory (bypassing the cache) for any load or store to a location within
that page.

Noncoherent

Lines with a noncoherent attribute can reside in a cache; a load or store miss
causes the processor to issue a noncoherent block read request to a
location within the cached page.

Sharable

Lines with a sharable attribute must be in a multiprocessor environment
(using the R4000MC), since shared lines can be in more than one cache at
a time. When the coherency attribute is sharable, the processor operates as
follows:

• a coherent block read request is issued for a load miss to a
location within the page, or

• a coherent block read request that requests exclusivity is issued
for a store miss to a location within the page.

In most systems, coherent read requests require snoops or directory
checks, and noncoherent read requests do not.† Cache lines within the
page are managed with a write invalidate protocol; that is, the processor
issues an invalidate request on a store hit to a shared cache line.

Update

Lines with an update coherency attribute must be in a multiprocessor
environment and can reside in more than one cache at a time. When the
coherency attribute is update, the processor issues a coherent block read
request for a load or store miss to a location within the page. Cache lines
within the page are managed with a write update protocol; that is, the
processor issues an update request on a store hit to a shared cache line.

† A coherent read that requests exclusivity implies that the processor functions most
efficiently if the requested cache line is returned to it in an exclusive state, but the
processor still performs correctly if the cache line is returned in a shared state.

Chapter 11

266 MIPS R4000 Microprocessor User's Manual

Exclusive

Lines with an exclusive coherency attribute must be in a multiprocessor
environment. When the coherency attribute is exclusive, the processor
issues a coherent block read request that requests exclusivity for a load or
store miss to a location within the page.

Cache lines within the page are managed with a write invalidate protocol.

NOTE: Load Linked-Store Conditional instruction sequences must
ensure that the link location is not in a page managed with the
exclusive coherency attribute.

Cache Operation Modes

The R4000 processor supports the following two cache modes:

• secondary-cache mode (R4000MC and R4000SC models; for
R4000MC all five cache coherency attributes described above
are applicable, and for R4000SC only uncached and
noncoherent coherency attributes are applicable)

• no-secondary-cache mode (only uncached and noncoherent
coherency attributes are applicable).

Secondary-Cache Mode

In its secondary-cache mode, an R4000MC model provides a set of cache
states and mechanisms that implement a variety of cache coherency
protocols. In particular, the processor simultaneously supports both the
write-invalidate and write-update protocols.

No-Secondary-Cache Mode

A processor in no-secondary-cache mode supports the uncached and
noncoherent coherency attributes. These two attributes are described in
the section titled Cache Coherency Attributes in this chapter.

MIPS R4000 Microprocessor User's Manual 267

Cache Organization, Operation, and Coherency

Strong Ordering

Cache-coherent multiprocessor systems must obey ordering constraints
on stores to shared data. A multiprocessor system that exhibits the same
behavior as a uniprocessor system in a multiprogramming environment is
said to be strongly ordered.

An Example of Strong Ordering

Given that locations X and Y have no particular relationship—that is,
they are not in the same cache line—an example of strong ordering is as
follows:

1. At time T, Processor A performs a store to location X and at the same
time processor B performs a store to location Y.

2. At time T+1, Processor A does a load from location Y and at the same
time processor B does a load from location X.

For the system to be considered strongly ordered, either processor A must
load the new value of Y, or processor B must load the new value of X, or
both processors A and B must load the new values of Y and X, respectively,
under all conditions.

If processors A and B load old values of Y and X, respectively, under any
conditions, the system is not strongly ordered.

Testing for Strong Ordering

Table 11-5 shows the algorithm for testing strong ordering.

Table 11-5 Algorithm for Testing Strong Ordering

For this algorithm to succeed, stores must have a global ordering in time;
that is, every processor in the system must agree that either the store to
location X precedes the store to location Y, or vice versa. If this global
ordering is enforced, the test algorithm for strong ordering succeeds.

Time Processor A Processor B

T Store to location X Store to location Y

T+1 Load from location Y Load from location X

Chapter 11

268 MIPS R4000 Microprocessor User's Manual

Restarting the Processor

Strong ordering requires precise control of a processor restart.
Specifically, after completion of a processor coherency request, the system
must ensure the completion of any cache state changes before allowing a
processor restart.

The following sections describe processor restarts in a strong-ordered
system after a processor coherency request.

Restart after a Coherent Read Request

Unless a processor invalidate or update request is unacknowledged after
a coherent read request, the processor restarts (if sequential ordering is
enabled) after the last word in the block has been transmitted to the
processor.

Any external requests that must be completed before the read request is
finished must be issued to the processor before the read response is issued.

Restart after a Coherent Write Request

The processor restarts after the coherent write request is completed. That
is, the processor restarts after the last doubleword of data associated with
the write request has been transmitted to the external agent, unless a
processor read request is pending,† or a processor invalidate or update
request is unacknowledged.

Restart after an Invalidate or Update Request

Following an invalidate or update request, the processor restarts after the
external agent asserts IvdAck* or IvdErr*, unless a processor read request
is pending or the processor is processing an external request when either
IvdAck* or IvdErr* is asserted.

If either IvdAck* or IvdErr* is asserted during or after the first cycle that
the external agent asserts ExtRqst*, the processor accepts the external
request and completes any cache state changes associated with the
external request before restarting.

† That is, present but not yet executed.

MIPS R4000 Microprocessor User's Manual 269

Cache Organization, Operation, and Coherency

If either IvdAck* or IvdErr* is asserted before, but not asserted during or
after the first cycle that the external agent asserts ExtRqst*, the processor
restarts before beginning the external request.

External requests must be completed before a processor invalidate or
update completes. They can be completed, provided the processor
receives an asserted ExtRqst* by the external agent either before or during
the same cycle IvdAck* or IvdErr* is asserted.

11.9 Maintaining Coherency on Loads and Stores
Cache coherency protocols maintain data consistency throughout a
multiprocessor environment. Table 11-6 lists the coherency effects of load
and store operations on primary and secondary cache states in a
multiprocessor environment (using an R4000MC processor).

Table 11-6 R4000MC Data Cache Coherency States

† The dirty exclusive primary state allows the primary cache to be written without a
secondary access.

Primary
Cache States

Secondary
Cache States

Action on
Load

Action on
Store

Invalid Any Miss Miss

Shared

Shared
Dirty Shared None

Read secondary tag. If the coherency
algorithm is Update on Write, then
send update and set the secondary
cache state to Dirty Shared. If the
coherency algorithm is Invalidate on
Write, then send invalidate and set the
primary and secondary cache states to
Dirty Exclusive.

Dirty Exclusive None Set the primary cache state to Dirty
Exclusive.

Clean Exclusive

Clean
Exclusive None Set the primary and secondary cache

states to Dirty Exclusive.

Dirty Exclusive None Set the primary data cache state to
Dirty Exclusive.

Dirty Exclusive† Dirty Exclusive None None

Chapter 11

270 MIPS R4000 Microprocessor User's Manual

11.10 Manipulation of the Cache by an External Agent
Just as the processor accesses caches, so too can an external agent examine
and manipulate the state and content of the primary and secondary caches
through invalidate, update, snoop, and intervention transactions.

These transactions are described in the following sections. Encodings of
these request transactions are given in Chapter 12.

Invalidate

An invalidate request causes the processor to change the state of the
specified cache line to invalid in both the primary and secondary caches.

Update

An update request causes the processor to write the specified data element
into the specified cache line, and either change the state of the cache line
to shared in both the primary and secondary caches, or leave the state of
the cache line unchanged, depending on the nature of the update request.
An external agent can issue updates to cache lines that are in either the
exclusive or shared states without changing the state of the cache line (see
the SysCmd(3) bit description in Chapter 12).

NOTE: If there is an update to a line in the primary instruction cache,
the line in the secondary cache is updated and the primary instruction
cache line is invalidated.

Snoop

A snoop request to the processor causes the processor to return the
secondary cache state of the specified cache line.

At the same time, the processor atomically† sets the state of the specified
cache line in both the primary and secondary caches according to the value
of the SysCmd(2:0) bits, which define cache state change, and are supplied
by the external agent.

† An atomic operation is one that cannot be split, or portions of it deferred. In this case, the
processor sets the state of both secondary and primary caches in an indivisible action; it
cannot set the state of one cache line, allow another process to interrupt, and then
complete the first process by setting the state of the remaining cache line.

MIPS R4000 Microprocessor User's Manual 271

Cache Organization, Operation, and Coherency

Intervention

An intervention request causes the processor to return the secondary
cache state of the specified cache line and, under certain conditions related
to the state of the cache line and the nature of the intervention request, the
contents of the specified secondary cache line.

At the same time, the processor atomically sets the state of the specified
cache line in both the primary and secondary caches according to the value
of the SysCmd(2:0) bits which define cache state change, and are supplied
by an external agent.

11.11 Coherency Conflicts
The R4000MC processor must handle competing coherency conflicts that
arise from the processor and an external source. This section describes
how coherency conflicts arise and how they are handled. A system model
illustrates the implications of coherency conflicts in a multiprocessor
environment; a coherent read request cycle is described at the end of this
section.

Figure 11-11 shows the R4000MC processor issuing processor coherency
requests and accepting external coherency requests.

Figure 11-11 Coherency Requests: Processor and External

External Agent
• invalidate
• update
• snoop
• intervention

R4000MC
• coherent read
• invalidate
• update

processor coherency request

external coherency request

Chapter 11

272 MIPS R4000 Microprocessor User's Manual

The R4000MC processor issues the following processor coherency
requests:

• processor coherent read requests

• processor invalidate requests

• processor update requests

The R4000MC processor accepts the following external coherency
requests:

• external invalidate requests

• external update requests

• external snoop requests

• external intervention requests

How Coherency Conflicts Arise

Because of the overlapped nature of the system interface, it is possible for
an external coherency request to target the same cache physical address as
a pending processor read request, an unacknowledged processor
invalidate, or an update request. The processor does not contain the
comparison mechanism necessary to detect such conflicts; instead, it uses
the secondary cache as a point of reference to determine suitable
coherency actions, and only checks the state of the secondary cache at
specific times.

Processor Coherent Read Requests

When the processor wants to service either a store or load cache miss for a
page that has a coherent page attribute in the TLB (meaning the data
passed back and forth should follow a defined multiprocessor coherency
scheme), a coherent read request is used.

Conflicting external coherency requests cannot affect the behavior of the
processor for pending processor coherent read requests. The processor
only issues read requests for a range of physical addresses not currently in
the cache; consequently, an external coherency request that targets the
same physical address range will not find this physical address range in
the cache. In such a case, the processor simply discards any external
coherency requests that conflict with a pending processor coherent read
request.

MIPS R4000 Microprocessor User's Manual 273

Cache Organization, Operation, and Coherency

Processor Invalidate or Update Requests

For processor invalidate or compulsory update requests, a cancellation
mechanism indicates a conflict. For example, if an external coherency
request is submitted while a processor invalidate or compulsory update
request has been issued but not yet acknowledged, the conflict is resolved
when the external agent cancels the processor invalidate or compulsory
update.

Cancellation is accomplished by setting the cancellation bit in the
command for the coherency request [SysCmd(4)]. The processor, upon
receiving an external coherency request with the cancellation bit set,
considers its invalidate or update request to be acknowledged and
cancelled. The processor again accesses the secondary cache to determine
whether to reissue the invalidate or update request, or to issue a read
request.

An external agent can only assert the cancellation bit during an
unacknowledged processor invalidate or unacknowledged compulsory
update request. If an external coherency request is issued with the
cancellation bit set, and there is no unacknowledged processor invalidate
or update request pending, the behavior of the processor is undefined.

If an external coherency request is issued with the cancellation bit set
when a processor update request remains potential—in other words,
while a processor read request is currently pending—the behavior of the
processor is undefined.

Processor potential update requests cannot be cancelled. Potential
updates are always issued with processor read requests and become
compulsory only after the response to the processor read request is
returned in one of the shared states.

Chapter 11

274 MIPS R4000 Microprocessor User's Manual

External Coherency Requests

If an external agent issues an external coherency request that conflicts with
an unacknowledged processor invalidate or update request, without
setting the cancellation bit, the system will operate in an undefined
manner. In this case, the processor has no indication of the conflict and
does not reevaluate the cache state to determine the correct action; it
simply waits for an acknowledge to its invalidate or update request as it
would for any invalidate or update request.

It is not possible for external coherency requests to conflict with processor
write requests, since the processor does not accept external requests while
a processor write request is in progress.

Tables 11-7 and 11-8 summarize the interactions between processor
coherency requests and conflicting external coherency requests, organized
by processor state. These two tables show the processor in one of the
following states:

Idle: no processor transactions are pending.

Read Pending: a processor coherent read request has been issued,
but the read response has not been received.

Potential Update Unacknowledged: a processor update request
has been issued while a processor coherent read request is pend-
ing but not yet acknowledged. By definition, therefore, the re-
sponse to the coherent read request has not been received.

Invalidate or Update Unacknowledged: a processor invalidate or
update request has been issued but has not yet been acknowl-
edged. By definition, no coherent read request is pending.

MIPS R4000 Microprocessor User's Manual 275

Cache Organization, Operation, and Coherency

Table 11-7 Summary of Coherency Conflicts: Invalidate and Update

Table 11-8 Summary of Coherency Conflicts: Intervention and Snoop

System Implications of Coherency Conflicts

The constraints that the processor must place on the handling of coherency
conflicts have certain implications on the design of a multiprocessor
system using the R4000MC model. These constraints and their
implications are described in this section.

† This can cause incorrect system operation and normally should not be allowed to occur.

† This can cause incorrect system operation and normally should not be allowed to occur.

Processor
State

Conflicting External Coherency Request

Invalidate
Invalidate

with Cancel
Update

Update
with Cancel

Idle NA Undefined NA Undefined

Read Pending OK Undefined OK Undefined

Potential Update Unacknowledged OK Undefined OK Undefined

Invalidate or Update
Unacknowledged OK† OK OK† OK

Processor
State

Conflicting External Coherency Request

Intervention
Intervention
with Cancel

Snoop
Snoop

with Cancel

Idle NA Undefined NA Undefined

Read Pending OK Undefined OK Undefined

Potential Update
Unacknowledged OK Undefined OK Undefined

Invalidate or Update
Unacknowledged OK† OK OK† OK

Chapter 11

276 MIPS R4000 Microprocessor User's Manual

System Model

To describe the implications of a coherency conflict, this section uses a
system model that is snooping, split-read, and bus-based; I/O is not
considered in this model.

The system model used in this example has the following components:

• Four processor subsystems, each consisting of an R4000MC
processor, a secondary cache, and an external agent (shown in
Figure 11-12). The external agent communicates with the
R4000MC processor, accepting processor requests and issuing
external requests. Likewise, the system bus issues and receives
bus requests.

• A memory subsystem that communicates with main memory
and the system bus.

• A system bus that has the following characteristics:

- It is a multiple master, request-based, arbitrated bus.
When an agent wishes to perform a transaction on the
bus, it must request the bus and wait for global
arbitration logic to assert a grant signal before assuming
mastership of the bus. Once mastership has been
granted, the agent can begin a transaction.

- It supports read transactions, read exclusive transactions,
write transactions, and invalidate transactions.

- It is a split-read bus. This means bus operations can
separate a read request from the return of its data.

- It is a snooping bus. All agents connected to the bus
must monitor all bus traffic to correctly maintain cache
coherency.

• All of the TLB pages in the system have either a noncoherent or
a sharable coherency attribute. (Noncoherent data is not
allowed; noncoherent page attributes are used for instructions
only.)

• The sharable coherency attribute allows data to be shared
between the four caches in the system by using a write
invalidate cache coherency protocol.

• The secondary cache states used are invalid, shared, clean
exclusive, and dirty exclusive; the dirty shared secondary
cache state is not allowed.

MIPS R4000 Microprocessor User's Manual 277

Cache Organization, Operation, and Coherency

Figure 11-12 4-Processor System Illustrating Coherency Transactions

Given this system model, the following operations are described:

• loads and stores

• processor coherent read request and read response

• processor invalidate

• processor write

R4000MC

S-cache

Subsystem 4

S
ys

te
m

 B
us

External
Agent

R4000MC

S-cache

Subsystem 3

External
Agent

R4000MC

S-cache

Subsystem 2

External
Agent

R4000MC

S-cache

Subsystem 1

External
Agent

Main
Memory

Chapter 11

278 MIPS R4000 Microprocessor User's Manual

Load

A shown in Figure 11-12, when a processor misses in the primary and
secondary caches on a load, the processor issues a read request. The
subsystem external agent translates this to a read request on the bus. The
returned data is loaded in either the clean exclusive or shared state, based
on the shared indication returned with the read response data.†

Store

In this system model, when a processor misses in the primary and
secondary caches on a store, it issues a read request with exclusivity; this
is translated to a read exclusive on the bus and data is loaded in the dirty
exclusive state.

When a processor hits in the cache on a store to shared data, it issues an
invalidate request that must be forwarded to the system bus. Before the
store can be completed and the state changed to dirty exclusive, the
invalidate request must be acknowledged.

Processor Coherent Read Request and Read Response

In this system model, when one of the external agents observes a coherent
read request on the system bus, it does not take immediate action. Instead,
the external agent issues an intervention request to its processor during
the read response. This is referred to as a response complete read protocol;
that is, the read is complete after the read response has occurred.

At the end of the read response, each of the external agents in the system
model indicate whether it was able to obtain the state of the cache line that
is the target of the intervention; if successful, the external agent indicates
either sharing or takeover. Takeover occurs when an external agent
discovers that its processor has a dirty exclusive copy of the cache line that
is the target of the read.

The read response is extended until all external agents have obtained the
state of the cache line from their processors.

In this system model, the response from an external agent at the end of a
read response depends on whether the read request was an ordinary read
request or a read exclusive request. These are described in the following
sections.

† The shared indication is the result of an intervention request to another processor, and is
supplied by an external agent that is a part of the other three processor subsystems.

MIPS R4000 Microprocessor User's Manual 279

Cache Organization, Operation, and Coherency

Ordinary Read Request

For an ordinary read request, an external agent indicates shared at the end
of the read response if it finds that its processor has a copy of the requested
cache line in the clean exclusive or shared state.

An external agent indicates both shared and takeover at the end of a read
response if it finds that its processor has a copy of the requested cache line
in the dirty exclusive state. Having indicated takeover, the external agent
supplies the contents of the cache line (returned by the processor in
response to the intervention request) over the bus to the read requester,
and causes the processor to change the state of the cache line to shared. At
the same time the cache line is supplied to the read requester, it is also
written back to memory.

Read Exclusive Request

For a read exclusive request, an external agent never indicates shared at
the end of the read response, regardless of the state the cache line is in.
Instead, the cache line must be in one of the following states:

• If the current state of the cache line is clean exclusive or shared,
the external agent changes the state of the cache line to invalid.

• If the current state of the cache line is dirty exclusive, the
external agent indicates takeover but not shared. Having
indicated takeover, the external agent supplies the contents of
the cache line to the read requester, and the processor changes
the state of the cache line to invalid. While the cache line is
supplied to the read requester, it is also written back to
memory.

Processor Invalidate

In this system model, an invalidate request is considered complete as soon
as it appears on the system bus. When an external agent observes an
invalidate request on the system bus, it reacts as if the invalidate has
changed the state of all caches at that instant.

Processor Write

In this system model, an external agent takes no action in response to a
write request on the bus.

Chapter 11

280 MIPS R4000 Microprocessor User's Manual

Handling Coherency Conflicts

Coherency conflicts are examined and resolved based on the current state
of the processor. Referring to Figure 11-12, the following conflicts and
their resolutions are described in this section:

• coherent read conflicts

• coherent write conflicts

• invalidate conflicts

Coherent Read Conflicts

External coherency requests that conflict with pending processor coherent
read requests can be issued to the processor without affecting processor
behavior. In the system model shown in Figure 11-12, no conflict
detection is performed by the external agent for processor coherent read
requests; if an external intervention request or invalidate request is
forwarded to the processor that is in conflict with a pending processor
coherent read request, it does not affect the processor cache since the
targeted cache line is, by definition, absent from the cache. The processor
effectively discards the conflicting external intervention request,
responding with an invalid indication for the targeted cache line.
Similarly, the processor discards a conflicting external invalidate request
since the targeted cache line is not present and therefore invalid.

For pending processor coherent read requests, conflict detection could be
added to a system similar to the one shown in Figure 11-12. In such a case,
when the external agent sees a read response on the bus that conflicts with
a pending processor coherent read request, the external agent does not
issue an intervention request to the processor. Rather, it simply reacts as
if an intervention request has been completed and the cache line is not
present in the processor cache.

Similarly, when an external agent sees an invalidate request on the bus
that conflicts with a pending processor coherent read request, it does not
forward the invalidate request to the processor since the targeted cache
line is absent from the processor cache. This scheme for conflict detection
on processor coherent read requests could reduce the number of external
intervention and invalidate requests issued to the processor. However,
since the intervention and invalidate requests that would otherwise be
issued to the processor cannot result in any state modification within the
processor (since the targeted cache line is not present in the cache), conflict
detection for processor coherent read requests is not necessary.

MIPS R4000 Microprocessor User's Manual 281

Cache Organization, Operation, and Coherency

Coherent Write Conflicts

As soon as a write request has been issued to the external agent, the
external agent becomes responsible for the cache line. No conflicts are
possible with a processor write request; however, the external agent must
manage ownership of the cache line while it is waiting to acquire
mastership of the system bus so that it can forward the write request. The
external agent is responsible for the cache line from the time the issue cycle
of the write request completes until the write request is forwarded to the
system bus.

If the response to a coherent read request conflicts with a waiting
processor write request, or with a processor write request that is
transmitting data, the external agent detects the conflict and does not issue
an intervention request to the processor. Instead, it reacts as if an
intervention request has been completed and the line is in the dirty
exclusive state. The external agent indicates takeover and supplies the
read data to the read requester itself without disturbing the processor.
After providing the read data to the read requester, the external agent
must discard the write request if the read request was a read exclusive. In
fact, the external agent can ignore the write request for either type of read,
since processor-supplied read data is also written back to memory.

It is not possible for an invalidate request, or a write request that conflicts
with a waiting processor write request, to appear on the system bus;
before a processor write request can be issued, the state of the processor
cache line must be set to dirty exclusive.

Chapter 11

282 MIPS R4000 Microprocessor User's Manual

Invalidate Conflicts

From the time the processor issues an invalidate request until that request
is acknowledged, any external coherency request issued to the processor
that conflicts with the unacknowledged invalidate must include a
cancellation.

In the model system shown in Figure 11-12, an acknowledge for the
invalidate is sent to the processor as soon as the invalidate is forwarded to
the system bus. Therefore, while the external agent is waiting to become
a bus master to forward the invalidate request, the external agent must
detect, by using comparators, any external coherency request that conflicts
with the unacknowledged invalidate. If a conflict is detected, the external
agent must not forward the invalidate request to the system bus; instead,
it must rescind the invalidate request and submit the conflicting external
request to the processor, with a cancellation for the invalidate request.

If the response to a coherent read request conflicts with a waiting
unacknowledged processor invalidate request, the external agent detects
this conflict and does not forward the processor invalidate request to the
bus. Instead, it discards the processor invalidate request and issues to the
processor an intervention request that includes a cancellation. The
processor then reevaluates its cache state and either reissues the invalidate
request or issues a coherent read request.

If an invalidate request appears on the bus while the external agent has a
processor invalidate request waiting, and the external agent detects the
conflict, the external agent does not forward the processor invalidate
request. Instead, it discards the processor invalidate request and issues an
external invalidate request that includes a cancellation to the processor.
The processor then reevaluates its cache state and either reissues the
invalidate request or issues a coherent read request.

It is not possible for a write request that conflicts with a waiting processor
invalidate request to appear on the system bus. To issue an invalidate
request, the state of the cache line must be shared with every cache in the
system that contains the line.

MIPS R4000 Microprocessor User's Manual 283

Cache Organization, Operation, and Coherency

Sample Cycle: Coherent Read Request

This section describes a multiprocessor system within which a coherent
read request cycle† services a secondary cache load miss. The system has
two processors, PA and PB, and two external agents linked to these
processors, external agent A (EA) and external agent B (EB). The external
agents connect the processors to a system bus. Each of the processors has
its own secondary cache.

The sample cycle follows the steps below (these steps are also numbered
in Figures 11-13, 11-14, and 11-15):

1. Processor B has a load miss within a sharable page.

2. Processor B issues a coherent read request (CRR) through EB.

3. The CRR is placed on the bus.

Figure 11-13 Cache Load Miss Cycle: Coherent Read Request

† Request Cycles are described in Chapter 12.

Coherent Read Request (CRR)

DE

Secondary
Cache A (SA)

System Bus

Secondary
Cache B (SB)

2

3

1

Processor
A (PA)

Processor
B (PB)

External
Agent B (EB)

Memory

External
Agent A (EA)

INV

Chapter 11

284 MIPS R4000 Microprocessor User's Manual

Figure 11-14 Cache Load Miss Cycle: External Intervention

4. As shown in Figure 11-14, external agent EA reads the CRR from the
bus.

5. To service this CRR, EA issues an external intervention request (EIR)
to processor A, PA.

6. PA receives the EIR and examines its secondary cache, SA.

7. Depending on the type of intervention request—based on the state of
the SysCmd(3) bit—one of the following actions is taken:

• If the cache line in SA is in the dirty exclusive state, the entire
cache line is returned.

• Otherwise, PA just returns the state of the secondary cache line.

In Figure 11-14 the retrieved data is in the dirty exclusive state (DE),
servicing a load miss, when the state of cache line SA goes from dirty
exclusive to dirty shared (DS),† indicating PA is owner of the line.

† Assuming DS mode is enabled.

DE

Secondary
Cache A (SA)

System Bus

Secondary
Cache B (SB)

2

3

1

4

5

6

Processor
A (PA)

External
Agent A (EA)

Processor
B (PB)

External
Agent B (EB)

External
Intervention

Request (EIR)

7

Memory

MIPS R4000 Microprocessor User's Manual 285

Cache Organization, Operation, and Coherency

Figure 11-15 Cache Load Miss Cycle: Read Response

8. Figure 11-15 shows the cache state and cache data returned from PA,
through EA to the bus.

9. This cache state and data are returned to EB.

10. EB issues a read response to PB.

11. PA remains owner of the cache line.

DS

Secondary
Cache A (SA)

Processor
A (PA)

External
Agent A (EA)

Processor
B (PB)

External
Agent B (EB)

System Bus

Secondary
Cache B (SB)

2

3

1

4

7

8

9

105

6

Read
Response

S11

Memory

Chapter 11

286 MIPS R4000 Microprocessor User's Manual

11.12 R4000 Processor Synchronization Support
In a multiprocessor system, it is essential that two or more processors
working on a common task execute without corrupting each other’s
subtasks. Synchronization, an operation that guarantees an orderly access
to shared memory, must be implemented for a properly functioning
multiprocessor system. Two of the more widely used methods are
discussed in this section: test-and-set, and counter.

Test-and-Set (Spinlock)

Test-and-set† uses a variable called the semaphore, which protects data
from being simultaneously modified by more than one processor.

In other words, a processor can lock out other processors from accessing
shared data when the processor is in a critical section, a part of program in
which no more than a fixed number of processors is allowed to execute. In
the case of test-and-set, only one processor can enter the critical section.

Figure 11-16 illustrates a test-and-set synchronization procedure that uses
a semaphore; when the semaphore is set to 0, the shared data is unlocked,
and when the semaphore is set to 1, the shared data is locked.

† Test-and-set is sometimes referred to as spinlock.

MIPS R4000 Microprocessor User's Manual 287

Cache Organization, Operation, and Coherency

Figure 11-16 Synchronization with Test-and-Set

The processor begins by loading the semaphore and checking to see if it is
unlocked (set to 0) in steps 1 and 2. If the semaphore is not 0, the processor
loops back to step 1. If the semaphore is 0, indicating the shared data is
not locked, the processor next tries to lock out any other access to the
shared data (step 3). If not successful, the processor loops back to step 1,
and reloads the semaphore.

If the processor is successful at setting the semaphore (step 4), it executes
the critical section of code (step 5) and gains access to the shared data,
completes its task, unlocks the semaphore (step 6), and continues
processing.

1. Load semaphore

2. Unlocked?
 (=0?)

3. Try locking
 semaphore

4. Successful?

6. Unlock semaphore

5. Execute critical section
 (Access shared data)

No

Yes

No

Yes

Continue processing

Chapter 11

288 MIPS R4000 Microprocessor User's Manual

Counter

Another common synchronization technique uses a counter. A counter is a
designated memory location that can be incremented or decremented.

In the test-and-set method, only one processor at a time is permitted to
enter the critical section. Using a counter, up to N processors are allowed
to concurrently execute the critical section. All processors after the Nth
processor must wait until one of the N processors exits the critical section
and a space becomes available.

The counter works by not allowing more than one processor to modify it
at any given time. Conceptually, the counter can be viewed as a variable
that counts the number of limited resources (for example, the number of
processes, or software licenses, etc.). Figure 11-17 shows this process.

Figure 11-17 Synchronization Using a Counter

Load counter

Successful?

Try decrementing

No

Yes

Execute critical section

Counter > 0?

Yes

No

counter

Load counter

Try incrementing
counter

Successful?
No

Yes

Continue processing

MIPS R4000 Microprocessor User's Manual 289

Cache Organization, Operation, and Coherency

LL and SC

MIPS instructions Load Linked (LL) and Store Conditional (SC) provide
support for processor synchronization. These two instructions work very
much like their simpler counterparts, load and store. The LL instruction,
in addition to doing a simple load, has the side effect of setting a bit called
the link bit. This link bit forms a breakable link between the LL instruction
and the subsequent SC instruction. The SC performs a simple store if the
link bit is set when the store executes. If the link bit is not set, then the store
fails to execute. The success or failure of the SC is indicated in the target
register of the store.

The link is broken in the following circumstances:†

• if any external request (invalidate, snoop, or intervention)
changes the state of the line containing the lock variable to
invalid

• upon completion of an ERET (return from exception)
instruction

• an external update to the cache line containing the lock
variable

The most important features of LL and SC are:

• They provide a mechanism for generating all of the common
synchronization primitives including test-and-set, counters,
sequencers, etc., with no additional overhead.

• When they operate, bus traffic is generated only if the state of
the cache line changes; lock words stay in the cache until some
other processor takes ownership of that cache line.

† The most obvious case where the link is broken occurs when an invalidate to the cache line
is the subject of the load. In this case, some other processor has successfully completed a
store to that line.

Chapter 11

290 MIPS R4000 Microprocessor User's Manual

Examples Using LL and SC

Figure 11-18 shows how to implement test-and-set using LL and SC
instructions.

Figure 11-18 Test-and-Set using LL and SC

Load semaphore

Unlocked?
(=0?)

Try locking
semaphore

Successful?
(r3=0?)

Unlock semaphore

Execute critical section
(Access shared data)

No

Yes

No

Yes

Loop: LL r2,(r1)

ORI r3,r2,1
BEQ r3,r2,Loop
NOP

SC r3,(r1)

BEQ r3,0,Loop
NOP

SW r2,(r1)

.

.

.

.

.

MIPS R4000 Microprocessor User's Manual 291

Cache Organization, Operation, and Coherency

Figure 11-19 shows synchronization using a counter.

Figure 11-19 Counter Using LL and SC

Loop1: LL r2,(r1)

BLEZ r2,Loop1

SUB r3,r2,1

NOP

SC r3,(r1)

BEQ r3,0,Loop1
NOP

....

Load counter

Successful?

Try decrementing

No

Yes

Execute critical section

Counter > 0?

Yes

No

counter

Load counter

Try incrementing
counter

Successful?
No

Yes

Continue processing

Loop2: LL r2,(r1)

ADDr3,r2,1
SC r3,(r1)

BEQ r3,0,Loop2
NOP

(r3=0?)

Chapter 11

292 MIPS R4000 Microprocessor User's Manual

MIPS R4000 Microprocessor User's Manual 293

System Interface

12

The System interface allows the processor to access external resources
needed to satisfy cache misses and uncached operations, while permitting
an external agent access to some of the processor internal resources.

In the R4000MC configuration, the System interface also provides the
processor with mechanisms to maintain the cache coherency of shared
data, while providing an external agent the mechanisms to maintain
system-wide multiprocessor cache coherency.

This chapter describes the System interface from the point of view of both
the processor and the external agent.

Chapter 12

294 MIPS R4000 Microprocessor User's Manual

12.1 Terminology
The following terms are used in this chapter:

• An external agent is any logic device connected to the processor,
over the System interface, that allows the processor to issue
requests.

• A system event is an event that occurs within the processor and
requires access to external system resources.

• Sequence refers to the precise series of requests that a processor
generates to service a system event.

• Protocol refers to the cycle-by-cycle signal transitions that occur
on the System interface pins to assert a processor or external
request.

• Syntax refers to the precise definition of bit patterns on
encoded buses, such as the command bus.

12.2 System Interface Description
The R4000 processor supports a 64-bit address/data interface that can
construct systems ranging from a simple uniprocessor with main memory
to a multiprocessor system with caches and complete cache coherency.
The System interface consists of:

• 64-bit address and data bus, SysAD

• 8-bit SysAD check bus, SysADC

• 9-bit command bus, SysCmd

• eight handshake signals:

- RdRdy*, WrRdy*

- ExtRqst*, Release*

- ValidIn*, ValidOut*

- IvdAck*, IvdErr*

The processor uses the System interface to access external resources such
as cache misses and uncached operations. In the case of R4000MC, the
System interface also supports multiprocessor cache coherency.

MIPS R4000 Microprocessor User's Manual 295

System Interface

Interface Buses

Figure 12-1 shows the primary communication paths for the System
interface: a 64-bit address and data bus, SysAD(63:0), and a 9-bit
command bus, SysCmd(8:0). These SysAD and the SysCmd buses are
bidirectional; that is, they are driven by the processor to issue a processor
request, and by the external agent to issue an external request (see
Processor and External Requests, in this chapter, for more information).

A request through the System interface consists of:

• an address

• a System interface command that specifies the precise nature of
the request

• a series of data elements if the request is for a write, read
response, or update.

Figure 12-1 System Interface Buses

R4000 External Agent

SysAD(63:0)

SysCmd(8:0)

Chapter 12

296 MIPS R4000 Microprocessor User's Manual

Address and Data Cycles

Cycles in which the SysAD bus contains a valid address are called address
cycles. Cycles in which the SysAD bus contains valid data are called data
cycles. Validity is determined by the state of the ValidIn* and ValidOut*
signals (described in Interface Buses, in this chapter).

The SysCmd bus identifies the contents of the SysAD bus during any
cycle in which it is valid. The most significant bit of the SysCmd bus is
always used to indicate whether the current cycle is an address cycle or a
data cycle.

• During address cycles [SysCmd(8) = 0], the remainder of the
SysCmd bus, SysCmd(7:0), contains a System interface command
(the encoding of System interface commands is detailed in
System Interface Commands and Data Identifiers, in this
chapter).

• During data cycles [SysCmd(8) = 1], the remainder of the
SysCmd bus, SysCmd(7:0), contains a data identifier (the
encoding of data identifiers is detailed in System Interface
Commands and Data Identifiers, in this chapter).

Issue Cycles

There are two types of processor issue cycles:

• processor read, invalidate, and update request issue cycles

• processor write request issue cycles.

The processor samples the signal RdRdy* to determine the issue cycle for
a processor read, invalidate, or update request; the processor samples the
signal WrRdy* to determine the issue cycle of a processor write request.

As shown in Figure 12-2, RdRdy* must be asserted two cycles prior to the
address cycle of the processor read/invalidate/update request to define
the address cycle as the issue cycle.

Figure 12-2 State of RdRdy* Signal for Read, Invalidate, or Update Requests

SCycle 1 2 3 4 5 6

SClock

SysAD Bus Addr

RdRdy*

MIPS R4000 Microprocessor User's Manual 297

System Interface

As shown in Figure 12-3, WrRdy* must be asserted two cycles prior to the
first address cycle of the processor write request to define the address
cycle as the issue cycle.

Figure 12-3 State of WrRdy* Signal for Write Requests

The processor repeats the address cycle for the request until the conditions
for a valid issue cycle are met. After the issue cycle, if the processor
request requires data to be sent, the data transmission begins. There is
only one issue cycle for any processor request.

The processor accepts external requests, even while attempting to issue a
processor request, by releasing the System interface to slave state in
response to an assertion of ExtRqst* by the external agent.

Note that the rules governing the issue cycle of a processor request are
strictly applied to determine the action the processor takes. The processor
either:

• completes the issuance of the processor request in its entirety
before the external request is accepted, or

• releases the System interface to slave state without completing
the issuance of the processor request.

In the latter case, the processor issues the processor request (provided the
processor request is still necessary) after the external request is complete.
The rules governing an issue cycle again apply to the processor request.

SCycle 1 2 3 4 5 6

SClock

SysAD Bus Addr

WrRdy*

Chapter 12

298 MIPS R4000 Microprocessor User's Manual

 Handshake Signals

The processor manages the flow of requests through the following eight
control signals:

• RdRdy*, WrRdy* are used by the external agent to indicate
when it can accept a new read (RdRdy*) or write (WrRdy*)
transaction.

• ExtRqst*, Release* are used to transfer control of the SysAD
and SysCmd buses. ExtRqst* is used by an external agent to
indicate a need to control the interface. Release* is asserted by
the processor when it transfers the mastership of the System
interface to the external agent.

• The R4000 processor uses ValidOut* and the external agent
uses ValidIn* to indicate valid command/data on the
SysCmd/SysAD buses.

• IvdAck*, IvdErr* are used in multiprocessor systems; they are
asserted by the external agent to indicate the successful
completion (IvdAck*) or the unsuccessful completion (IvdErr*)
of a pending processor invalidate or update request.†

† When using the R4000SC processor, IvdAck* and IvdErr* must be connected to Vcc.

MIPS R4000 Microprocessor User's Manual 299

System Interface

12.3 System Interface Protocols
Figure 12-4 shows the System interface operates from register to register.
That is, processor outputs come directly from output registers and begin
to change with the rising edge of SClock.†

Processor inputs are fed directly to input registers that latch these input
signals with the rising edge of SClock. This allows the System interface to
run at the highest possible clock frequency.

Figure 12-4 System Interface Register-to-Register Operation

Master and Slave States

When the R4000 processor is driving the SysAD and SysCmd buses, the
System interface is in master state. When the external agent is driving the
SysAD and SysCmd buses, the System interface is in slave state.

In master state, the processor asserts the signal ValidOut* whenever the
SysAD and SysCmd buses are valid.

In slave state, the external agent asserts the signal ValidIn* whenever the
SysAD and SysCmd buses are valid.

† SClock is an internal clock used by the processor to sample data at the System interface
and to clock data into the processor System interface output registers; see Chapter 10 for
more details.

R4000

Input data

Output data

SClock

Chapter 12

300 MIPS R4000 Microprocessor User's Manual

Moving from Master to Slave State

The System interface remains in master state unless one of the following
occurs:

• The external agent requests and is granted the System interface
(external arbitration).

• The processor issues a read request or completes the issue of a
cluster (uncompelled change to slave state).

External Arbitration

The System interface must be in slave state for the external agent to issue
an external request through the System interface. The transition from
master state to slave state is arbitrated by the processor using the System
interface handshake signals ExtRqst* and Release*. This transition is
described by the following procedure:

1. An external agent signals that it wishes to issue an external request by
asserting ExtRqst*.

2. When the processor is ready to accept an external request, it releases
the System interface from master to slave state by asserting Release*
for one cycle.

3. The System interface returns to master state as soon as the issue of the
external request is complete.

This process is described in External Arbitration Protocol, later in this
chapter.

MIPS R4000 Microprocessor User's Manual 301

System Interface

Uncompelled Change to Slave State

An uncompelled change to slave state is the transition of the System
interface from master state to slave state, initiated by the processor when
a processor read request is pending. Release* is asserted automatically
after a read request or cluster (see Clusters, later in this chapter, for a
definition of a cluster). An uncompelled change to slave state occurs either
during or some number of cycles after the issue cycle of a read request, or
either during or some number of cycles after the last cycle of the last
request in a cluster.

The uncompelled release latency depends on the state of the cache, the
presence or absence of a secondary cache, and the secondary cache
parameters (see Release Latency, in this chapter). After an uncompelled
change to slave state, the processor returns to master state at the end of the
next external request. This can be a read response, or some other type of
external request.

An external agent must note that the processor has performed an
uncompelled change to slave state and begin driving the SysAD bus along
with the SysCmd bus. As long as the System interface is in slave state, the
external agent can begin an external request without arbitrating for the
System interface; that is, without asserting ExtRqst*.

After the external request, the System interface returns to master state.

Whenever a processor read request is pending, after the issue of a read
request or after the issue of all of the requests in a cluster, the processor
automatically switches the System interface to slave state, even though the
external agent is not arbitrating to issue an external request. This
transition to slave state allows the external agent to return read response
data.

Chapter 12

302 MIPS R4000 Microprocessor User's Manual

12.4 Processor and External Requests
There are two broad categories of requests: processor requests and external
requests. These two categories are described in this section.

When a system event occurs, the processor issues either a single request or
a series of requests—called processor requests—through the System
interface, to access an external resource and service the event. For this to
work, the processor System interface must be connected to an external
agent that is compatible with the System interface protocol, and can
coordinate access to system resources.

An external agent requesting access to processor caches or to a processor
status register generates an external request. This access request passes
through the System interface. System events and request cycles are shown
in Figure 12-5.

Figure 12-5 Requests and System Events

R4000 External Agent

Processor Requests
• Read
• Write
• Null write
• Invalidate
• Update

External Requests
• Read
• Write
• Null
• Invalidate
• Update
• Snoop
• Intervention

System Events
• Load Miss
• Store Miss
• Store Hit
• Uncached Load/Store
• CACHE operations

MIPS R4000 Microprocessor User's Manual 303

System Interface

Rules for Processor Requests

The following rules apply to processor requests.

• After issuing a processor read request, either individually or as
part of a cluster, the processor cannot issue a subsequent read
request until it has received a read response.

• After issuing a processor update request, or after a potential
update request becomes compulsory, the processor cannot
issue a subsequent request until it has received an
acknowledge for the update request.

• After the processor has issued a write request, the processor
cannot issue a subsequent request until at least four cycles after
the issue cycle of the write request. This means back-to-back
write requests with a single data cycle are separated by two
unused system cycles, as shown in Figure 12-6.

Figure 12-6 Back-to-Back Write Cycle Timing

SCycle 1 2 3 4 5 6 7 8 9 10

SClock

SysAD Bus Data Unused Unused Addr Data

WrRdy*

Addr

1 2

Write #1 Write #2

3 4Cycles

Chapter 12

304 MIPS R4000 Microprocessor User's Manual

Processor Requests

A processor request is a request or a series of requests, through the System
interface, to access some external resource. As shown in Figure 12-7,
processor requests include read, write, null write, invalidate, and update.
This section also describes clusters.

Figure 12-7 Processor Requests

Read request asks for a block, doubleword, partial doubleword, word, or
partial word of data either from main memory or from another system
resource.

Write request provides a block, doubleword, partial doubleword, word, or
partial word of data to be written either to main memory or to another
system resource.

Null write request indicates that an expected write has been cancelled as a
result of an external request.

Invalidate request specifies a line in every other cache in the system that
must be marked invalid.

Update request provides a block, doubleword, partial doubleword, word,
or partial word of data that must be transferred to every other cache in the
system.

Table 12-1 lists the processor requests that each type of R4000 can issue.

Table 12-1 Supported Processor Requests

Request R4000PC R4000SC R4000MC

Processor Read X X X

Processor Write X X X

Processor Null Write X X

Processor Invalidate X

Processor Update X

R4000 External Agent

Processor Requests
• Read
• Write
• Null write
• Invalidate
• Update

MIPS R4000 Microprocessor User's Manual 305

System Interface

Processor requests are managed by the processor in two distinct modes:
secondary-cache mode and no-secondary-cache mode (see Chapter 11 for a
description of these two modes), which are programmable through the
boot-time mode control interface described in Chapter 9.

The permissible modes of operation are dependent on the following
processor package configurations; if not programmed correctly, the
behavior of the processor is undefined.

• An R4000PC must be programmed to run in no-secondary-
cache mode.

• An R4000SC or R4000MC can be programmed to run in either
secondary-cache or no-secondary-cache mode.

In no-secondary-cache mode, the processor issues requests in a strict
sequential fashion; that is, the processor is only allowed to have one
request pending at any time. For example, the processor issues a read
request and waits for a read response before issuing any subsequent
requests. The processor submits a write request only if there are no read
requests pending.

The processor has the input signals RdRdy* and WrRdy* to allow an
external agent to manage the flow of processor requests. RdRdy* controls
the flow of processor read, invalidate, and update requests, while WrRdy*
controls the flow of processor write requests. Processor null write requests
must always be accepted and cannot be delayed by either RdRdy* or
WrRdy*. The processor request cycle sequence is shown in Figure 12-8.

Figure 12-8 Processor Request

R4000 External Agent

1. Processor issues read, write,
invalidate, or update request

2. External system controls
acceptance of requests by
asserting RdRdy* or WrRdy*

Chapter 12

306 MIPS R4000 Microprocessor User's Manual

Processor Read Request

When a processor issues a read request, the external agent must access the
specified resource and return the requested data. (Processor read requests
are described in this section; external read requests are described in
External Requests, later on in this chapter.)

A processor read request can be split from the external agent’s return of
the requested data; in other words, the external agent can initiate an
unrelated external request before it returns the response data for a
processor read. A processor read request is completed after the last word
of response data has been received from the external agent.

Note that the data identifier (see System Interface Commands and Data
Identifiers, in this chapter) associated with the response data can signal
that the returned data is erroneous, causing the processor to take a bus
error.

Processor read requests that have been issued, but for which data has not
yet been returned, are said to be pending. A read remains pending until the
requested read data is returned.

In secondary-cache mode, the external agent must be capable of accepting
a processor read request followed by a potential update request any time
all three of the following conditions are met:

• There is no processor read request pending.

• There is no unacknowledged processor update request.

• The signal RdRdy* has been asserted for two or more cycles.

In no-secondary-cache mode, the external agent must be capable of
accepting a processor read request any time the following two conditions
are met:

• There is no processor read request pending.

• The signal RdRdy* has been asserted for two or more cycles.

MIPS R4000 Microprocessor User's Manual 307

System Interface

Processor Write Request

When a processor issues a write request, the specified resource is accessed
and the data is written to it. (Processor write requests are described in this
section; external write requests are described in External Requests, later on
in this chapter.)

A processor write request is complete after the last word of data has been
transmitted to the external agent.

In secondary-cache mode, the external agent must be capable of accepting
a processor write request any time all three of the following conditions are
met:

• There is no processor read request pending.

• There is no unacknowledged processor update request that is
compulsory.

• The signal WrRdy* has been asserted for two or more cycles.

In no-secondary-cache mode, the external agent must be capable of
accepting a processor write request any time the following two conditions
are met:

• No processor read request is pending.

• The signal WrRdy* has been asserted for two or more cycles.

Chapter 12

308 MIPS R4000 Microprocessor User's Manual

Processor Invalidate Request

An invalidate request notifies all processors that the specified cache line
must be marked invalid in all caches in the system. Invalidate requests can
only be used in a multiprocessing system.

When a processor issues an invalidate request, the specified resource is
accessed and the line is marked invalid. (Processor invalidate requests are
described in this section; external invalidate requests are described in
External Requests, later on in this chapter.)

A processor invalidate request requires a completion acknowledge by
either the invalidate acknowledge signal IvdAck* or the invalidate error
signal IvdErr*, unless the invalidate is canceled by the external agent. A
processor invalidate request that has been submitted, but for which the
processor has not yet received an acknowledge or a cancellation, is said to
be unacknowledged. When the processor invalidate request fails (IvdErr* is
asserted), the issuing processor takes a bus error on the store instruction
that generated the failed request. Figure 12-10 shows a sample processor
invalidate/update request cycle.

Invalidate cancellation is signaled to the processor during external
invalidate, update, snoop, and intervention requests; IvdErr* signals a
processor invalidate request has failed.

A completion acknowledge for processor invalidate requests is signaled
through the System interface on dedicated pins, and this acknowledgment
can occur in parallel with processor and external requests.

State changes in the external system are not instantaneously reflected in
the caches of every processor, which means an external agent can discover
that a processor request for an invalidate cannot be completed. For
example, a processor store can hit on a shared cache line and issue an
invalidate to the external agent. However, before the external agent can
transmit the invalidate to the rest of the system another invalidate for the
same cache line can be received by the external agent. If this occurs, the
processor cache does not reflect the current state of the system and the
processor invalidate must not be transmitted to the system; instead, the
external agent must cancel the processor unacknowledged invalidate.
Figure 12-9 shows this cancellation cycle.

MIPS R4000 Microprocessor User's Manual 309

System Interface

Figure 12-9 Cancelling an Invalidate Request

The steps shown in Figure 12-9 are described below:

1. The processor issues an invalidate on a store hit to a shared line in
its cache.

2. An invalidate request, coming from the system bus, is received by
the processor’s external agent targeting the same cache line.

3. The external invalidate invalidates the cache line, and the
processor invalidate request is cancelled.

4. The processor re-examines the state of the cache line and
discovers the cache line which was target of the store is now
invalid. The processor issues a processor read request to service
the store miss.

R4000 External Agent

1. Processor issues
invalidate request

System bus

2. Invalidate arrives from
the system

3. External invalidate with
cancellation sent to processor

4. Processor issues processor
read request

Chapter 12

310 MIPS R4000 Microprocessor User's Manual

Processor Update Request

An update request notifies all processors that a specified cache line in all
caches throughout a multiprocessor system must be replaced with
modified data. An update request can only be used in a multiprocessing
system.

When a processor issues an update request, the specified resource is
accessed and the line is updated. (Processor update requests are described
in this section; external update requests are described in External
Requests, later on in this chapter.)

A processor update request requires a completion acknowledge by either
the invalidate acknowledge signal IvdAck* or the invalidate error signal
IvdErr* (shown in Figure 12-10), unless the update is canceled by the
external agent. A processor update request that has been submitted, but
for which the processor has not yet received an acknowledge or a
cancellation, is said to be unacknowledged. When the processor update
request fails (IvdErr* is asserted), the issuing processor takes a bus error
on the store instruction that generated the failed request. Figure 12-10
shows a sample processor invalidate/update request cycle.

Figure 12-10 Processor Update/Invalidate Acknowledge Cycle

Update cancellation is signaled to the processor during external
invalidate, update, snoop, and intervention requests; IvdErr* signals a
processor update request has failed.

Since a completion acknowledge for processor update requests is signaled
through the System interface on dedicated pins, this acknowledgment can
occur in parallel with processor and external requests.

R4000 External Agent

1. Processor Update or
Invalidate Request

R4000

5. IvdAck* or IvdErr*

System bus

External Agent

2

4

3. External Update
or Invalidate
Request

MIPS R4000 Microprocessor User's Manual 311

System Interface

Clusters

A cluster consists of a single processor read request, followed by one or
two additional processor requests that are issued while the initial read
request is pending.

The processor supports three types of clusters:

• a processor read request, followed by a write request

• a processor read request, followed by potential update request

• a processor read request, followed by a potential update
request, followed by a write request.

In secondary-cache mode, the processor issues individual requests (as in
no-secondary-cache mode), or cluster requests. All requests in the cluster
must be accepted before the response to the read request that began the
cluster can be returned to the processor.

Potential update requests within a cluster can be disabled through the
boot-time mode control interface.

Read With Write Forthcoming Request as Part of a Cluster

The processor signals that it is issuing a cluster containing a processor
write request by issuing a read-with-write-forthcoming request, instead of
starting the cluster with an ordinary read request. The read-with-write-
forthcoming request is identified by a bit in the command for processor
read requests.

The external agent must accept all requests that form the cluster before it
can respond to the read request that began the cluster. The behavior of the
processor is undefined if the external agent returns a response to a
processor read request before accepting all of the requests of the cluster.

Potential Update as Part of a Cluster

Potential updates are identified by setting a bit in the processor update
command. A processor potential update request is any update request
that is issued while a processor read request is pending.

Once the processor issues a read request, a potential update request
follows, regardless of the state of RdRdy*. Potential update requests do
not obey the RdRdy* flow control rules for issuance, but rather issue with
a single address cycle regardless of the state of RdRdy*.

Chapter 12

312 MIPS R4000 Microprocessor User's Manual

A processor potential update request remains potential until the read
response to the pending processor read request which began the cluster is
received by the external agent.

• If the read response data is returned in one of the shared
states—shared or dirty shared—the potential update becomes
compulsory and is no longer potential. A compulsory update
must receive an acknowledge either by the signal IvdAck* or
IvdErr*.

• If the read response data is returned in one of the exclusive
states—clean exclusive or dirty exclusive—the potential update is
nullified and the processor neither expects nor requires an
acknowledge.

Write Request as Part of a Cluster

A write request that is part of a cluster obeys the WrRdy* timing rules for
issuing, as shown earlier in Figure 12-3.

Null Write Request as Part of a Cluster

Since the processor accepts external requests between the issue of a read-
with-write-forthcoming request that begins a cluster and the issue of the
write request that completes a cluster, it is possible for an external request
to eliminate the need for the write request in the cluster. For example, if
the external agent issued an external invalidate request that targeted the
cache line the processor was attempting to write back, the state of the
cache line would be changed to invalid and the write back for the cache
line would no longer be needed. In this event, the processor issues a
processor null write request after completing the external request to
complete the cluster.

Processor null write requests do not obey the WrRdy* flow control rules
for issuance, rather they issue with a single address cycle regardless of the
state of WrRdy*. Any external request that changes the state of a cache
line from dirty exclusive or dirty shared to clean exclusive, shared, or
invalid obviates the need for a write back of that cache line.

MIPS R4000 Microprocessor User's Manual 313

System Interface

External Requests

External requests include read, write, invalidate, update, snoop,
intervention, and null requests, as shown in Figure 12-11. External
invalidate, update, snoop and intervention requests, as a group, are
referred to as external coherence requests. This section also includes a
description of read response, a special case of an external request.

Figure 12-11 External Requests

Read request asks for a word of data from the processor’s internal resource.

Write request provides a word of data to be written to the processor’s
internal resource.

Invalidate request specifies a cache line, in the primary and secondary
caches of the processor, that must be marked invalid.

Update request provides a doubleword, partial doubleword, word, or
partial word of data to be written to the processor’s primary and
secondary caches.

Snoop request checks the processor’s secondary cache to see if a valid copy
of a particular cache line exists. If a valid copy exists, the processor returns
the state of the cache line at the specified physical address in the secondary
cache, and can modify the state of the cache line.

Intervention request requires the processor to return the state of the
secondary cache line at the specified physical address. Under certain
conditions related to the state of the cache line and the nature of the
intervention request, the contents of the primary and secondary cache line
can be returned. The state of the line can also be modified by this request.

R4000 External Agent

External Requests
• Read
• Write
• Null
• Invalidate
• Update
• Snoop
• Intervention

Chapter 12

314 MIPS R4000 Microprocessor User's Manual

Null request requires no action by the processor; it provides a mechanism
for the external agent to either return control of the secondary cache to the
processor, or return the System interface to the master state without
affecting the processor.

Table 12-2 lists the external requests that each type of R4000 can receive
(an X indicates the request is supported on that model).

Table 12-2 Supported External Requests

The processor controls the flow of external requests through the
arbitration signals ExtRqst* and Release*, as shown in Figure 12-12. The
external agent must acquire mastership of the System interface before it is
allowed to issue an external request; the external agent arbitrates for
mastership of the System interface by asserting ExtRqst* and then waiting
for the processor to assert Release* for one cycle.

Figure 12-12 External Request

Request Type R4000PC R4000SC R4000MC

External Read X X X

External Write X X X

External Null
 (System interface) X X X

External Null
 (Secondary Cache) X X

External Invalidate X

External Update X

External Snoop X

External Intervention X

R4000 External Agent

1. External system requests bus
mastership by asserting ExtRqst*

2. Processor grants mastership by
asserting Release*

3. External system issues an
External Request

4. Processor regains bus mastership

MIPS R4000 Microprocessor User's Manual 315

System Interface

Mastership of the System interface always returns to the processor after an
external request is issued. The processor does not accept a subsequent
external request until it has completed the current request. The processor
accepts external requests between the issue of a processor read request, or
a processor read request followed by a potential update request and the
issue of a processor write request within a cluster.

If there are no processor requests pending, the processor decides, based on
its internal state, whether to accept the external request, or to issue a new
processor request. The processor can issue a new processor request even if
the external agent is requesting access to the System interface.

The external agent asserts ExtRqst* indicating that it wishes to begin an
external request. The external agent then waits for the processor to signal
that it is ready to accept this request by asserting Release*. The processor
signals that it is ready to accept an external request based on the criteria
listed below.

• The processor completes any processor request or processor
request cluster that is in progress.

• While waiting for the assertion of RdRdy* to issue a processor
read request, the processor can accept an external request if the
request is delivered to the processor one or more cycles before
RdRdy* is asserted.

• While waiting for the assertion of WrRdy* to issue a processor
write request, the processor can accept an external request
provided the request is delivered to the processor one or more
cycles before WrRdy* is asserted.

• If waiting for the response to a read request after the processor
has made an uncompelled change to a slave state, the external
agent can issue an external request before providing the read
response data.

Chapter 12

316 MIPS R4000 Microprocessor User's Manual

External Read Request

In contrast to a processor read request, data is returned directly in
response to an external read request; no other requests can be issued until
the processor returns the requested data. An external read request is
complete after the processor returns the requested word of data.

The data identifier (see System Interface Commands and Data Identifiers
in this chapter) associated with the response data can signal that the
returned data is erroneous, causing the processor to take a bus error.

NOTE: The processor does not contain any resources that are
readable by an external read request; in response to an external read
request the processor returns undefined data and a data identifier
with its Erroneous Data bit, SysCmd(5), set.

External Write Request

When an external agent issues a write request, the specified resource is
accessed and the data is written to it. An external write request is complete
after the word of data has been transmitted to the processor.

The only processor resource available to an external write request is the
Interrupt register.

External Invalidate Request

When an external agent issues an invalidate request, the specified resource
is accessed and the line is marked invalid. An external invalidate request
is considered to be complete after the request has been transmitted.

External Update Request

When an external agent issues an update request, the specified resource is
accessed and the line is replaced. An external update request is
considered complete after the request has been transmitted.

MIPS R4000 Microprocessor User's Manual 317

System Interface

External Snoop Request

An external snoop request makes the processor inspect the secondary
cache to see if the cache contains a valid version of the specified cache line.
If the valid cache line is present, the processor reports the cache line state
and can modify this state.

An external snoop request is complete after the processor returns the state
of the specified cache line.

External Intervention Request

When an external agent issues an intervention request, the specified
secondary cache line is inspected. Upon inspection, the cache line state is
reported and/or modified. Under certain circumstances the specified
cache line may also be retrieved. The external intervention request is
complete after one of the following occurs:

• the processor returns the state of the specified cache line

• the processor returns the last word of data for the specified
cache line.

Read Response

A read response returns data in response to a processor read request, as
shown in Figure 12-13. While a read response is technically an external
request, it has one characteristic that differentiates it from all other
external requests—it does not perform System interface arbitration. For
this reason, read responses are handled separately from all other external
requests, and are simply called read responses.

Figure 12-13 Read Response

R4000 External Agent

1. Read request

2. Read response

Chapter 12

318 MIPS R4000 Microprocessor User's Manual

12.5 Handling Requests
This section details the sequence, protocol, and syntax (See Terminology, in
this chapter, for definitions of these terms) of both processor and external
requests. The following system events are discussed:

• load miss in secondary-cache mode and no-secondary-cache
mode

• store miss in secondary-cache mode and no-secondary-cache
mode

• store hit

• uncached loads/stores

• CACHE operations

• load linked store conditional.

Load Miss

When a processor load misses in both the primary and secondary caches,
before the processor can proceed it must obtain the cache line that contains
the data element to be loaded from the external agent.

If the new cache line replaces a current dirty exclusive or dirty shared
cache line, the current cache line must be written back before the new line
can be loaded in the primary and secondary caches.

The processor examines the coherency attribute (cache coherency
attributes are described in Chapter 11) in the TLB entry for the page that
contains the requested cache line, and executes one of the following
requests:

• If the coherency attribute is exclusive, the processor issues a
coherent read request that also requests exclusivity.

• If the coherency attribute is sharable or update, the processor
issues a coherent read request.

• If the coherency attribute is noncoherent, the processor issues a
noncoherent read request.

Table 12-3 shows the actions taken on a load miss to primary and
secondary caches.

MIPS R4000 Microprocessor User's Manual 319

System Interface

Table 12-3 Load Miss to Primary and Secondary Caches

Page Attribute
(Write-back policy)

Processor
Configuration

State of Data Cache Line Being Replaced

No-Secondary-Cache
Mode

Secondary-Cache Mode

Clean/Invalid Dirty Clean/Invalid Dirty

Noncoherent All R4000
models NCR NCR/W NCR NCR-W

Exclusive
(read and write
invalidate)

R4000SC
R4000MC N/A N/A REx REx-W

Shareable
(write invalidate) R4000MC N/A N/A R R-W

Update
(write update) R4000MC N/A N/A R R-W

NCR................... Processor noncoherent block read request
NCR/W Processor noncoherent block read request followed by processor block write

request
NCR-W Cluster: Processor noncoherent block read request with write forthcoming

followed by processor block write request
R......................... Processor coherent block read request
R-W Cluster: Processor coherent block read request with write forthcoming followed

by processor block write request
REx Processor coherent block read request with exclusivity
REx-W................ Cluster: Processor coherent block read request with exclusivity and write

forthcoming followed by processor block write request

Chapter 12

320 MIPS R4000 Microprocessor User's Manual

Secondary-Cache Mode

In secondary-cache mode, if the current cache line does not have to be
written back and the coherency attribute for the page that contains the
requested cache line is not exclusive, the processor issues a coherent block
read request for the cache line that contains the data element to be loaded.

If the current cache line needs to be written back and the coherency
attribute for the requested cache line is sharable or update, the processor
issues a cluster. The cluster consists of a coherent block read-with-write-
forthcoming request for the cache line that contains the data element to be
loaded, followed by a block write request for the current cache line.

If the current cache needs to be written back and the coherency attribute
for the page containing the requested cache line is exclusive, the processor
issues a cluster consisting of an exclusive read-with-write-forthcoming
request, followed by a write request for the current cache line.

Table 12-3 lists these actions.

No-Secondary-Cache Mode

In no-secondary-cache mode, if the cache line must be written back on a
load miss, the read request is issued and completed before the write
request is handled. The processor takes the following steps:

1. The processor issues a noncoherent read request† for the cache line
that contains the data element to be loaded.

2. The processor then waits for an external agent to provide the read
response.

If the current cache line must be written back, the processor issues a write
request to save the dirty cache line in memory.

† Only noncoherent and uncached attributes are supported in no-secondary-cache mode.

MIPS R4000 Microprocessor User's Manual 321

System Interface

Store Miss

When a processor store misses in both the primary and secondary caches,
the processor must obtain, from the external agent, the cache line that
contains the target location of the store. The processor examines the
coherency attribute in the TLB entry for the page (TLB page coherency
attributes are listed in Chapter 4) that contains the requested cache line to
see if the cache line is being maintained with either a write invalidate or a
write update cache coherency protocol.

The processor then executes one of the following requests:

• If the coherency attribute is either sharable or exclusive, a write
invalidate protocol is in effect, and a coherent block read that
requests exclusivity is issued.

• If the coherency attribute is update, a write update protocol is in
effect and a coherent block read request is issued.

• If the coherency attribute is noncoherent, a noncoherent block
read request is issued.

Table 12-4 shows the actions taken on a store miss to primary and
secondary caches.

Chapter 12

322 MIPS R4000 Microprocessor User's Manual

Table 12-4 Store Miss to Primary and Secondary Caches

Page Attribute
(Write-back

Policy)

Processor
Configuration

State of Data Cache Line Being Replaced

No-Secondary-
Cache Mode

Secondary-Cache Mode

Clean/
Invalid

Dirty
Clean/
Invalid

Dirty

Noncoherent All R4000
models NCR NCR/

W NCR NCR-W

Exclusive
(write
invalidate)

R4000SC
R4000MC N/A N/A REx REx-W

Shareable
(write
invalidate)

R4000MC N/A N/A REx REx-W

Update
(write update) R4000MC N/A N/A Dis(1)

R/U
En(2)

R-PU
Dis(1)

R-W/U
En(2)

R-PU-W

NCRProcessor noncoherent block read request
NCR/W.............Processor noncoherent block read request followed by processor block

write request
NCR-WCluster: Processor noncoherent block read request with write forthcoming

followed by processor block write request
REx......................Processor coherent block read request with exclusivity
REx-WCluster: Processor coherent block read request with exclusivity and write

forthcoming followed by processor block write request
R/U....................Processor coherent block read request followed by processor update

request (if read response data is shared or dirty shared)
R-PUCluster: Processor coherent block read request followed by processor

potential update request
R-PU-WCluster: Processor coherent block read request followed by processor

potential update request, followed by processor block write request
R-W/UCluster: Processor coherent block read request with write forthcoming

followed by processor block write request, followed by processor update
request (if read response data is shared or dirty shared)

Dis(1)Potential update disable [Modebit(20): PotUpdDis = 1]
En(2)Potential update enable [Modebit(20): PotUpdDis = 0]

MIPS R4000 Microprocessor User's Manual 323

System Interface

Secondary-Cache Mode

In secondary-cache mode, if the new cache line replaces a current cache
line that is in either the dirty exclusive or dirty shared state, the current
cache line must be written back before the new line can be loaded in the
primary and secondary caches. The processor requests issued are a
function of the page attributes listed below.

Noncoherent Page Attribute

If the current cache line must be written back, and the coherency attribute
for the requested cache line is noncoherent, the processor issues a cluster
consisting of a noncoherent block read-with-write-forthcoming request
for the cache line that contains the store target location, followed by a
block write request for the current cache line.

If the current cache line does not need to be written back and the
coherency attribute for the page that contains the requested cache line is
noncoherent, the processor issues a noncoherent block read request for the
cache line that contains the store target location.

Sharable or Exclusive Page Attribute

If the current cache line must be written back and the coherency attribute
for the page that contains the requested cache line is sharable or exclusive,
the processor issues a cluster consisting of a coherent block read request
with exclusivity and write forthcoming, followed by a processor block
write request for the current cache line.

If the current cache line does not need to be written back and the coherency
attribute for the page that contains the requested cache line is sharable or
exclusive, the processor issues a coherent block read request that also
requests exclusivity.

Update Page Attribute

If the current cache line must be written back and the coherency attribute
for the page that contains the requested cache line is update, and potential
updates are enabled, the processor issues a cluster consisting of a coherent
block read-with-write-forthcoming request, followed by a potential
update request, followed by a write request for the current cache line.

Chapter 12

324 MIPS R4000 Microprocessor User's Manual

If the current cache line does not need to be written back, the coherency
attribute for the page that contains the requested cache line is update, and
potential updates are enabled, the processor issues a cluster consisting of
a read request, followed by a potential update request.

In an update protocol, the cache line requested by a processor coherent
read request can be returned in a shared state; the processor then has to
issue an update request before it can complete a store instruction. A
potential update issued with a read request in a cluster allows the external
agent to anticipate the read response on the system bus. If the read
response is in a shared state, the required update is quickly transmitted to
the rest of the system. This provides the processor with the acknowledge
and allows the processor to complete the store instruction as rapidly as
possible.

Without the potential update request, the response data must be returned
to the processor. If the line is returned in the shared or dirty shared state,
the processor issues an update request, which must then be forwarded to
the system bus before an acknowledge can be returned to the processor.

Note that potential updates behave as if they have not yet been issued by
the processor. Potential updates are not subject to cancellation, and do not
require an acknowledge. When a potential update is nullified, the
processor behaves as if no update request was ever issued; when a
potential update becomes compulsory, the processor behaves as if it had
issued an update request at that instant.

Compulsory Update: If the processor issues a cluster that contains a
potential update, and the response data for the read request is
returned with an indication that it must be placed in the cache in either
a shared or dirty shared state, the potential update then becomes
compulsory. Once a potential update becomes compulsory, it is
subject to cancellation, and the processor requires an acknowledge for
the update request. The external agent must forward the update to the
system, then signal the acknowledge to the processor when the update
is complete. The processor will not complete the store until it has
received an acknowledge for the update request.

MIPS R4000 Microprocessor User's Manual 325

System Interface

Nullifying a Potential Update: If the processor issues a cluster that
contains a potential update, and the response data for the read request
is returned in either a clean exclusive or dirty exclusive state, the
potential update is nullified. Once a potential update has been
nullified, the external agent must discard the update. The processor
does not wait for or expect an acknowledge to a potential update that
has been nullified. It is not correct to assert either IvdAck* or IvdErr*
in this situation.

If the read response data is returned in either the clean exclusive or dirty
exclusive state, the processor cannot issue an update request. It is
assumed that the external agent will take the appropriate action to change
the state of the cache line to invalid in other caches.

An external request indicating processor update cancellation can be issued
when a processor read is not pending or when compulsory update is
unacknowledged. Processor state is undefined if a cancellation is signaled
on an external coherence request to the processor when a processor read
is pending, or there is no unacknowledged compulsory update.

No-Secondary-Cache Mode

The processor issues a read request for the cache line that contains the data
element to be loaded, then awaits the external agent to provide read data
in response to the read request. Then, if the current cache line must be
written back, the processor issues a write request for the current cache line.

In no-secondary-cache mode, if the new cache line replaces a current cache
line whose Write back (W) bit is set, the current cache line moves to an
internal write buffer before the new cache line is loaded in the primary
cache.

Chapter 12

326 MIPS R4000 Microprocessor User's Manual

Store Hit

This section describes store hits in both secondary-cache and no-
secondary-cache mode.

Secondary-Cache Mode

When the processor hits in the secondary cache, on a line that is marked
either shared or dirty shared, the processor must issue an update or
invalidate request and then wait to receive an acknowledge, before the
store is complete. The processor checks the coherency attribute in the TLB
for the page containing the cache line that is target of the store, to
determine if the cache line is managed by either a write invalidate or write
update cache coherency protocol.

• If the coherency attribute is sharable or exclusive, a write
invalidate protocol is in effect, and the processor issues an
invalidate request. The processor cannot complete the store
until the external agent signals an acknowledge for this
invalidate request.

• If the coherency attribute is update, a write update protocol is
in effect, and the processor issues an update request. The
processor cannot complete the store until the external agent
signals an acknowledge for this update request.

No-Secondary-Cache Mode

In no-secondary-cache mode, all lines are set to the dirty exclusive state.
This means store hits cause no bus transactions.

Uncached Loads or Stores

When the processor performs an uncached load, it issues a noncoherent
doubleword, partial doubleword, word, or partial word read request.
When the processor performs an uncached store, it issues a doubleword,
partial doubleword, word, or partial word write request.

External requests have a higher priority than uncached stores. When
using the uncached store buffer on an R4400 processor, it is possible for the
external agent to receive cached and uncached stores out of program
order, as the example below illustrates. Figure 12-14 shows a cached and
uncached store instruction sequence:

MIPS R4000 Microprocessor User's Manual 327

System Interface

Figure 12-14 R4400 Processor Cached and Uncached Store Sequence

Referring to Figure 12-14, suppose an external intervention or snoop is
issued to the R4400 processor while the uncached store is still in the store
buffer (the uncached store data has not yet been stored off-chip). The
cached store from Figure 12-14 has hit in the primary cache and is in the
tag check (TC) stage of the pipeline (see Chapter 3 for a description of the
pipeline stages). In this case, the external agent sees the state of the
internal caches after the cached store but before the result of the uncached
store is available off the chip. Figure 12-15 shows how a SYNC instruction
can force the uncached store to occur before the cached store.

Figure 12-15 R4400 Processor Cached and Uncached Stores, Using SYNC

CACHE Operations

The processor provides a variety of CACHE operations to maintain the
state and contents of the primary and secondary caches. During the
execution of the CACHE operation instructions, the processor can issue
either write requests or invalidate requests.

Load Linked Store Conditional Operation

Generally, the execution of a Load Linked Store Conditional instruction
sequence is not visible at the System interface; that is, no special requests
are generated due to the execution of this instruction sequence.

There is, however, one situation in which the execution of a Load Linked
Store Conditional instruction sequence is visible, as indicated by the link
address retained bit during a processor read request, as programmed by the
SysCmd(2) bit. This situation occurs when the data location targeted by a
Load Linked Store Conditional instruction sequence maps to the same
cache line to which the instruction area containing the Load Linked Store
Conditional code sequence is mapped. In this case, immediately after
executing the Load Linked instruction, the cache line that contains the link

SW r2, (r3) # uncached store
SW r4, (r5) # cached store

SW r2, (r3) # uncached store
SYNC
SW r4, (r5) # cached store

Chapter 12

328 MIPS R4000 Microprocessor User's Manual

location is replaced by the instruction line containing the code. The link
address is kept in a register separate from the cache, and remains active as
long as the link bit, set by the Load Linked instruction, is set.

The link bit, which is set by the load linked instruction, is cleared by a
change of cache state for the line containing the link address, or by a
Return From Exception.

In order for the Load Linked Store Conditional instruction sequence to
work correctly, all coherency traffic targeting the link address must be
visible to the processor, and the cache line containing the link location
must remain in a shared state in every cache in the system. This
guarantees that a Store Conditional executed by some other processor is
visible to the processor as a coherence request, changing the state of the
cache line containing the link location.

To accomplish this, a read request issued by the processor, causing the
cache line containing the link location to be replaced. In the mean time,
the link address retained bit is set, indicating the link address is being
retained. This informs the external agent that, although the processor has
replaced this cache line, the processor must still see any coherence traffic
that targets this cache line.

Any snoop or intervention request that targets a cache line which is not
present in the cache—but for which the snoop or intervention address
matches the current link address while the link bit is set—returns an
indication that the cache line is present in the cache in a shared state. This
is consistent with the coherency model, since the processor never returns
data, in response to an intervention request, for a cache line that is in the
shared state. The shared response guarantees that the cache line
containing the link location remains in a shared state in all other
processor’s caches, and therefore that any other processor attempting a
store conditional to this link location must issue a coherence request in
order to complete the store conditional.

For more information, refer to Chapter 11, or see the specific Load Linked
and Store Conditional instructions described in Appendix A.

MIPS R4000 Microprocessor User's Manual 329

System Interface

12.6 Processor and External Request Protocols
The following sections contain a cycle-by-cycle description of the bus
arbitration protocols for each type of processor and external request.
Table 12-5 lists the abbreviations and definitions for each of the buses that
are used in the timing diagrams that follow.

Table 12-5 System Interface Requests

Scope Abbreviation Meaning

Global Unsd Unused

SysAD bus
Addr Physical address

Data<n> Data element number n of a block of data

SysCmd bus

Cmd An unspecified System interface command

Read A processor or external read request command

RwWF A processor read-with-write-forthcoming request
command

Write A processor or external write request command

Null A processor null request command

SINull A System interface release external null request
command

SCNull A secondary cache release external null request
command

Ivd A processor or external invalidate request
command

Upd A processor or external update request command

Ivtn An external intervention request command

Snoop An external snoop request command

NData A noncoherent data identifier for a data element
other than the last data element

NEOD A noncoherent data identifier for the last data
element

CData A coherent data identifier for a data element other
than the last data element

CEOD A coherent data identifier for the last data element

Chapter 12

330 MIPS R4000 Microprocessor User's Manual

Processor Request Protocols

Processor request protocols described in this section include:

• read

• write

• invalidate and update

• null write

• cluster

NOTE: In the timing diagrams, the two closely spaced, wavy vertical
lines (such as those shown in Figure 12-16) indicate one or more iden-
tical cycles which are not illustrated due to space constraints.

Figure 12-16 Symbol for Undocumented Cycles

Processor Read Request Protocol

The following sequence describes the protocol for a processor read request
(the numbered steps below correspond to Figures 12-17 and 12-18).

1. RdRdy* is asserted low, indicating the external agent is ready to
accept a read request.

2. With the System interface in master state, a processor read request is
issued by driving a read command on the SysCmd bus and a read
address on the SysAD bus.

3. At the same time, the processor asserts ValidOut* for one cycle,
indicating valid data is present on the SysCmd and the SysAD buses.

NOTE: Only one processor read request can be pending at a time.

4. The processor makes an uncompelled change to slave state either at
the issue cycle of the read request, or sometime after the issue cycle of
the read request by asserting the Release* signal for one cycle.

MIPS R4000 Microprocessor User's Manual 331

System Interface

NOTE: The external agent must not assert the signal ExtRqst* for the
purposes of returning a read response, but rather must wait for the un-
compelled change to slave state. The signal ExtRqst* can be asserted
before or during a read response to perform an external request other
than a read response.

5. The processor releases the SysCmd and the SysAD buses one SCycle
after the assertion of Release*.

6. The external agent drives the SysCmd and the SysAD buses within
two cycles after the assertion of Release*.

Once in slave state (starting at cycle 5 in Figure 12-17), the external agent
can return the requested data through a read response. The read response
can return the requested data or, if the requested data could not be
successfully retrieved, an indication that the returned data is erroneous. If
the returned data is erroneous, the processor takes a bus error exception.

Figure 12-17 illustrates a processor read request, coupled with an
uncompelled change to slave state, that occurs as the read request is
issued. Figure 12-18 illustrates a processor read request, and the
subsequent uncompelled change to slave state, that occurs sometime after
the read request is issued.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

Figure 12-17 Processor Read Request Protocol

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr

SysCmd Bus Read

ValidOut*

ValidIn*

RdRdy*

WrRdy*

Release*

2
3

4

Master Slave

5

1

6

Chapter 12

332 MIPS R4000 Microprocessor User's Manual

Figure 12-18 Processor Read Request Protocol, Change to Slave State Delayed

When the following three events occur—a read request is pending,
ExtRqst* is asserted, and Release* is asserted for one cycle—it may be
unclear if the assertion of Release* is in response to ExtRqst*, or
represents an uncompelled change to slave state. The only situation in
which the assertion of Release* cannot be considered an uncompelled
change to slave state is if the following three conditions exist
simultaneously:

• the System interface is operating in secondary-cache mode

• the read request was a read-with-write-forthcoming request

• the expected write request has not been issued by the
processor.

If these three conditions exist, the processor cannot accept the read
response; rather, it accepts the external request. The write request must be
accepted by the external agent before the read response can be issued.

In all other cases, the assertion of Release* indicates either an
uncompelled change to slave state, or a response to the assertion of
ExtRqst*, whereupon the processor accepts either a read response, or any
other external request. If any external request other than a read response
is issued, the processor performs another uncompelled change to slave
state, asserting Release*, after processing the external request.

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr

SysCmd Bus Read

ValidOut*

ValidIn*

RdRdy*

WrRdy*

Release*

3

4

2

5

Master Slave

1

6

MIPS R4000 Microprocessor User's Manual 333

System Interface

Processor Write Request Protocol

Processor write requests are issued using one of two protocols.

• Doubleword, partial doubleword, word, or partial word writes
use a word† write request protocol.

• Block writes use a block write request protocol.

Processor doubleword write requests are issued with the System interface
in master state, as described below in the steps below; Figure 12-19 shows
a processor noncoherent single word write request cycle.

1. A processor single word write request is issued by driving a write
command on the SysCmd bus and a write address on the SysAD bus.

2. The processor asserts ValidOut*.

3. The processor drives a data identifier on the SysCmd bus and data on
the SysAD bus.

4. The data identifier associated with the data cycle must contain a last
data cycle indication. At the end of the cycle, ValidOut* is deasserted.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

Figure 12-19 Processor Noncoherent Single Word Write Request Protocol

† Called word to distinguish it from block request protocol. Data transferred can actually be
doubleword, partial doubleword, word, or partial word.

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Data0

SysCmd Bus Write NEOD

ValidOut*

ValidIn*

RdRdy*

WrRdy*

Release*

42
1

Master

3

Chapter 12

334 MIPS R4000 Microprocessor User's Manual

Processor block write requests are issued with the System interface in
master state, as described below; a processor coherent block request for
eight words of data is illustrated in Figures 12-20 and 12-21.

1. The processor issues a write command on the SysCmd bus and a write
address on the SysAD bus.

2. The processor asserts ValidOut*.

3. The processor drives a data identifier on the SysCmd bus and data on
the SysAD bus.

4. The processor asserts ValidOut* for a number of cycles sufficient to
transmit the block of data.

5. The data identifier associated with the last data cycle must contain a
last data cycle indication.

NOTE: As shown in Figure 12-21, however, the first data cycle does
not have to immediately follow the address cycle.

Figures 12-20 and 12-21 illustrate a processor coherent block request for
eight words of data.

Figure 12-20 Processor Coherent Block Write Request Protocol

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Data0 Data1 Data2 Data3

SysCmd Bus Write CData CData CData CEOD

ValidOut*

ValidIn*

RdRdy*

WrRdy*

Release*

5
2 4

1

Master

3

MIPS R4000 Microprocessor User's Manual 335

System Interface

Figure 12-21 Processor Coherent Block Write Request Protocol (Delayed)

Processor Invalidate and Update Request Protocol

Processor invalidate request and update request protocols are the same as
a coherent word write request, except for the following:

• invalidate and update requests are controlled by RdRdy*,
while the write request is controlled by WrRdy*

• the single data cycle transfer is not used by an invalidate
request

Processor invalidate and update requests are acknowledged using the
signals IvdAck* and IvdErr*. The external agent drives either IvdAck* or
IvdErr* for one cycle to signal the completion of the current processor
update or invalidate request; IvdAck* occurs in parallel with requests on
the SysAD and SysCmd buses.

 IvdAck* or IvdErr* can be driven at any time after a processor update or
invalidate request is issued, provided the update request is compulsory.

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Data0 Data1 Data2 Data3

SysCmd Bus Write CData CData CData CEOD

ValidOut*

ValidIn*

RdRdy*

WrRdy*

Release*

4
5

6

2
1

Master

3

Chapter 12

336 MIPS R4000 Microprocessor User's Manual

The processor pipeline stalls until one of the following occurs:

• IvdAck* or IvdErr* is asserted by the external agent. Assertion
of IvdAck* indicates a successful invalidation, and the
processor continues. IvdErr* causes a bus error exception.

• either an intervention, snoop, update, or invalidate request is
sent by the external agent, with the Invalidate or Update
Cancellation bit set, SysCmd(4) = 0, indicating the processor
invalidate or update request was cancelled.

If the processor update or invalidate request is cancelled, the instruction
that caused the processor request is re-executed. If the external request is
sent with SysCmd(4) = 1, indicating no cancellation, the processor, after
responding to the external request, stalls again until one of the two
conditions described above terminate the processor’s invalidate or update
request.

Processor Null Write Request Protocol

A processor null write request is issued with the System interface in
master state; the request consists of a single address cycle. The processor
drives a null command on the SysCmd bus and asserts ValidOut* for one
cycle. The SysAD bus is unused during the address cycle associated with
a null write request, and processor null write requests cannot be
controlled with either RdRdy* or WrRdy* signals. Figure 12-22 illustrates
a processor null write request.

Figure 12-22 Processor Null Write Request Protocol

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Unsd

SysCmd Bus Null

ValidOut*

ValidIn*

RdRdy*

WrRdy*

Release*

Master

MIPS R4000 Microprocessor User's Manual 337

System Interface

Processor Cluster Request Protocol

In secondary-cache mode, the processor can issue two types of requests:
individual and cluster.

All of the requests that are part of a cluster must be accepted by the
external agent before a response to the read request, that began the cluster,
can be returned to the processor. A cluster consists of:

• a processor read with write forthcoming request followed by a
write request

• a processor read request followed by a potential update request

• a processor read with write forthcoming request followed by a
potential update request, followed by a write request.

Figure 12-23 illustrates a cluster consisting of a read with write
forthcoming request, followed by a potential update request, followed by
a coherent block write request for eight words of data (with minimum
spacing between the requests that form the cluster), followed by an
uncompelled change to slave state at the earliest opportunity.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively. There may be
unused cycles between the requests that form a cluster.

Figure 12-23 Processor Cluster Request Protocol

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Addr Data0 Addr Data0 Data1 Data2 Data3

SysCmd Bus RwWF Upd CEOD Write CData CData CData CEOD

ValidOut*

ValidIn*

RdRdy*

WrRdy*

Release*

4

1

Master Slave

2 3

Chapter 12

338 MIPS R4000 Microprocessor User's Manual

Processor Request and Cluster Flow Control

The external agent uses RdRdy* to control the flow of the following
processes:

• processor read request

• processor invalidate request

• processor update request

• processor read request, followed by a potential update request
within a cluster.

Figures 12-24 through 12-27 illustrate this flow control, as described in the
steps below.

1. The processor samples the signal RdRdy* to determine if the external
agent is capable of accepting a read, invalidate, update request, or a
read request followed by a potential update request.

2. The signal WrRdy* controls the flow of a processor write request.

3. The processor does not complete the issue of a read, invalidate, update
request, or a read request followed by a potential update request, until
it issues an address cycle in response to the request for which the
signal RdRdy* was asserted two cycles earlier.

4. The processor does not complete the issue of a write request until it
issues an address cycle in response to the write request for which the
signal WrRdy* was asserted two cycles earlier.

Figure 12-24 illustrates two processor write requests in which the issue of
the second is delayed for the assertion of WrRdy*.

Figure 12-25 illustrates a processor cluster in which the issue of the read
and a potential update request are delayed for the assertion of RdRdy*.

Figure 12-26 illustrates a processor cluster in which the issue of the write
request is delayed for the assertion of WrRdy*.

Figure 12-27 illustrates the issue of a processor write request delayed for
the assertion of WrRdy* and the completion of an external invalidate
request.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

MIPS R4000 Microprocessor User's Manual 339

System Interface

Figure 12-24 Two Processor Write Requests, Second Write Delayed for the Assertion of WrRdy*

Figure 12-25 Processor Read Request within a Cluster Delayed for the Assertion of RdRdy*

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Data0 Addr Data0

SysCmd Bus Write NEOD Write NEOD

ValidOut*

ValidIn*

RdRdy*

WrRdy*

Release*

4

2

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Addr Data0 Addr Data0 Data1 Data2 Data3

SysCmd Bus Read Upd CEOD Write CData CData CData CEOD

ValidOut*

ValidIn*

RdRdy*

WrRdy*

Release*

1

3

Chapter 12

340 MIPS R4000 Microprocessor User's Manual

Figure 12-26 Processor Write Request within a Cluster Delayed for the Assertion of WrRdy*

Figure 12-27 Processor Write Request Delayed for the Assertion of WrRdy* and the Completion
of an External Invalidate Request

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Addr Data0 Addr Data0 Data1 Data2 Data3

SysCmd Bus Read Upd CEOD Write CData CData CData CEOD

ValidOut*

ValidIn*

RdRdy*

WrRdy*

Release*

2

4

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Addr Unsd Addr Data0

SysCmd Bus Write Ivd CEOD Write NEOD

ValidOut*

ValidIn*

RdRdy*

WrRdy*

ExtRqst*

Release*

2

4

MIPS R4000 Microprocessor User's Manual 341

System Interface

External Request Protocols

External requests can only be issued with the System interface in slave
state. An external agent asserts ExtRqst* to arbitrate (see External
Arbitration Protocol, below) for the System interface, then waits for the
processor to release the System interface to slave state by asserting
Release* before the external agent issues an external request. If the System
interface is already in slave state—that is, the processor has previously
performed an uncompelled change to slave state—the external agent can
begin an external request immediately.

After issuing an external request, the external agent must return the
System interface to master state. If the external agent does not have any
additional external requests to perform, ExtRqst* must be deasserted two
cycles after the cycle in which Release* was asserted. For a string of
external requests, the ExtRqst* signal is asserted until the last request
cycle, whereupon it is deasserted two cycles after the cycle in which
Release* was asserted.

The processor continues to handle external requests as long as ExtRqst* is
asserted; however, the processor cannot release the System interface to
slave state for a subsequent external request until it has completed the
current request. As long as ExtRqst* is asserted, the string of external
requests is not interrupted by a processor request.

This section describes the following external request protocols:

• read

• null

• write

• invalidate and update

• intervention

• snoop

• read response

Chapter 12

342 MIPS R4000 Microprocessor User's Manual

External Arbitration Protocol

System interface arbitration uses the signals ExtRqst* and Release* as
described above. Figure 12-28 is a timing diagram of the arbitration
protocol, in which slave and master states are shown.

The arbitration cycle consists of the following steps:

1. The external agent asserts ExtRqst* when it wishes to submit an
external request.

2. The processor waits until it is ready to handle an external request,
whereupon it asserts Release* for one cycle.

3. The processor sets the SysAD and SysCmd buses to tri-state.

4. The external agent must wait at least two cycles after the assertion of
Release* before it drives the SysAD and SysCmd buses.

5. The external agent deasserts ExtRqst* two cycles after the assertion of
Release*, unless the external agent wishes to perform an additional
external request.

6. The external agent sets the SysAD and the SysCmd buses to tri-state
at the completion of an external request.

The processor can start issuing a processor request one cycle after the
external agent sets the bus to tri-state.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

Figure 12-28 Arbitration Protocol for External Requests

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Data0

SysCmd Bus Cmd NEOD

ValidIn*

ExtRqst*

Release*

1

2

3 4

5

6

Master Slave Master

MIPS R4000 Microprocessor User's Manual 343

System Interface

External Read Request Protocol

External reads are requests for a word of data from a processor internal
resource, such as a register. External read requests cannot be split; that is,
no other request can occur between the external read request and its read
response.

Figure 12-29 shows a timing diagram of an external read request, which
consists of the following steps:

1. An external agent asserts ExtRqst* to arbitrate for the System
interface.

2. The processor releases the System interface to slave state by asserting
Release* for one cycle and then deasserting Release*.

3. After Release* is deasserted, the SysAD and SysCmd buses are set to
a tri-state for one cycle.

4. The external agent drives a read request command on the SysCmd
bus and a read request address on the SysAD bus and asserts
ValidIn* for one cycle.

5. After the address and command are sent, the external agent releases
the SysCmd and SysAD buses by setting them to tri-state and
allowing the processor to drive them. The processor, having accessed
the data that is the target of the read, returns this data to the external
agent. The processor accomplishes this by driving a data identifier on
the SysCmd bus, the response data on the SysAD bus, and asserting
ValidOut* for one cycle. The data identifier indicates that this is last-
data-cycle response data.

6. The System interface is in master state. The processor continues
driving the SysCmd and SysAD buses after the read response is
returned.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

External read requests are only allowed to read a word of data from the
processor. The processor response to external read requests for any data
element other than a word is undefined.

Chapter 12

344 MIPS R4000 Microprocessor User's Manual

Figure 12-29 External Read Request, System Interface in Master State

NOTE: The processor does not contain any resources that are
readable by an external read request; in response to an external read
request the processor returns undefined data and a data identifier
with its Erroneous Data bit, SysCmd(5), set.

External Null Request Protocol

The processor supports two kinds of external null requests.

• A secondary cache release external null request returns ownership
of the secondary cache to the processor while the System
interface remains in slave state, until another external null
request returns it to master state.

• A System interface release external null request returns the System
interface to master state from slave state without otherwise
affecting the processor.

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Data0

SysCmd Bus Read NEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

6

1

2

3

5

6

4

Master Slave Master

MIPS R4000 Microprocessor User's Manual 345

System Interface

Any time the processor releases the System interface to slave state to
accept an external request, it also allows the external agent to use the
secondary cache, in anticipation of a cache coherence request. When the
external agent uses the SysAD bus for a transfer unrelated to the processor
(for example, a DMA transfer), this ownership of the secondary cache
prevents the processor from satisfying subsequent primary cache misses.
To satisfy such a primary cache miss, the external agent issues a secondary
cache release external null request, returning ownership of the secondary
cache to the processor.

External null requests require no action from the processor other than to
return the System interface to master state, or to regain ownership of the
secondary cache.

Figures 12-30 and 12-31 show timing diagrams of the two external null
request cycles, which consist of the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the System
interface.

2. The processor releases the System interface to slave state by asserting
Release*.

3. The external agent drives a secondary cache release external null
request command on the SysCmd bus, and asserts ValidIn* for one
cycle to return the secondary cache interface ownership to the
processor.

4. The SysAD bus is unused (does not contain valid data) during the
address cycle associated with an external null request.

5. After the address cycle is issued, the null request is complete.

For a secondary cache release external null request, the System interface
remains in slave state.

For a System interface release external null request, the external agent releases
the SysCmd and SysAD buses, and expects the System interface to return
to master state.

Chapter 12

346 MIPS R4000 Microprocessor User's Manual

Figure 12-30 Secondary Cache Release External Null Request

Figure 12-31 System Interface Release External Null Request

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Unsd

SysCmd Bus SCNull

ValidOut*

ValidIn*

ExtRqst*

Release*

4

5

1

2

3

Master Slave

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Unsd

SysCmd Bus SINull

ValidOut*

ValidIn*

ExtRqst*

Release*

4

5

3

Slave Master

MIPS R4000 Microprocessor User's Manual 347

System Interface

External Write Request Protocol

External write requests use a protocol identical to the processor single
word write protocol except the ValidIn* signal is asserted instead of
ValidOut*. Figure 12-32 shows a timing diagram of an external write
request, which consists of the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the System
interface.

2. The processor releases the System interface to slave state by asserting
Release*.

3. The external agent drives a write command on the SysCmd bus, a
write address on the SysAD bus, and asserts ValidIn*.

4. The external agent drives a data identifier on the SysCmd bus, data on
the SysAD bus, and asserts ValidIn*.

5. The data identifier associated with the data cycle must contain a
coherent or noncoherent last data cycle indication.

6. After the data cycle is issued, the write request is complete and the
external agent sets the SysCmd and SysAD buses to a tri-state,
allowing the System interface to return to master state. Timings for
the SysADC and SysCmdP buses are the same as those of the SysAD
and SysCmd buses, respectively.

External write requests are only allowed to write a word of data to the
processor. Processor behavior in response to an external write request for
any data element other than a word is undefined.

Figure 12-32 External Write Request, with System Interface initially a Bus Master

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Data0

SysCmd Bus Write NEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

4 5

6

1

2

3

4

Master Slave Master

Chapter 12

348 MIPS R4000 Microprocessor User's Manual

External Invalidate and Update Request Protocols

External invalidate and update request protocols are the same as the
external write request protocol. The data element provided with an
update or invalidate request can be a doubleword, partial doubleword,
word, or partial word. The single data cycle transfer is not used (it does
not contain valid data) for an invalidate request.

Figure 12-33 illustrates an external invalidate request following an
uncompelled change to slave state.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

Figure 12-33 External Invalidate Request following an Uncompelled Change to Slave State

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Unsd

SysCmd Bus Ivd CEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

Master Slave Master
Slave

MIPS R4000 Microprocessor User's Manual 349

System Interface

External Intervention Request Protocol

External intervention requests use a protocol similar to that of external
read requests, except that a cache line size block of data can be returned
along with an indication of the cache state for the cache line. The cache
state indication depends upon the state of the cache line and the value of
the data return bit in the intervention request command.†

The data return bit indicates either return on dirty or return on exclusive:

• If the data return bit indicates return on dirty, and the cache line
that is target of the intervention request is in the dirty exclusive
or dirty shared state, the contents of the cache line are returned
in response to the intervention request.

• If the data return bit indicates return on exclusive, and the cache
line that is the target of the intervention request is in the clean
exclusive or dirty exclusive state, the contents of the cache line
are returned in response to the intervention request.

If neither of the two cases above are true, the response to the intervention
request does not include the contents of the cache line, but simply indicates
the state of the cache line that is the target of the intervention request.

The case in which the processor returns a cache line state, but not cache
line contents, is described in the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the System
interface.

2. The processor releases the System interface to slave state by asserting
Release*.

3. The external intervention request is driven onto the SysCmd bus and
the address onto the SysAD bus. ValidIn* is asserted for one cycle.

4. The processor drives a coherent data identifier that indicates the state
of the cache line on the SysCmd bus and asserts ValidOut* for one
cycle.

5. The SysAD bus is not used during the data cycle.

6. The data identifier indicates a response data cycle that contains a last
data cycle indication.

† If the cache line that is the target of the intervention request is not present in the cache—
that is, the tag comparison for the cache line at the target cache address fails—the cache
line that is the target of the intervention request is considered to be in the invalid state.

Chapter 12

350 MIPS R4000 Microprocessor User's Manual

Figure 12-34 shows an external intervention request to a cache line found
in the shared state, with the System interface initially in a master state.
Figure 12-35 shows an external intervention request to a cache line found
in the dirty exclusive state, with the System interface initially in a slave
state.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

Figure 12-34 External Intervention Request, Shared Line, System Interface in Master State

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Unsd

SysCmd Bus Ivtn CEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

5

6

1

2

4

Master Slave Master

3

MIPS R4000 Microprocessor User's Manual 351

System Interface

The case in which the processor returns cache line contents is described in
the steps below. In this example, the system is already in slave state.

1. The external intervention request is driven onto the SysCmd bus and
the address onto the SysAD bus. ValidIn* is asserted for one cycle.

2. The processor drives data on the SysAD bus and a data identifier on
the SysCmd bus. The processor asserts ValidOut* for each data cycle.

3. The data identifier associated with the last data cycle must contain a
last data cycle indicator.

Figure 12-35 External Intervention Request, Dirty Exclusive Line, System Interface in Slave State

The processor returns the contents of a cache line, along with an indication
of the cache state in which it was found, by issuing a sequence of data
cycles sufficient to transmit the contents of the cache line, as shown in
Figure 12-35. The data identifier transmitted with each data cycle
indicates the cache state in which the cache line was found, together with
an indication that this data is response data. The data identifier associated
with the last data cycle contains a last data cycle indication.

If the contents of a cache line are returned in response to an intervention
request, they are returned in subblock order starting with the doubleword
at the address supplied with the intervention request. Note, however, that
if the intervention address targets the doubleword at the beginning of the
block, subblock ordering is equivalent to sequential ordering.

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Data0 Data1 Data2 Data3

SysCmd Bus Ivtn CData CData CData CEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

32

Slave Master
Slave

1

Chapter 12

352 MIPS R4000 Microprocessor User's Manual

External Snoop Request Protocol

External snoop requests use a protocol identical to the external read
request protocol, except that, instead of returning data, the processor
responds with an indication of the current cache state for the targeted
cache line. This protocol is described by the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the System
interface.

2. The processor releases the System interface to slave state by asserting
Release*.

3. The external snoop request is driven onto the SysCmd bus and the
address onto the SysAD bus. ValidIn* is asserted for one cycle.

4. The processor drives a coherent data identifier on the SysCmd bus
and asserts ValidOut* for one cycle.

5. The SysAD bus is unused during the snoop response.

6. The processor continues driving the SysCmd and SysAD buses after
the snoop response is returned, to move the System interface back to
master state.

Note that if the cache line that is the target of the snoop request is not
present in the cache—that is, a tag comparison for the cache line at the
target cache address fails—the cache line that is the target of the snoop
request is considered to be in the invalid state.

Figure 12-36 shows an external snoop request submitted with the System
interface in the master state. Figure 12-37 shows an external snoop request
submitted with the System interface in slave state.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

MIPS R4000 Microprocessor User's Manual 353

System Interface

Figure 12-36 External Snoop Request, System Interface in Master State

Figure 12-37 External Snoop Request, System Interface in Slave State

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Unsd

SysCmd Bus Snoop CEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

5

1

2

4
6

Master Slave Master

3

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Unsd

SysCmd Bus Snoop CEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

5

4

6

Slave Master Slave

3

Chapter 12

354 MIPS R4000 Microprocessor User's Manual

Read Response Protocol

An external agent must return data to the processor in response to a
processor read request by using a read response protocol. A read response
protocol consists of the following steps:

1. The external agent waits for the processor to perform an uncompelled
change to slave state.

2. The processor returns the data through a single data cycle or a series
of data cycles.

3. After the last data cycle is issued, the read response is complete and
the external agent sets the SysCmd and SysAD buses to a tri-state.

4. The System interface returns to master state.

NOTE: The processor always performs an uncompelled change to
slave state after issuing a read request.

5. The data identifier for data cycles must indicate the fact that this data
is response data.

6. The data identifier associated with the last data cycle must contain a
last data cycle indication.

For read responses to coherent block read requests, each data identifier
must include the cache state of the response data. The cache state
provided with each data identifier must be the same and must be clean
exclusive, dirty exclusive, shared, or dirty shared. The behavior of the
processor is undefined if the cache state provided with the data identifiers
changes during the transfer of the block of data, or if the cache state
provided is invalid.

The data identifier associated with a data cycle can indicate that the data
transmitted during that cycle is erroneous; however, an external agent
must return a data block of the correct size regardless of the fact that the
data may be in error. If a read response includes one or more erroneous
data cycles, the processor then takes a bus error.

Read response data must only be delivered to the processor when a
processor read request is pending. The behavior of the processor is
undefined when a read response is presented to it and there is no
processor read pending. Further, if the processor issues a read-with-write-
forthcoming request, a processor write request or a processor null write
request must be accepted before the read response can be returned. The
behavior of the processor is undefined if the read response is returned
before a processor write request is accepted.

MIPS R4000 Microprocessor User's Manual 355

System Interface

Figure 12-38 illustrates a processor word read request followed by a word
read response. Figure 12-39 illustrates a read response for a processor
block read with the System interface already in slave state.

NOTE: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

Figure 12-38 Processor Word Read Request, followed by a Word Read Response

Figure 12-39 Block Read Response, System Interface already in Slave State

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Data0

SysCmd Bus Read NEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

6

1

2

3 4

Master Slave Master

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Data0 Data1 Data2 Data3

SysCmd Bus CData CData CData CEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

62

3 4

5

Slave Master

Chapter 12

356 MIPS R4000 Microprocessor User's Manual

12.7 Data Rate Control
The System interface supports a maximum data rate of one doubleword
per cycle. The data rate the processor can support is directly related to the
secondary cache access time; if the access time is too long, the processor
cannot transmit and accept data at the maximum rate.

The rate at which data is delivered to the processor can be determined by
the external agent—for example, the external agent can drive data and
assert ValidIn* every n cycles, instead of every cycle. An external agent
can deliver data at any rate it chooses, but must not deliver data to the
processor any faster than the processor is capable of receiving it.

The processor only accepts cycles as valid when ValidIn* is asserted and
the SysCmd bus contains a data identifier; thereafter, the processor
continues to accept data until it receives the data word tagged as the last
one.

Data Transfer Patterns

A data pattern is a sequence of letters indicating the data and unused cycles
that repeat to provide the appropriate data rate. For example, the data
pattern DDxx specifies a repeatable data rate of two doublewords every
four cycles, with the last two cycles unused. Table 12-6 lists the maximum
processor data rate for each of the possible secondary cache write cycle
times, and the most efficient data pattern for each data rate.

Table 12-6 Transmit Data Rates and Patterns

Maximum Data Rate Data Pattern
Maximum Secondary

Cache Access

1 Double/1 SClock Cycle D 4 PCycles

2 Doubles/3 SClock Cycles DDx 6 PCycles

1 Double/2 SClock Cycles DDxx 8 PCycles

1 Double/2 SClock Cycles DxDx 8 PCycles

2 Doubles/5 SClock Cycles DDxxx 10 PCycles

1 Double/3 SClock Cycles DDxxxx 12 PCycles

1 Double/3 SClock Cycles DxxDxx 12 PCycles

1 Double/4 SClock Cycles DDxxxxxx 16 PCycles

1 Double/4 SClock Cycles DxxxDxxx 16 PCycles

MIPS R4000 Microprocessor User's Manual 357

System Interface

In Tables 12-6 and 12-7, data patterns are specified using the letters D and
x; D indicates a data cycle and x indicates an unused cycle. Figure 12-40
shows a read response in which data is provided to the processor at a rate
of two doublewords every three cycles using the data pattern DDx.

Figure 12-40 Read Response, Reduced Data Rate, System Interface in Slave State

Secondary Cache Transfers

The processor operates most efficiently if data is delivered in pairs of
doublewords, since the secondary cache is organized as a 128-bit RAM
array. The most efficient way of reducing the data rate is to deliver a pair
of doublewords followed by some number of unused cycles, followed by
another pair of doublewords. The secondary cache write cycle time
should determine the rate at which this pattern is repeated. However, the
processor accepts data in any pattern as long as the time between the
transfer of any pair of odd-numbered doublewords is greater than, or
equal to, the write cycle time of the secondary cache. Doublewords in the
transfer pattern are numbered beginning at 0: the odd-numbered
doublewords are the second, fourth, sixth, and so on.

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Data0 Data1 Data2 Data3

SysCmd Bus CData CData CData CEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

Chapter 12

358 MIPS R4000 Microprocessor User's Manual

Secondary Cache Write Cycle Time

Behavior of the processor is undefined if, based on the secondary cache
write cycle time, data is delivered to the processor faster than the
processor can handle it. Secondary cache write cycle time is defined as the
sum of the parameters:

TWr1Dly, TWrSUp, and TWrRc

These parameters are defined in Chapter 9, Table 9-1.

The rate at which the processor transmits data to an external agent is
programmable at boot time through the boot-time mode control interface.
The transmit data rate can be programmed to any of the data rates and
data patterns listed in Table 12-6, as long as the programmed data rate
does not exceed the maximum rate the processor can handle, based on the
secondary cache write cycle time. The behavior of the processor is
undefined if a programmed transmit data rate exceeds the maximum the
processor can support.

Figure 12-41 shows a processor write request in which the processor
transmit data rate is programmed as one doubleword every two cycles,
using the data pattern DDxx.

Figure 12-41 Processor Write Request, Transmit Data Rate Reduced

SCycle 1 2 3 4 5 6 7 8 9 10 11 12

SClock

SysAD Bus Addr Data0 Data1 Data2 Data3

SysCmd Bus Write CData CData CData CEOD

ValidOut*

ValidIn*

ExtRqst*

Release*

MIPS R4000 Microprocessor User's Manual 359

System Interface

Table 12-7 shows the maximum transmit data rates for a given set of
secondary cache parameters, based on a PClock-to-SClock divisor of 2. To
find the maximum allowable secondary cache write cycle time and
secondary cache access time, multiply the maximum secondary cache
numbers for each pattern by:

 (PClock_to_SClock_Divisor)/2

The minimum number for these parameters is always the minimum access
time supported by processor.

Table 12-7 Maximum Transmit Data Rates

Independent Transmissions on the SysAD Bus

In most applications, the SysAD bus is a point-to-point connection,
running from the processor to a bidirectional registered transceiver
residing in an external agent. For these applications, the SysAD bus has
only two possible drivers, the processor or the external agent.

Certain applications may require connection of additional drivers and
receivers to the SysAD bus, to allow transmissions over the SysAD bus
that the processor is not involved in. These are called independent
transmissions. To effect an independent transmission, the external agent
must coordinate control of the SysAD bus by using arbitration handshake
signals and external null requests.

Secondary Cache
Write Cycle Time

Maximum Data Rate
Best Data

Pattern

1-4 PCycles 1 Double/1 SClock Cycle D

5-6 PCycles 2 Doubles/3 SClock Cycles DDx

7-8 PCycles 1 Double/2 SClock Cycles DDxx

9-10 PCycles 2 Doubles/5 SClock Cycles DDxxx

11-12 PCycles 1 Double/3 SClock Cycles DDxxxx

Chapter 12

360 MIPS R4000 Microprocessor User's Manual

An independent transmission on the SysAD bus follows this procedure:

1. The external agent requests mastership of the SysAD bus, to issue an
external request.

2. The processor releases the System interface to slave state.

3. If the processor is being used with a secondary cache, the external
agent issues a secondary cache release external null request to return
ownership of the secondary cache to the processor.

4. The external agent then allows the independent transmission to take
place on the SysAD bus, making sure that ValidIn* is not asserted
while the transmission is occurring.

5. When the transmission is complete, the external agent must issue a
System interface release external null request to return the System
interface to master state.

System Interface Endianness

The endianness of the System interface is programmed at boot time
through the boot-time mode control interface, and remains fixed until the
next time the processor mode bits are read. Software cannot change the
endianness of the System interface and the external system; software can
set the reverse endian bit to reverse the interpretation of endianness inside
the processor, but the endianness of the System interface remains
unchanged.

MIPS R4000 Microprocessor User's Manual 361

System Interface

12.8 System Interface Cycle Time
The processor specifies minimum and maximum cycle counts for various
processor transactions and for the processor response time to external
requests. Processor requests themselves are constrained by the System
interface request protocol, and request cycle counts can be determined by
examining the protocol. The following System interface interactions can
vary within minimum and maximum cycle counts:

• spacing between requests within a cluster (cluster request
spacing)

• waiting period for the processor to release the System interface
to slave state in response to an external request (release latency)

• response time for an external request that requires a response
(external response latency).

The remainder of this section describes and tabulates the minimum and
maximum cycle counts for these System interface interactions.

Cluster Request Spacing

Processor internal activity determines the minimum and maximum
number of unused cycles allowed between the requests within a cluster.

• The minimum number of unused cycles allowed between
requests within a cluster is 0: in other words, the requests can
be adjacent.

• The maximum number of unused cycles separating requests
within a cluster varies depending on the requests that form the
cluster.

Table 12-8 summarizes the minimum and maximum number of unused
cycles allowed between requests within a cluster.

Table 12-8 Unused Cycles Separating Requests within a Cluster

From Processor
Request

To Processor
Request

Minimum Unused
SClock Cycles

Maximum Unused
SClock Cycles

Read Update 0 2

Read Write 0 2

Update Write 0 2

Chapter 12

362 MIPS R4000 Microprocessor User's Manual

Release Latency

Release latency is generally defined as the number of cycles the processor
can wait to release the System interface to slave state for an external
request. When no processor requests are in progress, internal activity—
such as refilling the primary cache from the secondary cache—can cause
the processor to wait some number of cycles before releasing the System
interface. Release latency is therefore more specifically defined as the
number of cycles that occur between the assertion of ExtRqst* and the
assertion of Release*.

There are three categories of release latency:

• Category 1: when the external request signal is asserted two
cycles before the last cycle of a processor request, or two cycles
before the last cycle of the last request in a cluster.

• Category 2: when the external request signal is not asserted
during a processor request or cluster, or is asserted during the
last cycle of a processor request or cluster.

• Category 3: when the processor makes an uncompelled change
to slave state.

Table 12-9 summarizes the minimum and maximum release latencies for
requests that fall into categories 1, 2, 3a and 3b. Note that the maximum
and minimum cycle count values are subject to change.

Table 12-9 Release Latency for External Requests

Category Minimum PCycles Maximum PCycles

1 4 6

2 4 24

3a 0 See (3a), below

3b 0 See (3b), below

(3a) Read =

 Tdis
 + 4- or 8-word Secondary cache write cycle time
 (depending upon Primary cache size)
 + 4-word Secondary cache write cycle time
 + Secondary cache line size
 + 16 PCycles

(3b) Read
With Write
Forthcoming

4-word Secondary cache Write cycle time
 + 4 PCycles

MIPS R4000 Microprocessor User's Manual 363

System Interface

External Request Response Latency

The number of cycles the processor takes to respond to an external
intervention request, read request, or snoop request, are referred to as the
intervention response latency, external read response latency, or snoop response
latency, respectively.

The number of latency cycles is the number of unused cycles between the
address cycle of the request and the first data cycle of the response.
Intervention response latency and snoop response latency are a function
of processor internal activity and secondary cache access time. Table 12-
10 summarizes the minimum and maximum intervention response
latency and snoop response latency. Note that the latency values are
subject to change.

Table 12-10 Intervention Response and Snoop Response Latencies

External read response latency is a function of processor internal activity.
Minimum and maximum external read response latency is 4 PCycles.

Maximum Secondary
Cache
Access

Intervention
Response
Latency

Snoop Response
Latency

Min Max Min Max

1-4 PCycles 6 26 6 26

5-6 PCycles 8 28 8 28

7-8 PCycles 10 30 10 30

9-10 PCycles 12 32 12 32

11-12 PCycles 14 34 14 34

Chapter 12

364 MIPS R4000 Microprocessor User's Manual

12.9 System Interface Commands and Data Identifiers
System interface commands specify the nature and attributes of any
System interface request; this specification is made during the address
cycle for the request. System interface data identifiers specify the
attributes of data transmitted during a System interface data cycle.

The following sections describe the syntax, that is, the bitwise encoding of
System interface commands and data identifiers.

Reserved bits and reserved fields in the command or data identifier
should be set to 1 for System interface commands and data identifiers
associated with external requests. For System interface commands and
data identifiers associated with processor requests, reserved bits and
reserved fields in the command and data identifier are undefined.

Command and Data Identifier Syntax

System interface commands and data identifiers are encoded in 9 bits and
are transmitted on the SysCmd bus from the processor to an external
agent, or from an external agent to the processor, during address and data
cycles. Bit 8 (the most-significant bit) of the SysCmd bus determines
whether the current content of the SysCmd bus is a command or a data
identifier and, therefore, whether the current cycle is an address cycle or a
data cycle. For System interface commands, SysCmd(8) must be set to 0.
For System interface data identifiers, SysCmd(8) must be set to 1.

MIPS R4000 Microprocessor User's Manual 365

System Interface

System Interface Command Syntax

This section describes the SysCmd bus encoding for System interface
commands. Figure 12-42 shows a common encoding used for all System
interface commands.

Figure 12-42 System Interface Command Syntax Bit Definition

SysCmd(8) must be set to 0 for all System interface commands.

SysCmd(7:5) specify the System interface request type which may be read,
write, null, invalidate, update, intervention, or snoop; Table 12-11 lists the
encoding of SysCmd(7:5).

Table 12-11 shows the types of requests encoded by the SysCmd(7:5) bits.

Table 12-11 Encoding of SysCmd(7:5) for System Interface Commands

SysCmd(4:0) are specific to each type of request and are defined in each of
the following sections.

SysCmd(7:5) Command

0 Read Request

1 Read-With-Write-Forthcoming Request

2 Write Request

3 Null Request

4 Invalidate Request

5 Update Request

6 Intervention Request

7 Snoop Request

Request Type0 Request Specific

8 7 5 4 0

Chapter 12

366 MIPS R4000 Microprocessor User's Manual

Read Requests

Figure 12-43 shows the format of a SysCmd read request.

Figure 12-43 Read Request SysCmd Bus Bit Definition

Tables 12-12 through 12-14 list the encodings of SysCmd(4:0) for read
requests.

Table 12-12 Encoding of SysCmd(4:3) for Read Requests

Table 12-13 Encoding of SysCmd(2:0) for Coherent and Noncoherent
Block Read Request

SysCmd(4:3) Read Attributes

0 Coherent block read

1 Coherent block read, exclusivity requested

2 Noncoherent block read

3 Doubleword, partial doubleword, word, or partial word

SysCmd(2) Link Address Retained Indication

0 Link address not retained

1 Link address retained

SysCmd(1:0) Read Block Size

0 4 words

1 8 words

2 16 words

3 32 words

000
or

001
0

8 7 5 4 03 2 1

Read Request Specific
(see tables)

MIPS R4000 Microprocessor User's Manual 367

System Interface

Table 12-14 Doubleword, Word, or Partial-word Read Request Data Size
Encoding of SysCmd(2:0)

Write Requests

Figure 12-44 shows the format of a SysCmd write request.

Table 12-15 lists the write attributes encoded in bits SysCmd(4:3). Table
12-16 lists the block write replacement attributes encoded in bits
SysCmd(2:0). Table 12-17 lists the write request bit encodings in
SysCmd(2:0).

Figure 12-44 Write Request SysCmd Bus Bit Definition

Table 12-15 Write Request Encoding of SysCmd(4:3)

SysCmd(2:0) Read Data Size

0 1 byte valid (Byte)

1 2 bytes valid (Halfword)

2 3 bytes valid (Tribyte)

3 4 bytes valid (Word)

4 5 bytes valid (Quintibyte)

5 6 bytes valid (Sextibyte)

6 7 bytes valid (Septibyte)

7 8 bytes valid (Doubleword)

SysCmd(4:3) Write Attributes

0 Reserved

1 Reserved

2 Block write

3 Doubleword, partial doubleword, word, or
partial word

0100

8 7 5 4 03 2 1

Write Request Specific
(see tables)

Chapter 12

368 MIPS R4000 Microprocessor User's Manual

Table 12-16 Block Write Request Encoding of SysCmd(2:0)

Table 12-17 Doubleword,Word, or Partial-word Write Request Data Size
Encoding of SysCmd(2:0)

†The only time the processor sets this bit is if a Hit Writeback causes the processor
to execute a write request (see Cache Write Policy in Chapter 11).

SysCmd(2) Cache Line Replacement Attributes

0 Cache line replaced

1 Cache line retained†

SysCmd(1:0) Write Block Size

0 4 words

1 8 words

2 16 words

3 32 words

SysCmd(2:0) Write Data Size

0 1 byte valid (Byte)

1 2 bytes valid (Halfword)

2 3 bytes valid (Tribyte)

3 4 bytes valid (Word)

4 5 bytes valid (Quintibyte)

5 6 bytes valid (Sextibyte)

6 7 bytes valid (Septibyte)

7 8 bytes valid (Doubleword)

MIPS R4000 Microprocessor User's Manual 369

System Interface

Null Requests

Figure 12-45 shows the format of a SysCmd null request.

Figure 12-45 Null Request SysCmd Bus Bit Definition

Processor null write requests, System interface release external null
requests, and secondary cache release external null requests all use the
null request command. Table 12-18 lists the encodings of SysCmd(4:3) for
processor null write requests. Table 12-19 lists the encodings of
SysCmd(4:3) for external null requests.

SysCmd(2:0) are reserved for both instances of null requests.

Table 12-18 Processor Null Write Request Encoding of SysCmd(4:3)

Table 12-19 External Null Request Encoding of SysCmd(4:3)

SysCmd(4:3) Null Write Attributes

0 Null write

1 Reserved

2 Reserved

3 Reserved

SysCmd(4:3) Null Attributes

0 System Interface release

1 Secondary cache release

2 Reserved

3 Reserved

0110

8 7 5 4 03 2 1

Null Request Specific
(see tables)

Chapter 12

370 MIPS R4000 Microprocessor User's Manual

Invalidate Requests

Figure 12-46 shows the format for an invalidate request, and Table 12-20
lists the encodings of SysCmd(4:0) for an external invalidate request.

SysCmd(4:0) are reserved on a processor invalidate request.

Figure 12-46 Invalidate Request SysCmd Bus Bit Definition

Table 12-20 Encoding of SysCmd(4:0) for External Invalidate Requests

Update Requests

Figure 12-47 shows the format for a SysCmd update request.

Figure 12-47 Update Request SysCmd Bus Bit Definition

Table 12-21 lists the encodings of SysCmd(4:0) for external update
requests. Table 12-22 lists the encodings of SysCmd(4:0) for processor
update requests. The remaining upper bits are the same for both processor
and external update requests.

SysCmd(4)
Processor Unacknowledged Invalidate or Update

Cancellation

0 Invalidate or Update cancelled

1 No cancellation

SysCmd(3:0) Reserved

1000

8 7 5 4 03 2

Invalidate Request
Specific

(see table)

1010

8 7 5 4 03 2

Update Request Specific
(see tables)

MIPS R4000 Microprocessor User's Manual 371

System Interface

Table 12-21 Encoding of SysCmd(4:0) for External Update Requests

Table 12-22 Encoding of SysCmd(4:0) for Processor Update Requests

SysCmd(4) Processor Unacknowledged Invalidate or
Update Cancellation

0 Invalidate or Update cancelled
1 No cancellation

SysCmd(3) Update Cache State Change Attributes

0 Cache state changed to shared
1 No change to cache state

SysCmd(2:0) Update Data Size

0 1 byte valid (Byte)
1 2 bytes valid (Halfword)
2 3 bytes valid (Tribyte)
3 4 bytes valid (Word)
4 5 bytes valid (Quintibyte)
5 6 bytes valid (Sextibyte)
6 7 bytes valid (Septibyte)
7 8 bytes valid (Doubleword)

SysCmd(4) Reserved

SysCmd(3) Update type

0 Compulsory

1 Potential

SysCmd(2:0) Update Data Size

0 1 byte valid (Byte)

1 2 bytes valid (Halfword)

2 3 bytes valid (Tribyte).

3 4 bytes valid (Word)

4 5 bytes valid (Quintibyte)

5 6 bytes valid (Sextibyte)

6 7 bytes valid (Septibyte)

7 8 bytes valid (Doubleword)

Chapter 12

372 MIPS R4000 Microprocessor User's Manual

Intervention and Snoop Requests

Figure 12-48 shows the format of an intervention request; Figure 12-49
shows the format of a snoop request. Table 12-23 lists the encodings of
SysCmd(4:0) for intervention requests; Table 12-24 lists the encodings
SysCmd(4:0) for snoop requests.

Figure 12-48 Intervention Request SysCmd Bus Bit Definition

Table 12-23 Encodings of SysCmd(4:0) for Intervention Requests

SysCmd(4)
Processor Unacknowledged Invalidate or Update

Cancellation

0 Update or Invalidate cancelled

1 No cancellation

SysCmd(3) Response to Dirty or Exclusive State

0 Return cache line data if in the dirty exclusive or dirty
shared state

1 Return cache line data if in the clean exclusive or dirty
exclusive state

SysCmd(2:0) Cache State Change Function

0 No change to cache state

1 If cache state is clean exclusive, change to shared;
otherwise no change to cache state

2 If cache state is clean exclusive or shared, change to
invalid; otherwise no change to cache state

3
If cache state is clean exclusive, change to shared; if cache
state is dirty exclusive, change to dirty shared; otherwise
make no change to cache state

4
If cache state is clean exclusive, dirty exclusive, or dirty
shared, change to shared; otherwise make no change to
cache state

5 Change to invalid regardless of current cache state

6 Reserved

7 Reserved

1100

8 7 5 4 03 2

Intervention Request Specific
(see table)

MIPS R4000 Microprocessor User's Manual 373

System Interface

Figure 12-49 Snoop Request SysCmd Bus Bit Definition

Table 12-24 Encodings of SysCmd(4:0) for Snoop Requests

SysCmd(4) Processor Unacknowledged Update Cancellation

0 Update cancelled

1 No cancellation

SysCmd(3) Reserved

SysCmd(2:0) Cache State Change Function

0 No change to cache state

1 If cache state is clean exclusive, change to shared state;
otherwise make no change to cache state

2 If cache state is clean exclusive or shared, change to
invalid state; otherwise make no change to cache state

3
If cache state is clean exclusive, change to shared; if
cache state is dirty exclusive, change to dirty shared;
otherwise make no change to cache state

4
If cache state is clean exclusive, dirty exclusive, or
dirty shared, change to shared; otherwise make no
change to cache state

5 Change to invalid regardless of current cache state

6 Reserved

7 Reserved

1110

8 7 5 4 03 2

Snoop Request Specific
(see table)

Chapter 12

374 MIPS R4000 Microprocessor User's Manual

System Interface Data Identifier Syntax

This section defines the encoding of the SysCmd bus for System interface
data identifiers. Figure 12-50 shows a common encoding used for all
System interface data identifiers.

Figure 12-50 Data Identifier SysCmd Bus Bit Definition

SysCmd(8) must be set to 1 for all System interface data identifiers.

NOTE: SysCmd(4) is reserved for processor data identifier. In an
external data identifier, SysCmd(4) indicates whether or not to check
the data and check bits for error.

System interface data identifiers have two formats, one for coherent data
and another for noncoherent data.

Coherent Data

Coherent data is defined as follows:

• data that is returned in response to a processor coherent block
read request

• data that is returned in response to an external intervention
request.

Noncoherent Data

Noncoherent data is defined as follows:

• data that is associated with processor block write requests and
processor doubleword, partial doubleword, word, or partial
word write requests

• data that is returned in response to a processor noncoherent
block read request or a processor doubleword, partial
doubleword, word, or partial word read request

• data that is associated with external update requests

• data that is associated with external write requests

• data that is returned in response to an external read request

• data that is associated with processor update requests.

Last
Data

1

8 7 5 4 03 2

Resp
Data

6

Err
Data

See
Note
below

Cache
State

Reserved

MIPS R4000 Microprocessor User's Manual 375

System Interface

Data Identifier Bit Definitions

SysCmd(7) marks the last data element and SysCmd(6) indicates whether
or not the data is response data, for both processor and external coherent
and noncoherent data identifiers. Response data is data returned in
response to a read request or an intervention request.

SysCmd(5) indicates whether or not the data element is error free.
Erroneous data contains an uncorrectable error and is returned to the
processor, forcing a bus error. In the case of a block response, the entire
line must be delivered to the processor no matter how minimal the error.
The processor delivers data with the good data bit deasserted if a primary
parity error is detected for a transmitted data item. If the system is in ECC
mode, a secondary cache data ECC error is detected by comparing the
values transmitted on the SysAD and SysADC.

SysCmd(4) indicates to the processor whether to check the data and check
bits for this data element, for both coherent and noncoherent external data
identifiers.

SysCmd(3) is reserved for external data identifiers.

SysCmd(4:3) are reserved for both coherent and noncoherent processor
data identifiers.

SysCmd(2:0) indicate the data cache state to load the cache line, in
response to processor coherent read requests for coherent data identifiers.
SysCmd(2:0) also indicate the cache state for response data to an external
intervention request, or for the data cycle issued in response to an external
snoop request. SysCmd(2:0) are reserved for noncoherent data identifiers.

Table 12-25 lists the encodings of SysCmd(7:3) for processor data
identifiers. Table 12-26 lists the encodings of SysCmd(7:3) for external
data identifiers. Table 12-27 lists the encodings of SysCmd(2:0) for
coherent data identifiers.

Chapter 12

376 MIPS R4000 Microprocessor User's Manual

Table 12-25 Processor Data Identifier Encoding of SysCmd(7:3)

Table 12-26 External Data Identifier Encoding of SysCmd(7:3)

SysCmd(7) Last Data Element Indication

0 Last data element

1 Not the last data element

SysCmd(6) Response Data Indication

0 Data is response data

1 Data is not response data

SysCmd(5) Good Data Indication

0 Data is error free

1 Data is erroneous

SysCmd(4:3) Reserved

SysCmd(7) Last Data Element Indication

0 Last data element

1 Not the last data element

SysCmd(6) Response Data Indication

0 Data is response data

1 Data is not response data

SysCmd(5) Good Data Indication

0 Data is error free

1 Data is erroneous

SysCmd(4) Data Checking Enable

0 Check the data and check bits

1 Do not check the data and check bits

SysCmd(3) Reserved

MIPS R4000 Microprocessor User's Manual 377

System Interface

Table 12-27 Coherent Data Identifiers Encoding of SysCmd(2:0)

12.10 System Interface Addresses
System interface addresses are full 36-bit physical addresses presented on
the least-significant 36 bits (bits 35 through 0) of the SysAD bus during
address cycles; the remaining bits of the SysAD bus are unused during
address cycles.

Addressing Conventions

Addresses associated with doubleword, partial doubleword, word, or
partial word transactions and update requests, are aligned for the size of
the data element. The system uses the following address conventions:

• Addresses associated with block requests are aligned to
double-word boundaries; that is, the low-order 3 bits of
address are 0.

• Doubleword requests set the low-order 3 bits of address to 0.

• Word requests set the low-order 2 bits of address to 0.

• Halfword requests set the low-order bit of address to 0.

• Byte, tribyte, quintibyte, sextibyte, and septibyte requests use
the byte address.

†This state also occurs if the line does not exist in the cache.

SysCmd(2:0) Cache State

0 Invalid†

1 Reserved

2 Reserved

3 Reserved

4 Clean Exclusive

5 Dirty Exclusive

6 Shared

7 Dirty Shared

Chapter 12

378 MIPS R4000 Microprocessor User's Manual

Sequential and Subblock Ordering

The order in which data is returned in response to a processor block read
request can be programmed to sequential ordering or subblock ordering,
using the boot-time mode control interface. Appendix C has more
information about subblock ordering. Either sequential or subblock
ordering may be enabled, as follows:

• If sequential ordering is enabled on a block read request, the
processor delivers the address of the doubleword at the start of
the block. An external agent must return the block of data
sequentially from the beginning of the block.

• If subblock ordering is enabled, the processor delivers the
address of the requested doubleword within the block. An
external agent must return the block of data using subblock
ordering, starting with the addressed doubleword.

NOTE: Only R4000SC and R4000MC configurations (using a
secondary cache) can be programmed to use sequential ordering.

For block write requests, the processor always delivers the address of the
doubleword at the beginning of the block; the processor delivers data
beginning with the doubleword at the beginning of the block and
progresses sequentially through the doublewords that form the block.

During data cycles, the valid byte lines depend upon the position of the
data with respect to the aligned doubleword (this may be a byte, halfword,
tribyte, quadbyte/word, quintibyte, sextibyte, septibyte, or an octalbyte/
doubleword). For example, in little-endian mode, on a byte request where
the address modulo 8 is 0, SysAD(7:0) are valid during the data cycles.

12.11 Processor Internal Address Map
External reads and writes provide access to processor internal resources
that may be of interest to an external agent. The processor decodes bits
SysAD(6:4) of the address associated with an external read or write
request to determine which processor internal resource is the target.
However, the processor does not contain any resources that are readable
through an external read request. Therefore, in response to an external
read request the processor returns undefined data and a data identifier
with its Erroneous Data bit, SysCmd(5), set. The Interrupt register is the
only processor internal resource available for write access by an external
request. The Interrupt register is accessed by an external write request
with an address of 0002 on bits 6:4 of the SysAD bus.

MIPS R4000 Microprocessor User's Manual 379

Secondary Cache Interface

13

The R4000SC and R4000MC versions of the R4000 processor contain
interface signals for an optional external secondary cache. This interface
consists of:

• a 128-bit data bus

• a 25-bit tag bus

• an 18-bit address bus

• various static random access memory (SRAM) control signals.

The 128-bit-wide data bus minimizes the primary cache miss penalty, and
allows the use of standard low-cost SRAMs in the design of the secondary
cache.

The remainder of the System interface signals are described in Chapter 8.

Chapter 13

380 MIPS R4000 Microprocessor User's Manual

13.1 Data Transfer Rates
The interface to the secondary cache maximizes service of primary cache
misses. The Secondary Cache interface, SCData(127:0), supports a data
rate that is close to the processor-to-primary-cache bandwidth during
normal operation. To ensure that this bandwidth is maintained, each data,
tag, and check pin must be connected to a single SRAM device.

The SCAddr bus, together with the SCOE*, SCDCS*, and SCTCS*
signals, drives a large number of SRAM devices; because of this, one level
of external buffering between the processor and the cache array is used.

13.2 Duplicating Signals
The buffered control signals control the speed of the Secondary Cache
interface. Critical control signals are duplicated by design to minimize
this limitation: the SCWR* signal and SCAddr(0) have four versions so
that external buffers are not needed to drive them. When an 8-word
(256-bit) primary cache line is used, these signals can be controlled
quickly, reducing the time of back-to-back transfers.

Each duplicated control signal can drive up to 11 SRAMs; therefore, a total
of 44 SRAM packages can be used in the cache array. This allows a cache
design using 16-Kbyte-by-64-bit, 64-Kbyte-by-4-bit, or 256-Kbyte-by-4-bit
standard SRAM.†

The benefit of duplicating SCAddr(0) is greater in systems that use fast
sequential static cache RAM and an 8-word primary cache line. If
SCAddr(0) is attached to the SRAM address bit that affects column decode
only, the read cycle time should approximate the output enable time of the
RAM. For fast static RAM, this cycle time should be half of the nominal
read cycle time.

† Other cache designs within this constraint are also acceptable. For example, a smaller
cache design can use 22 8-Kbyte-by-8-bit static RAMs; this design presents less load on the
address pins and control signals, and reduces the overall parts count.

MIPS R4000 Microprocessor User's Manual 381

Secondary Cache Interface

13.3 Accessing a Split Secondary Cache
When the secondary cache is split into separate instruction and data
portions, assertion of the high-order SCAddr bit, SCAddr(17), enables the
instruction half of the cache.

It is possible to design a cache that supports both joint and split
instruction/data configurations of less than the maximum cache size; in
doing so, SCAddr(12:0) must address the cache in all configurations.
SCAddr(17) must support the split instruction/data configuration, and
any of SCAddr(16:14) bits can be omitted, because of the fixed width of the
physical tag array.

13.4 SCDChk Bus
The secondary cache data check bus, SCDChk, is divided into two fields
to cover the upper and lower 64 bits of SCData. This form is required by
the 64-bit width of internal data paths.

13.5 SCTAG Bus
The secondary cache tag bus, SCTag, is divided into three fields, as shown
in Figure 13-1. The CS field indicates the cache state: invalid, clean
exclusive, dirty exclusive, shared, or dirty shared. The PIdx field is an
index to the virtual address of primary cache lines that can contain data
from the secondary cache. Bits 18:0 contain the upper physical address.

Figure 13-1 SCTag Fields

The SCDCS* and SCTCS* signals disable reads or writes of either the data
array or tag array when the opposite array is being accessed. These signals
are useful for saving power on snoop and invalidate requests since access
to the data array is not necessary. These signals also write data from the
primary data cache to the secondary cache.

Physical_TagCS PIdx

3 3 19

24 22 21 19 18 0

Chapter 13

382 MIPS R4000 Microprocessor User's Manual

13.6 Operation of the Secondary Cache Interface
The secondary cache can be configured for various clock rates and static
RAM speeds. All configurable parameters are specified in multiples of
PClock, which runs at twice the frequency of the external system clock,
MasterClock.

During boot time, secondary cache timing parameters are programmed
through the boot-time mode bits, as described in Chapter 9. Table 13-1
lists the secondary cache timing parameters. The following sections
describe secondary cache read and write cycles.

Table 13-1 Secondary Cache Timing Parameters

Symbol Number of Cycles

tRd1Cyc 4-15 PCycles

tRd2Cyc 2-15 PCycles

tDis 2-7 PCycles

tWr1Dly 1-3 PCycles

tWr2Dly 1-3 PCycles

tWrRC 0-1 PCycles

tWrSUp 3-15 PCycles

MIPS R4000 Microprocessor User's Manual 383

Secondary Cache Interface

Read Cycles

There are two basic read cycles: 4-word read and 8-word read.

Each secondary cache read cycle begins by driving an address out on the
address pins. The output enable signal SCOE* is asserted at the same
time.

This section describes both 4-word and 8-word read cycles, including
timing diagrams.

4-Word Read Cycle

The 4-word read cycle has two user-accessible timing parameters:

tRd1Cyc read sequence cycle time, which specifies the
time from the assertion of the SCAddr bus to
the sampling of the SCData bus

tDis cache output disable time, which specifies the
time from the end of a read cycle to the start of
the next write cycle

Figure 13-2 illustrates the 4-word read cycle, including the two user-
accessible timing parameters.

Figure 13-2 Timing Diagram of a 4-Word Read Cycle

PCycle 1 2 3 4 5 6

SCAddr(17:0) Address

tRd1Cyc

Data

SCOE*

tDis

SCDCS*:

SCTCS*:

SCAPar(2:0)

SCData(127:0)

SCDChk(15:0)
SCTag(24:0)

SCTChk(6:0)

Chapter 13

384 MIPS R4000 Microprocessor User's Manual

8-Word Read Cycle

The 8-word read cycle has an additional user-accessible parameter beyond
that of the 4-word read cycle described above: tRd2Cyc, the time from the
first sample point to the second sample point.

In an 8-word read cycle, the low-order address bit, SCAddr(0), changes at
the same time as the first read sample point.

Figure 13-3 illustrates the 8-word read cycle, including the three user-
accessible timing parameters.

Figure 13-3 Timing Diagram of an 8-Word Read Cycle

Notes on a Secondary Cache Read Cycle

All read cycles can be aborted by changing the address; a new cycle begins
with the edge on which the address is changed. Additionally, the period
tDis after a read cycle can be interrupted any time by the start of a new
read cycle. If a read cycle is aborted by a write cycle, SCOE* must be
deasserted for the tDis period before the write cycle can begin.

Read cycles can also be extended indefinitely. There is no requirement to
change the address at the end of a read cycle.

PCycle 1 2 3 4 5 6 7 8 9

SCAddr(17:1) Address

tRd1Cyc

SCAddr(0) First_Address Second_Address
tRd2Cyc

Data Data

SCOE*

tDis

SCDCS*

SCTCS*

SCData(127:0)

SCDChk(15:0)

SCAPar(2:0)

SCTag(24:0)

SCTChk(6:0)

MIPS R4000 Microprocessor User's Manual 385

Secondary Cache Interface

Write Cycles

There are two basic write cycles: a 4-word write cycle and an 8-word write
cycle. The secondary cache write cycle begins with the assertion of an
address onto the address pins.

This section describes both 4-word and 8-word write cycles, including
timing diagrams.

4-Word Write Cycle

A 4-word write cycle has three timing parameters:

tWr1Dly delay from the assertion of the address to the
assertion of SCWR*

tWrSUp delay from assertion of the second data double-
word to the deassertion of SCWR*

tWrRc delay from the deassertion of SCWR* to the
beginning of the next cycle

The timing parameter tWrRc is 0 for most cache designs. Note that the
upper data doubleword and the lower data doubleword are normally
driven one cycle apart; this reduces the peak current consumption in the
output drivers.

Figure 13-4 illustrates the 4-word write cycle. Either the upper or lower
data doubleword can be driven first.

Chapter 13

386 MIPS R4000 Microprocessor User's Manual

Figure 13-4 Timing Diagram of a 4-Word Write Cycle

8-Word Write Cycle

An 8-word write cycle has one additional parameter beyond those used by
the 4-word write cycle: tWr2Dly. This is the time period that begins when
the low-order address bit SCAddr(0) changes and ends when SCWR* is
asserted for the second time. The lower half of SCData is driven on the
same edge as the change in SCAddr(0).

Figure 13-5 illustrates the 8-word write cycle.

PCycle 1 2 3 4

SCAddr(17:0) Address

SCData(63:0)/

Data

SCTag(24:0) Data

Data

SCWR*

tWr1Dly tWrRc

SCOE*

SCDCS*

SCTCS*

SCData(127:64)/

SCTChk(6:0)/

SCDChk(7:0) or

SCDChk(15:8)

SCData(127:64)/

SCData(63:0)/
SCDChk(15:8) or

SCDChk(7:0)
tWrSUp

SCAPar(2:0)

MIPS R4000 Microprocessor User's Manual 387

Secondary Cache Interface

Figure 13-5 Timing Diagram of an 8-Word Write Cycle

Notes on a Secondary Cache Write Cycle

When receiving data from the System interface, the first data doubleword
can arrive several cycles before the second data doubleword. In this case,
the cache state machine enters a wait-state that extends SCWR* until
tWrSUp period after the second data item is transmitted.

SCWR*

tWr1Dly tWr2Dly

tWrRc

SCOE*

SCDCS*

SCTCS*

tWrSUp tWrSUp

PCycle 1 2 3 4 5 6 7 8

SCAddr(17:1) Address

SCAddr(0) First_Address Second_Address

SCData(63:0)/
First_Data Second_Data

SCTag(24:0)/
First_Data Second_Data

SCData(127:64) First_Data Second_Data

tWrRc

SCTChk(6:0)

SCDChk(7:0)

First_Data_MS/DTag_Chk
SCDChk(15:8)

Second_Data_MS/DTag_Chk

SCAPar(2:0)

Chapter 13

388 MIPS R4000 Microprocessor User's Manual

MIPS R4000 Microprocessor User's Manual 389

JTAG Interface

14

The R4000 processor provides a boundary-scan interface that is
compatible with Joint Test Action Group (JTAG) specifications, using the
industry-standard JTAG protocol.

This chapter describes that interface, including descriptions of boundary
scanning, the pins and signals used by the interface, and the Test Access
Port (TAP).

Chapter 14

390 MIPS R4000 Microprocessor User's Manual

14.1 What Boundary Scanning Is
With the evolution of ever-denser integrated circuits (ICs), surface-
mounted devices, double-sided component mounting on printed-circuit
boards (PCBs), and buried vias, in-circuit tests that depend upon making
physical contact with internal board and chip connections have become
more and more difficult to use. The greater complexity of ICs has also
meant that tests to fully exercise these chips have become much larger and
more difficult to write.

One solution to this difficulty has been the development of boundary-scan
circuits. A boundary-scan circuit is a series of shift register cells placed
between each pin and the internal circuitry of the IC to which the pin is
connected, as shown in Figure 14-1. Normally, these boundary-scan cells
are bypassed; when the IC enters test mode, however, the scan cells can be
directed by the test program to pass data along the shift register path and
perform various diagnostic tests. To accomplish this, the tests use the four
signals described in the next section: JTDI, JTDO, JTMS, and JTCK.

Figure 14-1 JTAG Boundary-scan Cells

Boundary-scan cells

IC package pin

Integrated
Circuit

MIPS R4000 Microprocessor User's Manual 391

JTAG Interface

14.2 Signal Summary
The JTAG interface signals are listed below and shown in Figure 14-2.

JTDI JTAG serial data in

JTDO JTAG serial data out

JTMS JTAG test mode select

JTCK JTAG serial clock input

Figure 14-2 JTAG Interface Signals and Registers

The JTAG boundary-scan mechanism (referred to in this chapter as JTAG
mechanism) allows testing of the connections between the processor, the
printed circuit board to which it is attached, and the other components on
the circuit board.

In addition, the JTAG mechanism provides rudimentary capability for
low-speed logical testing of the secondary cache RAM. The JTAG
mechanism does not provide any capability for testing the processor itself.

CPU

JTD0 pin

Context is
saved

Instruction
register

Context is
saved

Boundary-
scan

register

Context is
saved

Bypass
register

02

0

1319

JTDI pin

JTMS pin

JTCK pin

Chapter 14

392 MIPS R4000 Microprocessor User's Manual

14.3 JTAG Controller and Registers
The processor contains the following JTAG controller and registers:

• Instruction register

• Boundary-scan register

• Bypass register

• Test Access Port (TAP) controller

The processor executes the standard JTAG EXTEST operation associated
with External Test functionality testing.

Instruction Register

The JTAG Instruction register includes three shift register-based cells; this
register is used to select the test to be performed and/or the test data
register to be accessed. As listed in Table 14-1, this encoding selects either
the Boundary-scan register or the Bypass register.

Table 14-1 JTAG Instruction Register Bit Encoding

The Instruction register has two stages:

• shift register

• parallel output latch

Figure 14-3 shows the format of the Instruction register.

Figure 14-3 Instruction Register

MSB. LSB Data Register

0 0 0 Boundary-scan register (external test only)

x x 1 Bypass register

x 1 x Bypass register

1 x x Bypass register

MSB LSB

12 0

MIPS R4000 Microprocessor User's Manual 393

JTAG Interface

Bypass Register

The Bypass register is 1 bit wide. When the TAP controller is in the Shift-
DR (Bypass) state, the data on the JTDI pin is shifted into the Bypass
register, and the Bypass register output shifts to the JTDO output pin.

In essence, the Bypass register is a short-circuit which allows bypassing of
board-level devices, in the serial boundary-scan chain, which are not
required for a specific test. The logical location of the Bypass register in the
boundary-scan chain is shown in Figure 14-4. Use of the Bypass register
speeds up access to boundary-scan registers in those ICs that remain
active in the board-level test datapath.

Figure 14-4 Bypass Register Operation

Board

IC package

JTDO

Bypass
register

JTDI

JTDO

JTDIJTDO

JTDI

JTDOJTDI

Board
input

Board
output

JTDI

JTDO

Boundary-scan
register pad cell

Chapter 14

394 MIPS R4000 Microprocessor User's Manual

Boundary-Scan Register

The Boundary-scan register is a single, 319-bit-wide, shift register-based
path containing cells connected to all input and output pads on the R4000
processor. Figure 14-5 shows the three most-significant bits of the
Boundary-scan register; these three bits control the output enables on the
various bidirectional buses.

Figure 14-5 Output Enable Bits of the Boundary-scan Register

The most-significant bit, OE3 (bit 319), is the JTAG output enable bit for
the SysAD, SysADC, SysCmd, and SysCmdP buses. Output is enabled
when this bit is set to 1.

OE2 (bit 318) is the JTAG output enable for the SCData and SCDChk
buses. Output is enabled when this bit is set to 1.

OE1 (bit 317) is the JTAG output enable for the SCTag and SCTChk buses.

The remaining 316 bits correspond to 316 signal pads of the processor.
Output is enabled when this bit is set to 1.

At the end of this chapter, Table 14-2 lists the scan order of these 316 scan
bits, starting from JTDI and ending with JTDO.

318319 317

OE3

1316

OE2 OE1 See Table 14-2

MIPS R4000 Microprocessor User's Manual 395

JTAG Interface

Test Access Port (TAP)

The Test Access Port (TAP) consists of the four signal pins: JTDI, JTDO,
JTMS, and JTCK. Serial test data and instructions are communicated
over these four signal pins, along with control of the test to be executed.

As Figure 14-6 shows, data is serially scanned into one of the three
registers (Instruction register, Bypass register, or the Boundary-scan register)
from the JTDI pin, or it is scanned from one of these three registers onto
the JTDO pin.

The JTDI input feeds the least-significant bit (LSB) of the selected register,
whereas the most-significant bit (MSB) of the selected register appears on
the JTDO output.

The JTMS input controls the state transitions of the main TAP controller
state machine.

The JTCK input is a dedicated test clock that allows serial JTAG data to be
shifted synchronously, independent of any chip-specific or system clocks.

Figure 14-6 JTAG Test Access Port

Data on the JTDI and JTMS pins is sampled on the rising edge of the
JTCK input clock signal. Data on the JTDO pin changes on the falling
edge of the JTCK clock signal.

JTD0 pin

CPU

Data scanned in serially

Context is
saved

Instruction
register

Context is
saved

Boundary-
scan

register

Context is
saved

Bypass
register

Data scanned out serially

02

0

1319

CPU

Context is
saved

Instruction
register

Context is
saved

Boundary-
scan

register

Context is
saved

Bypass
register

02

0

1319

LSB
(MSB)

JTDI pin

JTMS pin

JTMS and JTDI sampled
on rising edge of JTCK

JTCK

JTD0 sampled on
falling edge of JTCK

Chapter 14

396 MIPS R4000 Microprocessor User's Manual

TAP Controller

The processor implements the 16-state TAP controller as defined in the
IEEE JTAG specification.

Controller Reset

The TAP controller state machine can be put into Reset state by one of the
following:

• deassertion of the VCCOk input resets the TAP controller

• keeping the JTMS input signal asserted through five
consecutive rising edges of JTCK input sends the TAP
controller state machine into its Reset state.

In either case, keeping JTMS asserted maintains the Reset state.

Controller States

The TAP controller has four states: Reset, Capture, Shift, and Update.
They can reflect either instructions (as in the Shift-IR state) or data (as in
the Capture-DR state).

• When the TAP controller is in the Reset state, the value 0x7 is
loaded into the parallel output latch, selecting the Bypass
register as default. The three most significant bits of the
Boundary-scan register are cleared to 0, disabling the outputs.

• When the TAP controller is in the Capture-IR state, the value
0x4 is loaded into the shift register stage.

• When the TAP controller is in the Capture-DR (Boundary-scan)
state, the data currently on the processor input and I/O pins is
latched into the Boundary-scan register. In this state, the
Boundary-scan register bits corresponding to output pins are
arbitrary and cannot be checked during the scan out process.

• When the TAP controller is in the Shift-IR state, data is loaded
serially into the shift register stage of the Instruction register
from the JTDI input pin, and the MSB of the Instruction
register’s shift register stage is shifted onto the JTDO pin.

MIPS R4000 Microprocessor User's Manual 397

JTAG Interface

• When the TAP controller is in the Shift-DR (Boundary-scan)
state, data is serially shifted into the Boundary-scan register
from the JTDI pin, and the contents of the Boundary-scan
register are serially shifted onto the JTDO pin.

• When the TAP controller is in the Update-IR state, the current
data in the shift register stage is loaded into the parallel output
latch.

• When the TAP controller is in the Update-DR (Boundary-scan)
state, data in the Boundary-scan register is latched into the
register parallel output latch. Bits corresponding to output
pins, and those I/O pins whose outputs are enabled (by the
three MSBs of the Boundary-scan register), are loaded onto the
processor pins.

Table 14-2 shows the boundary scan order of the processor signals.

Table 14-2 JTAG Scan Order of R4000 Processor Pins

Pin # Signal Name Pin # Signal Name Pin # Signal Name Pin # Signal Name
1. SCDChk(13) 2. SysADC(1) 3. SCDChk(1) 4. SysADC(5)

5. SCDChk(5) 6. Status(0) 7. Status(1) 8. Status(2)

9. Status(3) 10. IvdErr* 11. Status(4) 12. IvdAck*

13. Status(5) 14. Status(6) 15. Status(7) 16. SCDChk(7)

17. SysADC(7) 18. SCDChk(3) 19. SysADC(3) 20. SCDChk(15)

21. VCCOk 22. SCTag(16) 23. SCDChk(11) 24. SCData(63)

25. SysAD(63) 26. SCData(31) 27. SysAD(31) 28. SCData(127)

29. SCTag(17) 30. SCData(95) 31. SCData(62) 32. SysAD(62)

33. SCData(30) 34. SysAD(30) 35. SCData(126) 36. SCTag(18)

37. SCData(94) 38. RClock(1:0) (share
the same JTAG bit)

39. SCTag(19) 40. SCData(61)

41. SysAD(61) 42. SCData(29) 43. SysAD(29) 44. SCData(125)

45. Reset* 46. SCTag(20) 47. SCData(93) 48. SCData(60)

49. SysAD(60) 50. SCData(28) 51. SysAD(28) 52. SCData(124)

53. ColdReset* 54. SCTag(21) 55. SCData(92) 56. SCData(59)

57. SysAD(59) 58. SCData(27) 59. SysAD(27) 60. SCData(123)

61. IOIn 62. SCTag(22) 63. SCData(91) 64. SCData(58)

65. SysAD(58) 66. SCData(26) 67. SysAD(26) 68. SCData(122)

69. IOOut 70. SCTag(23) 71. SCData(90) 72. SCData(57)

73. SysAD(57) 74. SCData(25) 75. SysAD(25) 76. SCData(121)

77. GrpRun* 78. SCTag(24) 79. SCData(89) 80. SCData(56)

81. SysAD(56) 82. SCData(24) 83. SysAD(24) 84. SCData(120)

85. GrpStall* 86. SCTChk(0) 87. SCData(88) 88. SCDChk(6)

89. SysADC(6) 90. SCDChk(2) 91. SysADC(2) 92. SCDChk(14)

93. NMI* 94. SCTChk(1) 95. SCDChk(10) 96. SCData(55)

Chapter 14

398 MIPS R4000 Microprocessor User's Manual

Table 14-2 (cont.) JTAG Scan Order of R4000 Processor Pins

Pin # Signal Name Pin # Signal Name Pin # Signal Name Pin # Signal Name

97. SysAD(55) 98. SCData(23) 99. SysAD(23) 100. SCData(119)

101. Release* 102. SCTChk(2) 103. SCData(87) 104. SCData(54)

105. SysAD(54) 106. SysAD(22) 107. ModeIn 108. SCData(22)

109. RdRdy* 110. SCData(118) 111. SCData(86) 112. SCData(53)

113. SysAD(53) 114. SCData(21) 115. SysAD(21) 116. SCData(117)

117. ExtRqst* 118. SCTChk(3) 119. SCData(85) 120. SCData(52)

121. SysAD(52) 122. SCData(20) 123. SysAD(20) 124. SCData(116)

125. ValidOut* 126. SCTChk(4) 127. SCData(84) 128. SCData(51)

129. SysAD(51) 130. SCData(19) 131. SysAD(19) 132. SCData(115)

133. ValidIn* 134. SCTChk(5) 135. SCData(83) 136. SCAddr0W,X
(share the same
JTAG bit)

137. SCAddr0Y,Z
(share the same
JTAG bit)

138. SCAddr(1) 139. SCData(50) 140. SysAD(50)

141. SCData(18) 142. SysAD(18) 143. SCData(114) 144. Int*(0)

145. SCTChk(6) 146. SCData(82) 147. SCData(49) 148. SysAD(49)

149. SCData(17) 150. SysAD(17) 151. SCData(113) 152. SCAddr(2)/Int*(1)

153. SCAddr(3) 154. SCData(81) 155. SCData(48) 156. SysAD(48)

157. SCData(16) 158. SysAD(16) 159. SCData(112) 160. SCAddr(4)/Int*(2)

161. SCAddr(5) 162. SCData(80) 163. SCAddr(6) 164. SCAddr(7)

165. SCAddr(8) 166. SCAddr(9) 167. SCAddr(10) 168. SCAddr(11)

169. SC64Addr 170. SCAddr(12) 171. SCAddr(13) 172. SCAddr(14)

173. SCAddr(15) 174. SCAddr(16) 175. SCAddr(17) 176. SCData(64)

177. SCAPar(0) 178. SCAPar(1)/Int*(3) 179. SCData(96) 180. SysAD(0)

181. SCData(0) 182. SysAD(32) 183. SCData(32) 184. SCData(65)

185. SCAPar(2) 186. SCOE*/Int*(4) 187. SCData(97) 188. SysAD(1)

189. SCData(1) 190. SysAD(33) 191. SCData(33) 192. SCData(66)

193. SCDCS* 194. SCTCS*/Int*(5) 195. SCData(98) 196. SysAD(2)

197. SCData(2) 198. SysAD(34) 199. SCData(34) 200. SCTag(0)

201. SCWrW,X* (share
the same JTAG bit)

202. SCWrY,Z* (share
the same JTAG bit)

203. SCData(67) 204. SCTag(1)

205. SysCmd(0) 206. SCData(99) 207. SysAD(3) 208. SCData(3)

209. SysAD(35) 210. SCData(35) 211. SCData(68) 212. SCTag(2)

213. SysCmd(1) 214. SCData(100) 215. SysAD(4) 216. SCData(4)

217. SysAD(36) 218. SCData(36) 219. SCData(69) 220. SCTag(3)

221. SysCmd(2) 222. SCData(101) 223. SysAD(5) 224. SCData(5)

MIPS R4000 Microprocessor User's Manual 399

JTAG Interface

Table 14-2 (cont.) JTAG Scan Order of R4000 Processor Pins

†See the section titled Boundary-Scan Register earlier in this chapter, for a
description of the last three output enable bits, 319:317.

Pin # Signal Name Pin # Signal Name Pin # Signal Name Pin # Signal Name

225. SysAD(37) 226. SCData(37) 227. SCData(70) 228. WrRdy*

229. ModeClock 230. SCData(102) 231. SysAD(6) 232. SCData(6)

233. SysAD(38) 234. SCData(38) 235. SCData(71) 236. SCTag(4)

237. SysCmd(3) 238. SCData(103) 239. SysAD(7) 240. SCData(7)

241. SysAD(39) 242. SCData(39) 243. SCDChk(8) 244. SCTag(5)

245. SysCmd(4) 246. SCDChk(12) 247. SysADC(0) 248. SCDChk(0)

249. SysADC(4) 250. SCDChk(4) 251. SCData(72) 252. SCTag(6)

253. SysCmd(5) 254. SCData(104) 255. SysAD(8) 256. SCData(8)

257. SysAD(40) 258. SCData(40) 259. SCData(73) 260. SCTag(7)

261. SysCmd(6) 262. SCData(105) 263. SysAD(9) 264. SCData(9)

265. SysAD(41) 266. SCData(41) 267. SCData(74) 268. SCTag(8)

269. SysCmd(7) 270. SCData(106) 271. SysAD(10) 272. SCData(10)

273. SysAD(42) 274. SCData(42) 275. SCData(75) 276. SCTag(9)

277. SysCmd(8) 278. SCData(107) 279. SysAD(11) 280. SCData(11)

281. SysAD(43) 282. SCData(43) 283. SCData(76) 284. SCTag(10)

285. SysCmdP 286. SCData(108) 287. SysAD(12) 288. SCData(12)

289. SysAD(44) 290. SCData(44) 291. SCData(77) 292. SCTag(11)

293. Fault* 294. SCData(109) 295. SysAD(13) 296. SCData(13)

297. SysAD(45) 298. SCData(45) 299. SCTag(12) 300. TClock(1:0) (share
the same JTAG bit)

301. SCData(78) 302. SCTag(13) 303. SCData(110) 304. SysAD(14)

305. SCData(14) 306. SysAD(46) 307. SCData(46) 308. SCData(79)

309. SCTag(14) 310. SCData(111) 311. SysAD(15) 312. SCData(15)

313. SysAD(47) 314. SCData(47) 315. SCDChk(9) 316. SCTag(15)†

Chapter 14

400 MIPS R4000 Microprocessor User's Manual

14.4 Implementation-Specific Details
This section describes details of JTAG boundary-scan operation that are
specific to the processor.

• The MasterClock, MasterOut, SyncIn, and SyncOut signal
pads do not support JTAG.

• The following pairs of output pads share a single JTAG bit:

SCAddr0W and SCAddr0X
SCAddr0Y and SCAddr0Z
SCWrW* and SCWrX*
SCWrY* and SCWrZ*
TClock(0) and TClock(1)
RClock(0) and RClock(1)

• All input pads data are first latched into a processor clock-based
register in the pad cell before they are captured into the
Boundary-scan register in the Capture-DR (Boundary-scan)
state. When the phase-locked loop is disabled, the processor
clock is half the frequency of MasterClock. Therefore, when the
TAP controller is in the Capture-DR (Boundary-scan) state, the
data setup required at the input pads is more than two
MasterClock periods before the rising edge of the JTCK.

• The output enable controls generated from the three most-
significant bits of the Boundary-scan register are latched into a
Processor Clock-based register before they actually enable the
data onto the pads. Therefore, the delay from the rising edge
of JTCK in the Update-DR (Boundary-scan) state to data valid
at the output pins of the chip is greater than two MasterClock
periods.

MIPS R4000 Microprocessor User's Manual 401

R4000 Processor Interrupts

15

The R4000 processor supports the following interrupts: six hardware
interrupts, one internal “timer interrupt,” two software interrupts, and
one nonmaskable interrupt. The processor takes an exception on any
interrupt.

This chapter describes the six hardware and single nonmaskable
interrupts. A description of the software and the timer interrupts can be
found in Chapter 5. CPU exception processing is also described in
Chapter 5.

Floating-point exception processing is described in Chapter 6.

Chapter 15

402 MIPS R4000 Microprocessor User's Manual

15.1 Hardware Interrupts
The six CPU hardware interrupts can be caused by external write requests
to the R4000SC, R4000MC, and R4000PC, or can be caused through
dedicated interrupt pins. These pins are latched into an internal register
by the rising edge of SClock. The R4000MC and R4000SC packages
support a single interrupt pin, Int*(0). The R4000PC package supports six
interrupt pins, Int*(5:0).

15.2 Nonmaskable Interrupt (NMI)
The nonmaskable interrupt is caused either by an external write request to
the R4000 or by a dedicated pin in the R4000. This pin is latched into an
internal register by the rising edge of SClock.

15.3 Asserting Interrupts
External writes to the CPU are directed to various internal resources,
based on an internal address map of the processor. When SysAD[6:4] = 0,
an external write to any address writes to an architecturally transparent
register called the Interrupt register; this register is available for external
write cycles, but not for external reads.

During a data cycle, SysAD[22:16] are the write enables for the seven
individual Interrupt register bits and SysAD[6:0] are the values to be
written into these bits. This allows any subset of the Interrupt register to
be set or cleared with a single write request. Figure 15-1 shows the
mechanics of an external write to the Interrupt register.

Figure 15-1 Interrupt Register Bits and Enables

3 2 015 46

19 18 161721 2022

SysAD(6:0)
Interrupt Value

SysAD(22:16)
Write Enables

Interrupt register

See Figures 15-1,
15-2, and 15-3.

2

1

0

4

3

5

6

MIPS R4000 Microprocessor User's Manual 403

R4000 Processor Interrupts

Figure 15-2 shows how the R4000SC and R4000MC interrupts are readable
through the Cause register.

• Bit 5 of the Interrupt register in the R4000SC and R4000MC is
multiplexed with the TimerInterrupt signal and the result is
directly readable as bit 15 of the Cause register.

• Bits 4:1 of the Interrupt register are directly readable as bits
14:11 of the Cause register.

• Bit 0 of the Interrupt register is latched into the internal register
by the rising edge of SClock, then ORed with the Int*(0) pin,
and the result is directly readable as bit 10 of the Cause register.

Figure 15-2 R4000SC/MC Interrupt Signals

The select line for the Timer Interrupt multiplexer is enabled by boot-
mode bit 19, TimerIntDis, as described in Chapter 9. The Timer Interrupt
input to the multiplexer is asserted when the Count register equals the
Compare register.

2 1 04 3

Cause
register(15:10)

5

IP4

IP3

IP2

IP6

IP5

IP7

Interrupt register (5:0)

Timer
Interrupt

multiplexer

OR gate

12
11

10
14

13
15

See Figure 15-5.

SClock

(Internal
register)Int*(0)

TimerIntDis

Chapter 15

404 MIPS R4000 Microprocessor User's Manual

Figure 15-3 shows how the R4000PC interrupts are readable through the
Cause register. The interrupt bits, Int*(5:0), are latched into the internal
register by the rising edge of SClock.

• Bit 5 of the Interrupt register in the R4000PC is ORed with the
Int*(5) pin and then multiplexed with the TimerInterrupt
signal. This result is directly readable as bit 15 of the Cause
register.

• Bits 4:0 of the Interrupt register are bit-wise ORed with the
current value of the interrupt pins Int*[4:0] and the result is
directly readable as bits 14:10 of the Cause register.

Figure 15-3 R4000PC Interrupt Signals

Cause
register

Interrupt register (5:0)

Int*(5)

Timer
Interrupt

multiplexer

OR gate

Int*(4)

2 1 04 35

1 03 24

See
Figure 15-5.

5SClock
(Internal
register)

Int*(0)
Int*(3)

Int*(2)
Int*(1)

IP4

IP3

IP2

IP6

IP5

IP7
12

11
10

14
13

15

MIPS R4000 Microprocessor User's Manual 405

R4000 Processor Interrupts

Figure 15-4 shows the internal derivation of the NMI signal, for all
versions of the R4000 processor.

The NMI* pin is latched by the rising edge of SClock, however the NMI
exception occurs in response to the falling edge of the NMI* signal, and is
not level-sensitive.

Bit 6 of the Interrupt register is then ORed with the inverted value of NMI*
to form the nonmaskable interrupt.

Figure 15-4 R4000 Nonmaskable Interrupt Signal

(Internal)

6 Interrupt register (6)

NMI*

OR gate

NMI

Inverter
SClock

(Internal
register)

Edge-
triggered
Flip-flop

Chapter 15

406 MIPS R4000 Microprocessor User's Manual

Figure 15-5 shows the masking of the R4000 interrupt signal.

• Cause register bits 15:8 (IP7-IP0) are AND-ORed with Status
register interrupt mask bits 15:8 (IM7-IM0) to mask individual
interrupts.

• Status register bit 0 is a global Interrupt Enable (IE). It is
ANDed with the output of the AND-OR logic to produce the
R4000 interrupt signal.

Figure 15-5 Masking of the R4000 Interrupt

Status register
SR(15:8)

AND-OR
function

IM2
IM1
IM0

IM4
IM3

IM5
IM6
IM7

Cause register
(15:8)

IP2
IP1
IP0

IP4
IP3

IP5
IP6
IP7

AND
function

R4000 Interrupt

 IE

Status register
SR(0)

1

8

8

1

MIPS R4000 Microprocessor User's Manual 407

Error Checking and Correcting

16

This chapter describes the Error Checking and Correcting (ECC)
mechanism used in both the R4000 and R4400 processors.

This chapter also contains a description of the Master/Checker mode used
in the R4400 processor.

Chapter 16

408 MIPS R4000 Microprocessor User's Manual

16.1 Error Checking in the Processor
ECC code allows the processor to detect and sometimes correct errors
made when moving data from one place to another.

Two major types of data errors can occur in data transmission:

• hard errors, which are permanent, arise from broken
interconnects, internal shorts, or open leads

• soft errors, which are transient, are caused by system noise,
power surges, and alpha particles.

Hard errors must be corrected by physical repair of the damaged
equipment and restoration of data from backup. Soft errors can be
corrected by using error checking and correcting codes.

Types of Error Checking

The processor uses two types of error checking: parity (error detection
only), and single-bit error correction/double-bit error detection
(SECDED).

Parity Error Detection

Parity is the simplest error detection scheme. By appending a bit to the
end of an item of data—called a parity bit—single bit errors can be
detected; however, these errors cannot be corrected.

There are two types of parity:

• Odd Parity adds 1 to any even number of 1s in the data,
making the total number of 1s odd (including the parity bit).

• Even Parity adds 1 to any odd number of 1s in the data,
making the total number of 1s even (including the parity bit).

Odd and even parity are shown in the example below:

Data(3:0) Odd Parity Bit Even Parity Bit

0 0 1 0 0 1

MIPS R4000 Microprocessor User's Manual 409

Error Checking and Correcting

The example above shows a single bit in Data(3:0) with a value of 1; this
bit is Data(1).

• In even parity, the parity bit is set to 1. This makes 2 (an even
number) the total number of bits with a value of 1.

• Odd parity makes the parity bit a 0 to keep the total number of
1-value bits an odd number—in the case shown above, the
single bit Data(1).

The example below shows odd and even parity bits for various data
values:

Data(3:0) Odd Parity Bit Even Parity Bit

0 1 1 0 1 0

0 0 0 0 1 0

1 1 1 1 1 0

1 1 0 1 0 1

Parity allows single-bit error detection, but it does not indicate which bit
is in error—for example, suppose an odd-parity value of 00011 arrives.
The last bit is the parity bit, and since odd parity demands an odd number
(1,3,5) of 1s, this data is in error: it has an even number of 1s. However it
is impossible to tell which bit is in error. To resolve this problem, SECDED
ECC was developed.

SECDED ECC Code

The ECC code chosen for processor secondary cache data and tag is single-
bit error correction and double-bit error detection (SECDED) code.†

SECDED ECC code is an improvement upon the parity scheme; not only
does it detect single- and certain multi-bit errors, it corrects single-bit
errors.

† The 64-bit data code is a modification of one of the 64-bit codes proposed by M. Y. Hsiao,
to include the ability to detect 3- and 4-bit errors within a nibble. The 25-bit tag code was
created using the patterns observed in the 64-bit data code.

Chapter 16

410 MIPS R4000 Microprocessor User's Manual

Secondary Cache Data Bus SECDED Code

The SECDED code protecting secondary cache data bus has the properties
listed below:

• It corrects single-bit errors.

• It detects double-bit errors.

• It detects 3- or 4-bit errors within a nibble†.

• It provides 64 data bits protected by 8 check bits, and yields 8-
bit syndromes (the syndrome is a generated value used to detect
an error, and locate the position of the single bit in error).

• It is a minimal-length code; each parity tree used to generate
the 8-bit syndrome has only 27 inputs, the minimum number
possible.

• It provides byte Exclusive-ORs (XORs) of the data bits as part
of the XOR trees used to build the parity generators. This
allows selection of byte parity out of the XOR trees that
generate or check the code.

• Single-bit errors are indicated either by syndromes that contain
exactly three 1s, or by syndromes that contain exactly five 1s
(in which bits 0-3 or bits 4-7 of the syndrome are all 1s).‡

• Double-bit errors are indicated by syndromes that contain an
even number of 1s.

• 3-bit errors within a nibble are indicated by syndromes that
contain five 1s, in which bits 0-3 of the syndrome and bits 4-7
of the syndrome are not all 1s.

• 4-bit errors within a nibble are indicated by syndromes that
contain four 1s. Because this is an even number of 1s, 4-bit
errors within a nibble look like double-bit errors.

† A nibble is defined here as any group of four bits located within the vertical rules of Figure
16-1.

‡ This makes it possible to decode the syndrome to find which data bit is in error, using 4-
input NAND gates, provided a pre-decode AND of bits 0-3 and bits 4-7 of the syndrome
is available. For the check bits, a full 8-bit decode of the syndrome is required.

MIPS R4000 Microprocessor User's Manual 411

Error Checking and Correcting

Secondary Cache Tag Bus SECDED Code

The SECDED ECC code protecting the secondary cache tag bus has the
following properties:

• It corrects single-bit errors.

• It detects double-bit errors.

• It detects 3- or 4-bit errors within a nibble.

• It provides 25 data bits protected by 7 check bits, yielding 7-bit
syndromes.

• It provides byte XORs of the data bits as part of the XOR trees
used to build the parity generators. This allows selection of
byte parity out of the XOR trees that generate or check the
code.

• Single-bit errors are indicated by syndromes that contain
exactly three 1s. This makes it possible to decode the
syndrome to find which data bit is in error with 3-input NAND
gates. For the check bits, a full 7-bit decode of the syndrome is
required.

• Double-bit errors are indicated by syndromes that contain an
even number of 1s.

• 3-bit errors within a nibble are indicated by syndromes that
contain either five 1s or seven 1s.

• 4-bit errors within a nibble are indicated by syndromes that
contain either four 1s or six 1s. Because these are even
numbers of 1s, 4-bit errors within a nibble look like double-bit
errors.

Chapter 16

412 MIPS R4000 Microprocessor User's Manual

Error Checking Operation

The processor verifies data correctness by using either the parity or the
SECDED code as it passes data from the System interface to the secondary
cache, or it moves data from the secondary cache to the primary caches or
to the System interface.

System Interface

The processor generates correct check bits for doubleword, word, or
partial-word data transmitted to the System interface. As it checks for
data correctness, the processor passes data check bits from the secondary
cache, directly without changing the bits, to the System interface if the
interface is set to ECC mode. If the System interface is set to parity mode,
the processor indicates a secondary cache ECC error by corrupting the
state of the SysCmdP signal.

The processor does not check data received from the System interface for
external updates and external writes. By setting the SysCmd(4) bit in the
data identifier, it is possible to prevent the processor from checking read
response data from the System interface.

The processor does not check addresses received from the System
interface, but does generate correct check bits for addresses transmitted to
the System interface.

The processor does not contain a data corrector; instead, the processor
takes a cache error exception when it detects an error based on data check
bits. Software, in conjunction with an off-processor data corrector, is
responsible for correcting the data when SECDED code is employed.

Secondary Cache Data Bus

The 16 check bits, SCDChk(15:0), for the 128-bit secondary cache data bus
are organized as 8 check bits for the upper 64 bits of data, and 8 check bits
for the lower 64 bits of data.

System Interface and Secondary Cache Data Bus

The 8 check bits, SysADC(7:0), for the System interface address and data
bus provide even-byte parity, or are generated in accordance with a
SECDED code that also detects any 3- or 4-bit error in a nibble. The 8 check
bits for each half of the secondary cache data bus are always generated in
accordance with the SECDED code.

MIPS R4000 Microprocessor User's Manual 413

Error Checking and Correcting

Secondary Cache Tag Bus

The 7 check bits, SCTChk(6:0), for the secondary cache tag bus are
generated in accordance with the SECDED code, which also detects any 3-
or 4-bit error in a nibble.

The processor generates check bits for the tag when it is written into the
secondary cache and checks the tag whenever the secondary cache is
accessed.

The processor contains a corrector for the secondary cache tag; the tag
corrector is not in-line for processor accesses due to primary cache misses.
The processor traps when a tag error is detected on a processor access due
to a primary cache miss. Software, using the processor cache management
primitives, is responsible for correcting the tag. When executing the cache
management primitives, the processor uses the corrected tag to generate
write back addresses and cache state.

For external accesses, the tag corrector is in-line; that is, the response to
external accesses is based on the corrected tag. The processor still traps on
tag errors detected during external accesses to allow software to repair the
contents of the cache if possible.

System Interface Command Bus

In the R4000 processor, the System interface command bus has a single
parity bit, SysCmdP, that provides even parity over the 9 bits of this bus.
The SysCmdP parity bit is generated when the System interface is in
master state, but it is not checked when the System interface is in slave
state. In the R4400 processor, input parity is reported through the Fault*
pin.

When the System interface is set to parity mode, the processor indicates a
secondary cache ECC error by corrupting the state of the SysCmdP signal.

Chapter 16

414 MIPS R4000 Microprocessor User's Manual

SECDED ECC Matrices for Data and Tag Buses

The check matrices for data and tags, specifying the distribution of data
and check bits across nibbles, are shown in Figures 16-1 and 16-4.

The data bits in Figure 16-1 correspond to SysAD(63:0), SCData(127:64),
or SCData(63:0). The check bits in Figure 16-1 correspond to
SysADC(7:0), SCDChk(15:8), or SCDChk(7:0).

The check bits in Figure 16-4, shown later in this chapter, correspond to
SCTChk(6:0) and the data bits in Figure 16-4 correspond to SCTag(24:0).

The parity check matrices shown in these two figures generate the ECC
code for a fixed-width data word; they can also locate the data bit in error.
In Figure 16-1, the data word length is 64 bits; in Figure 16-4, the data word
length is 25 bits.

ECC Check Bits

The R4000 processor provides the following check bits: 16 check bits,
SCDChk(15:0), are used for the secondary cache data bus; 7 check bits,
SCTChk(6:0), are used for the secondary cache tag bus; 8 check bits,
SysADC(7:0), are used for the System interface address and data bus; a
single parity bit, SysCmdP, is used for the System interface command bus.

In the R4400 processor, the Fault* pin reports data parity or any ECC
errors received from the System interface during an external update or an
external write. The Fault* pin also reports errors among the address bits
received from the System interface. In each case, the full 64-bit data and 8-
bit ECC are significant. This checking is not affected by the state of the
disable bit [SysCmd(4)] in the data identifier. No exceptions are generated
for these checks.

MIPS R4000 Microprocessor User's Manual 415

Error Checking and Correcting

Data ECC Generation

Each of the 64 data bits and 8 check bits has a unique 8-bit SECDED ECC
check code; this check code is generated by taking the even parity of the
ECC check code for a selected group of data bits. As Figure 16-1 shows,
bit locations are numbered from right to left in ascending order, from data
bit 0 (furthest right) to data bit 63 (furthest left). For example, data bit 0, in
the far right column of Figure 16-1, has an 8-bit check value of 0001 00112
(0s are represented in this figure by periods, (.), because they are not used
in the calculations).

Figure 16-1 also gives values for the 8 check bits, 7:0. For instance, the 8-
bit SECDED ECC code for check bit 6 is in column 6, near the right hand
edge of Figure 16-1.

Figure 16-1 Check Matrix for Data ECC Code

NOTE: * This row indicates the number of 1s in the generated syndrome for each data
bit in error.

. . . .
1111
1111
. . . .
1. . .
. 1. .
. . 1.
. . . 1

1. 1.
11. .
1. . .
1. . .
11. .
. 1. .
. 1. .
. 1. 1

. 1. .
11. .
1. . .
11. .
. . . 1
. . 11
. . 1.
. . 11

1. . .
1. 1.
11. .
1. . .
. 1. .
. 1. .
. 1. 1
11. .

1. . .
. 1. .
. . 1.
. . . 1
. . . .
. . . .
1111
1111

9876
6666
3210

55
98

5555
7654

55
32

5544
1098

4444
7654

4444
3210

3333
9876

3333
5432

3322
1098

2222
7654

2222
3210

1111
9876

1111
5432 3210

 61 70 43 Check Bit

 Data Bit

ECC

Code

Bits

Number of
1s in
syndrome*

3333 5511 3333 5511 3333 3333 3333 3333 3333 3333 3333 3333 3333 3333 5511 55113333 3333

27
27
27
27
27
27
27
27

11. .
1. . .
1. . .
1. 1.
. 1. 1
11. .
. 1. .
. 1. .

11. .
1. . .
11. .
. 1. .
. . 11
. . 1.
. . 11
. . . 1

1. . .
1. . .
1. 1.
11. .
. 1. .
. 1. 1
11. .
. 1. .

1. . .
. 1. .
. . 1.
. . . 1
. . . .
1111
1111
. . . .

. . . .

. . . .
1111
1111
1. . .
. 1. .
. . 1.
. . . 1

1111
. . . .
1111
. . . .
1. . .
. 1. .
. . 1.
. . . 1

1111
. . . .
. . . .
1111
1. . .
. 1. .
. . 1.
. . . 1

. . . .
1111
. . . .
1111
1. . .
. 1. .
. . 1.
. . . 1

1. . .
. 1. .
. . 1.
. . . 1
1111
. . . .
1111
. . . .

1. . .
. 1. .
. . 1.
. . . 1
1111
. . . .
. . . .
1111

1. . .
. 1. .
. . 1.
. . . 1
. . . .
1111
. . . .
1111

1. . .
. 1. .
. . 1.
. . . 1
1111
1111
. . . .
. . . .

54
11
10

1111
1111
. . . .
. . . .
1. . .
. 1. .
. . 1.
. . . 1

 52

MSB

LSB

Data bit 0Data bit 63 Check bit 6
Nibbles

Chapter 16

416 MIPS R4000 Microprocessor User's Manual

As an example of this process, SECDED ECC for Data(63:0) = 0x0000 0000
0000 0001 is generated in the steps below.

1. Find any bits in Data(63:0) having a value of 1.

To determine this, the 16-bit hexadecimal value of 0x0000 0000
0000 0001 must be expanded to its 64-bit binary equivalent before
locating the data bit(s) with a value of 1. In this case, the only 1-
value in 0x0000 0000 0000 0001 is in column 0.

2. Find the check bits in column 0.

They are 0001 00112.

3. Take even parity of check bits 0001 00112.

 ECC Parity (even)

MSB (7) 0 0

(6) 0 0

(5) 0 0

(4) 1 1

(3) 0 0

(2) 0 0

(1) 1 1

LSB (0) 1 1

4. This even parity value, 0001 00112, is sent out over the bus as ECC
check bits, ECC(7:0).

MIPS R4000 Microprocessor User's Manual 417

Error Checking and Correcting

The following example uses data with several 1-value bits: Data(63:0) =
0x0000 0000 0000 0043.

1. Expand the data to its binary equivalent in order to generate the
ECC check bits.

0x0000 0000 0000 0043 has 1s in the last byte only. The last byte
binary value is: 0x43 = 0100 00112.

column # 7654 3210
0x0043 = 0100 0011 2

Since only columns 0, 1, and 6 have 1s, they are the only columns
that can generate the even parity bits.

2. Using Figure 16-1, generate even parity for the ECC check codes
in columns 0, 1, and 6:

Column 0 ECC Column 1 ECC Column 6 ECC Parity (even)

0 0 0 0

0 0 0 0

0 1 0 1

1 0 0 1

0 0 1 1

0 0 1 1

1 1 0 0

1 1 1 1

3. This parity value, 0011 11002, is sent out over the ECC(7:0) check
bus.

Chapter 16

418 MIPS R4000 Microprocessor User's Manual

Detecting Data Transmission Errors

The following procedure detects data transmission errors.

1. System A transmits a 64-bit doubleword together with 8 bits of
SECDED ECC (see Figure 16-2).

Figure 16-2 Detecting ECC Errors: Transmitting Data and ECC

2. System B receives the data doubleword, together with the byte of
ECC check code.

3. To verify proper transmission of the 64-bit doubleword and 8-bit
ECC check code, system B generates its own 8-bit ECC check code
from the 64-bit doubleword of System A, as shown in Figure 16-3.

4. System B executes an Exclusive-OR (XOR) on the check bits of
System A with its own newly-generated ECC check bits, (see
Figure 16-3). The output of this XOR is called the syndrome.

Figure 16-3 Detecting ECC Errors: Deriving the Syndrome

5. If the syndrome is 0000 00002, the data System B received, together
with the newly-generated ECC check bits from System B, are the
same as the data and check bits from System A. If the syndrome
is any other value than 0000 00002, it is assumed either the
received word or the received check bits are in error.

System A
Data(63:0)

ECC(7:0)

System B

ECC Generator

System A
Data(63:0)

ECC(7:0)

System B

ECC Generator

ECC Checker

E
xc

lu
si

ve
 O

R

Syndrome

MIPS R4000 Microprocessor User's Manual 419

Error Checking and Correcting

6. Using the data in Figure 16-1, it may be possible to correct either
the data bit or check bit in error. Determine if the syndrome is in
Figure 16-1 by counting the number on 1s in the syndrome.

• If the syndrome contains either one, three, or five 1s,
the syndrome is in Figure 16-1. Three or five 1s
indicates that at least one data bit is in error. A single 1
indicates an ECC check bit is in error.

• If the syndrome contains two 1s, a double-bit error has
been detected, located in two consecutive bits of a
nibble. This is not correctable.

• If the syndrome contains four 1s, a 4-bit error has been
detected, located in four consecutive bits of a nibble.
This is not correctable.

If the syndrome is identical to any of the syndromes in the Figure
16-1, the column number of that data or check bit indicates the
location of the bit in error. The bit that is in error is corrected by
inverting its state (a 1 is changed to 0; a 0 is changed to 1).

The following sections show how to use the check matrices in Figure 16-1
for detecting:

• single data bit error

• single data check bit error

• multiple data bit errors (2 consecutive bits in a nibble)

• multiple data bit errors (3 consecutive bits in a nibble)

• multiple data bit errors (4 consecutive bits in a nibble)

Chapter 16

420 MIPS R4000 Microprocessor User's Manual

Single Data Bit ECC Error

The following procedure detects and corrects a single data bit ECC error.

1. System A transmits:

Data(63:0) = 0x0000 0000 0000 0000

and

ECC(7:0) check code = 0000 00002

2. System B receives the following incorrect data:

Data(63:0) = 0x0000 0000 0000 0001

and

ECC(7:0) check code = 0000 00002

3. System B regenerates ECC for the received data. The correct ECC
check code for:

Data(63:0) = 0x0000 0000 0000 0001

is

ECC(7:0) = 0001 00112

4. A syndrome is generated by the XOR of the System A check bits,
0000 00002, and the System B regenerated check bits, 0001 00112.
The resulting syndrome is 0001 00112. Since the syndrome has
three 1s, look for the column with three 1s in the parity check
matrix table.

5. Searching the matrix (Figure 16-1) shows that the syndrome, 0001
00112, corresponds to data bit 0. This means the state of received
data bit 0 is incorrect.

6. To correct the error, the system inverts the state of the received
data bit 0 from a value of 1 to 0.

MIPS R4000 Microprocessor User's Manual 421

Error Checking and Correcting

Single Check Bit ECC Error

The following procedure detects and corrects a single check bit ECC error.

1. System A transmits:

Data(63:0) = 0x0000 0000 0000 0000

and

ECC(7:0) check code = 0000 00002

2. System B receives the following incorrect check code:

Data(63:0) = 0x0000 0000 0000 0000

and

ECC(7:0) check code = 0000 00012

3. System B regenerates the ECC for the received data. The correct
ECC check code for:

Data(63:0) = 0x0000 0000 0000 0000

is

ECC(7:0) = 0000 00002

4. A syndrome is generated by the XOR of the System A check bits,
0000 00012, and the System B regenerated check bits, 0000 00002.
The resulting syndrome is 0000 00012.

 Since the syndrome has a single 1, it is contained in the check
matrix. Figure 16-1 shows that the syndrome, 0000 00012,
corresponds to check bit 0. This indicates that the state of the
received check bit 0 is incorrect. To correct the error, the system
inverts the state of the received check bit 0 from a value of 1 to 0.

Chapter 16

422 MIPS R4000 Microprocessor User's Manual

Double Data Bit ECC Errors

The following procedure detects double data bit ECC errors.

1. System A transmits:

Data(63:0) = 0x0000 0000 0000 0000

and

ECC(7:0) check code = 0000 00002.

2. System B receives the following incorrect data:

Data(63:0) = 0x0000 0000 0000 0011

and

ECC(7:0) check code = 0000 00002

3. System B regenerates the ECC for the received data. The correct
ECC check code for:

Data(63:0) = 0x0000 0000 0000 0011

is

ECC(7:0) = 0011 00002

4. A syndrome is generated by the XOR of the System A check bits,
0000 00002, and the System B regenerated check bits, 0011 00002.
The resulting syndrome is 0011 00002.

The syndrome of two 1s (or an even number of 1s) indicates that a
double-bit error has been detected. Double-bit errors cannot be
corrected.

MIPS R4000 Microprocessor User's Manual 423

Error Checking and Correcting

Three Data Bit ECC Errors

The following procedure detects three data bit errors that occur within a
nibble.

1. System A transmits:

Data(63:0) = 0x0000 0000 0000 0000

and

ECC(7:0) check code = 0000 00002

2. System B receives the following incorrect data:

Data(63:0) = 0x0000 0000 0000 0111

and

ECC(7:0) check code = 0000 00002

3. System B regenerates the ECC for the received data. The ECC
check code for:

Data(63:0) = 0x0000 0000 0000 0111

is

ECC(7:0) = 0111 00112

4. A syndrome is generated by the XOR of the System A check bits,
0000 00002, and the System B regenerated check bits, 0111 00112.
The resulting syndrome is 0111 00112.

The resulting syndrome has five 1s. Since no four of the 1s are
contained in check bits (7:4) or check bits (3:0), three errors have
occurred within a nibble. Triple-bit errors within a nibble cannot
be corrected.

Chapter 16

424 MIPS R4000 Microprocessor User's Manual

Four Data Bit ECC Errors

The following procedure detects four data bit errors that occur within a
nibble.

1. System A transmits:

Data(63:0) = 0x0000 0000 0000 0000

and

ECC(7:0) check code = 0000 00002

2. System B receives the following incorrect data:

Data(63:0) = 0x0000 0000 0000 1111

and

ECC(7:0) check code = 0000 00002

3. System B regenerates the ECC for the received data. The ECC
check code for:

Data(63:0) = 0x0000 0000 0000 1111

is

ECC(7:0) = 1111 00002

4. A syndrome is generated by the XOR of the System A check bits,
0000 00002, and the System B regenerated check bits, 1111 00002.
The resulting syndrome is 1111 00002.

Since the resulting syndrome has four 1s (or an even number of
1s), this error is recognized as some variation of a double-bit error.
A 4-bit error within a nibble cannot be corrected.

MIPS R4000 Microprocessor User's Manual 425

Error Checking and Correcting

Tag ECC Generation

The 25-bit tag ECC check matrix is similar to the 64-bit data check matrix;
the main difference is the number of check bits used and the manner in
which the errors are decoded. Figure 16-4 shows the check matrix for the
tag bits.

Figure 16-4 Check Matrix for the Tag ECC Code

NOTE: * This row indicates the number of 1s in the generated syndrome for each data
bit in error.

. 1. .
1. . .
. . 1.
. 1. .
1. . .
. . 1.
1111

ECC
Code
Bits

11
13
10
10
13
11
14

Number of
1s in
syndrome*

 Data Bit

 Check Bit 0

222
432

1. . .
. 1. .
1. . .
. 1. .
. . . 1
. . 1.
11. .

1. . .
. 1. .
. . . 1
. . 1.
1. . .
. 1. .
11. .

. . . 1

. . 1.
1. . .
. 1. .
1. . .
. 1. .
11. .

1111
1111
. . . .
1. . .
. 1. .
. . 1.
. . . 1

1. . .
1111
1111
. 1. .
. . . .
. . 1.
. . . 1

1. . .
. . . .
. 1. .
1111
1111
. . 1.
. . . 1

1. . .
. 1. .
. . 1.
. . . .
1111
1111
. . . 1

22
10

 12

11
98

 34

11
76

 56

1111
5432

11
1098 7654 3210

3331 3311 3311 3311 3333 3333 3333 3333

MSB

LSB

Chapter 16

426 MIPS R4000 Microprocessor User's Manual

Summary of ECC Operations

ECC operations are summarized in Tables 16-1 through 16-4.

Table 16-1 Error Checking and Correcting Summary for Internal Transactions

† If error level (ERL bit of the Status register) is 1, the error is reported to the Fault* pin.

Bus

Secondary
Cache to
Primary
Cache

Primary
Cache to

Secondary
Cache

Uncached
Load

Uncached
Store

Processor or
Secondary Cache
Data

Checked;
Trap on Error

Primary
Cache parity
checked; Trap
on Error

From
System
Interface

Not
Checked

Secondary Cache
Data Check Bits

Checked;
Trap on Error

Generated NA NA

Secondary Cache Tag
and Check Bits

Checked; not
corrected in
Secondary
cache; Trap on
error

NA NA NA

System Interface
Address/Command
and Check Bits:
Transmit

NA NA Generated Generated

System Interface
Address/Command
and Check Bits:
Receive

NA NA Not
Checked;
reported to
the Fault*
pin

NA

System Interface Data NA NA Checked
Trap on
error†

From
Processor

System Interface Data
Check Bits

NA NA Checked;
Trap on
Error†

Generated

MIPS R4000 Microprocessor User's Manual 427

Error Checking and Correcting

Table 16-2 Error Checking and Correcting Summary for Internal Transactions

† Read-Modify-Write cycle
‡ If error level (ERL bit of the Status register) is 1, the error is reported to the Fault* pin.
* Only if the current CACHE op needs to modify and write back the tag.

Bus
Store to
Shared

Cache Line

Cache
Instruction

Secondary
Cache Load
from System

Interface

Secondary
Cache Write

to System Interface

Processor or
Secondary Cache
Data

NA

Check on
cache
writeback;
Trap on Error

From
System
Interface
unchanged

Checked; Trap on
Error

Secondary Cache
Data Check Bits NA

Check on
cache
writeback;
Trap on Error

From
System
Interface
unchanged

Checked; Trap on
Error

Secondary Cache Tag
and Check Bits

Checked on
read part of
RMW†; correct
Secondary
cache tag; Trap
on Error

Checked;
corrected
Secondary
cache tag*;
Trap on Error

Generated
Checked; not
corrected; Trap on
Error

System Interface
Address, Command,
and Check Bits:
Transmit

Generated Generated Generated Generated

System Interface
Address, Command,
and Check Bits:
Receive

NA NA Not
Checked NA

System Interface Data From
Processor

From Primary
or Secondary
Cache

Checked;
Trap on
Error‡

From Secondary
Cache

System Interface Data
Check Bits Generated

From Primary
or Secondary
Cache

Checked;
Trap on
Error‡

From Secondary
Cache (SysCmdP
signal corrupted
if System
interface set to
parity mode)

Chapter 16

428 MIPS R4000 Microprocessor User's Manual

Table 16-3 Error Checking and Correcting Summary for External Transactions

† Read-Modify-Write cycle
‡ Only the pair of doublewords accessed on the read portion of RMW is checked.

Bus
Read

Request
Write

Request
Invalidate
Request

Update
Request

Processor or
Secondary Cache
Data

NA NA Not Checked
Checked on read
part of RMW†;
Trap on Error‡

Secondary Cache
Data Check Bits NA NA Not Checked

Checked on read
part of RMW†;
Trap on Error‡;
Generation on
write part of
RMW if written

Secondary Cache Tag
and Check Bits NA NA

Checked on
read part of
RMW†; Trap
on Error‡;
Generation
on write part
of RMW if
written

Checked on read
part of RMW†;
Trap on Error;
Generation on
write part of
RMW if written

System Interface
Address, Command
and Check Bits:
Transmit

Generated NA NA NA

System Interface
Address, Command
and Check Bits:
Receive

Not
Checked;
reported to
the Fault*
pin

Not
Checked;
reported to
the Fault*
pin

Not Checked;
reported to
the Fault* pin

Not Checked;
reported to the
Fault* pin

System Interface Data From
Processor

Checked;
Trap on
Error

Not Checked
Not Checked;
reported to the
Fault* pin

System Interface Data
Check Bits Generated

Checked;
Trap on
Error

Not Checked
Not Checked;
reported to the
Fault* pin

MIPS R4000 Microprocessor User's Manual 429

Error Checking and Correcting

Table 16-4 Error Checking and Correcting Summary for External Transactions

† Read-Modify-Write cycle

Bus
Intervention Request

Data Returned
Intervention Request

State Returned
Snoop Request

Processor or
Secondary Cache
Data

Checked; Trap on
Error Not Checked Not Checked

Secondary Cache
Data Check Bits

Checked; Trap on
Error Not Checked Not Checked

Secondary Cache Tag
and Check Bits

Checked and
corrected on read
part of RMW†; Trap
on Error;
Generation on write
part of RMW if
written.

Checked and
corrected on read part
of RMW†; Trap on
Error; Generation on
write part of RMW if
written.

Checked and
corrected on
read part of
RMW†;
Trap on Error;
Generation on
write part of
RMW if
written.

System Interface
Address, Command,
and Check Bits:
Transmit

Generated Generated Generated

System Interface
Address, Command,
and Check Bits:
Receive

Not Checked;
reported to the
Fault* pin

Not Checked;
reported to the Fault*
pin

Not Checked;
reported to the
Fault* pin

System Interface Data From Secondary
Cache NA NA

System Interface Data
Check Bits

From Secondary
Cache NA NA

Chapter 16

430 MIPS R4000 Microprocessor User's Manual

16.2 R4400 Master/Checker Mode
The R4400 processor supports four Master/Checker mode configurations,
which are designated by boot-mode bit settings: Complete Master,
Complete Listener, System Interface Master, and Secondary Cache Master.
The boot-mode bits, SIMasterMd (mode bit 18) and SCMasterMd (mode
bit 42), define Master/Checker configurations. Table 16-5 lists the
configurations encoded by these bits.

Table 16-5 Boot-Mode Bit Encodings of Master/Checker Modes

For a non-fault tolerant system, these bits must be set to 002. This is the
Complete Master mode.

In a fault tolerant system, there are two possible configurations using the
Master-Listener and Cross-Coupled modes described in Table 16-5. These
are referred to as lock-step configurations, and are described later in this
section.

SCMasterMd
(Bit 42)

SIMasterMd
(Bit 18)

Mode

0 0 Complete Master
(required for single-chip operation)

1 1 Complete Listener
(paired with Complete Master)

1 0 System Interface Master
(SIMaster)

0 1 Secondary Cache Master
(SCMaster, paired with SIMaster)

MIPS R4000 Microprocessor User's Manual 431

Error Checking and Correcting

Connecting a System in Lock Step

By operating in lock step, a system with more than one R4400 processor
can be configured to improve data integrity. In such a configuration,
output signals and I/O buses used during output are connected in parallel
between the processors. One processor is defined at boot time as a bus
driver, and the remaining processor(s) is defined as a bus monitor.
Starting with the assertion of Reset*, all microprocessors must be
synchronous, and execute identical operations on a cycle-by-cycle basis.
The processor(s) designated as bus monitor compares the outputs and
buses at bus-cycle boundaries, and asserts the Fault*† signal on any
mismatch.

In a lock step operation, the following R4400 signal groups are connected
in parallel:

• System interface

• Secondary Cache interface (R4400SC and R4400MC only)

• Interrupt interface

The following signals are not connected in parallel:

• Initialization interface, ModeClock, ModeIn, and Reset*
signals

• JTAG interface signals, JTDO and JTMS

• all Clock/Control interface signals except VssP and VccP

The remaining processor signals can be connected either in parallel or
independently.

† Fault* is a non-persistent signal which is synchronous with the System interface. Fault*
signal timing is determined by the PClock-to-SClock divisor from boot-time mode bit
settings.

Chapter 16

432 MIPS R4000 Microprocessor User's Manual

Master-Listener Configuration

As shown in Figure 16-5, the Master-Listener lock step configuration pairs
a Complete Master (mode bits 42 and 18 = 002) with a Complete Listener
(mode bits 42 and 18 = 112). In this configuration, the Complete Listener
has disabled output drivers; otherwise, the two R4400 processors operate
identically, both receiving the same inputs. On all output cycles, the
Complete Listener compares data on the output and I/O buses with
expected data, and asserts the Fault* signal in the event of a
miscomparison.

Figure 16-5 Master-Listener Configuration of Master/Checker Mode

Fault*

External
Agent

R4400
Complete

Master

Secondary cache

Complete Listener

System Interface bus

=?

=?

=?

=?

=?

Secondary cache bus

SCAddr

Maintenance
ProcessorFault*

R4400

SysAD/
SysCmd

SysAD/
SysCmd

SysADC/
SysCmdP

SysAD/
SysCmd

SysADC/
SysCmdP

SysADC/

SysCmdP

SCAddr

SCData/
SCTag

Data Chk/
Tag Chk

SCData/
SCTag

SCData/
SCTag

Data Chk/
Tag Chk

Data Chk/
Tag Chk

MIPS R4000 Microprocessor User's Manual 433

Error Checking and Correcting

Cross-Coupled Checking Configuration

In the Cross-Coupled Checking configuration, one of the R4400 processors
drives the data bus pins and is labelled the System Interface Master (mode
bits 42 and 18 = 102). The other R4400 processor drives the ECC or parity
check pins on the same bus and is labelled the Secondary Cache Master
(mode bits 42 and 18 = 012). This is shown in Figure 16-6.

Both processors monitor the buses and indicate a miscomparison by
asserting their respective Fault* signals. The Fault* signal indicates error
conditions not specifically covered by R4400 processor exceptions.†

Figure 16-6 Cross-Coupled Configuration of Master/Checker Mode

† This includes such errors as an input parity error at SysCmd.

Fault*

External
Agent

R4400

SI Master

Secondary cache

SC Master

System Interface bus

=?

=?

=?

=?

=?

Secondary cache bus

Data Chk/

SCAddress

Maintenance
Processor

R4400

SCData/

Data Chk/
Tag Chk

SCData/
SCTag

Address

Fault*

Fault*

SysAD/

SysADC/
Tag Chk

SCTag

Data Chk/
Tag Chk

SysCmd

SysCmdP

SysAD/
SysCmd SCData/

SCTag

SysAD/
SysCmd

SysADC/
SysCmdP

SysADC/

SysCmdP

Chapter 16

434 MIPS R4000 Microprocessor User's Manual

The signals that are connected in parallel and driven from the System
Interface Master (1 in Figure 16-6) include:

• SysAD(63:0)

• SysCmd(8:0)

• SCAPar(2:0)

Signals that are connected in parallel and driven from the Secondary
Cache Master (2 in Figure 16-6) include:

• SysADC(7:0)

• SysCmdP

• ValidOut*

• Release*

• SCAddr(17:1)

• SCAddr0(W:Z)

• SCOE*

• SCWr(W:Z)*

• SCData(127:0)

• SCDChk(15:0)

• SCTag(24:0)

• SCTChk(6:0)

• SCDCS*

• SCTCS*

It should be noted that the fault detection mechanism associated with the
Fault* pin does not cause any exceptions; the processor continues to run
normally regardless of the state of the Fault* signal. It is up to external
logic to handle an asserted Fault* signal.

MIPS R4000 Microprocessor User's Manual 435

Error Checking and Correcting

Fault Detection

Fault detection of an output miscomparison occurs at the end of the bus
cycle (the length of the cycle is programmed at boot-mode time; see
Chapter 9). When the R4400 processor is in master state, outputs at the
System interface are checked at the end of every System interface cycle. At
the Secondary Cache interface, outputs are checked at the end of each read
or write cycle.

SCAPar(2:0) transition and check times are delayed from the rest of the
Secondary Cache interface by one PClock. SCAPar(2:0) transitions occur
one PClock after SCAddr transitions, or when the R4400 is changing from
a read cycle to a write cycle without an address change. SCAPar(2:0)
signals do not follow the timing of SCWr* signals, which are set separately
through the programming of the boot-time mode bits.

The R4400 processor has an internal fault detection latency of 4 PClocks
(clock cycles are described in Chapter 10), whereupon Fault* is
synchronized with the System interface. An output fault detected and
propagated through the R4400 processor internal fault logic in a prior
System interface cycle is reported in the current cycle.

In Complete Master mode, output fault reporting is disabled for the
Secondary Cache interface, but enabled for the following System interface
signals: SysCmd, SysCmdP, SysAD, SysADC, ValidOut*, and Release*.

Chapter 16

436 MIPS R4000 Microprocessor User's Manual

Reset Operation

When the R4400 processor is a Complete Listener, SIMaster, or SCMaster,
an assertion of Reset* after the initial boot sequence is significant.

If Reset* is asserted a second time and subsequently deasserted, the R4400
processor changes to Forced Complete Master mode and drives all
outputs.

If Reset* is asserted and deasserted a third time, the R4400 processor
returns to its prior mode, as programmed by the boot-mode bits.

On any subsequent assertion and deassertion of Reset*, the processor
alternates between the two modes described above: the mode determined
by boot-time mode bits if the Master/Checker mode is Complete Listener,
SIMaster, or SCMaster, or Forced Complete Master mode.

In Forced Complete Master mode, the Fault* pin reports all output faults,
not just faults of the System interface as are reported in Complete Master
mode.

Fault History

Two internal fault history bits, Output Fault History and Input Fault
History, record output faults and certain input faults reported through the
Fault* pin. These bits are cleared with each deassertion of Reset*.

The two fault history bits are readable when Reset* is asserted, and the
Fault* pin changes from reporting live faults to indicating which fault
history bit was set when Reset* was deasserted in the previous cycle. The
ModeIn pin acts as selector; if ModeIn = 0, Fault* indicates the inverted
state of the Output fault history bit. If ModeIn = 1, Fault* indicates the
inverted state of the Input fault history bit.

The fault history bits can be reset (cleared) while the R4400 processor is
running by asserting 1 to the ModeIn pin. Consequently, ModeIn must
be held to 0 to maintain the status of the fault history bits. Table 16-6
presents this information in tabular form.

MIPS R4000 Microprocessor User's Manual 437

Error Checking and Correcting

Table 16-6 R4400 Fault History Bit Encoding

Boot/Reset
Controls

ModeIn Pin
Fault History

Bits
Fault* Pin

Master/Checker
Mode

VccOk just asserted
(goes from 0 to 1)

Used as
boot-mode
bits; scan
data

N/A N/A N/A

Reset* just
deasserted (goes
from 0 to 1)

N/A Cleared to 0 N/A N/A

Reset* deasserted
in normal operation 0 Set and latched,

if fault occurs
Live faults are
reported N/A

Reset* deasserted
in normal operation 1 Cleared Live faults are

reported N/A

Reset* just asserted
(goes from 1 to 0) N/A N/A N/A

Changed,
toggling
between mode
bits and Forced
Complete
Master

Reset* just asserted
(R4400 is reset) 0

Output Fault
History bit is
connected to the
Fault* pin

N/A N/A

Reset just asserted
(R4400 is reset) 1

Input Fault
History bit is
connected to
Fault* pin

N/A N/A

Chapter 16

438 MIPS R4000 Microprocessor User's Manual

MIPS R4000 Microprocessor User's Manual A-1

CPU Instruction Set Details

A

This appendix provides a detailed description of the operation of each
R4000 instruction in both 32- and 64-bit modes. The instructions are listed
in alphabetical order.

Exceptions that may occur due to the execution of each instruction are
listed after the description of each instruction. Descriptions of the
immediate cause and manner of handling exceptions are omitted from the
instruction descriptions in this appendix.

Figures at the end of this appendix list the bit encoding for the constant
fields of each instruction, and the bit encoding for each individual
instruction is included with that instruction.

Appendix A

A-2 MIPS R4000 Microprocessor User's Manual

A.1 Instruction Classes
CPU instructions are divided into the following classes:

• Load and Store instructions move data between memory and
general registers. They are all I-type instructions, since the
only addressing mode supported is base register + 16-bit
immediate offset.

• Computational instructions perform arithmetic, logical and
shift operations on values in registers. They occur in both
R-type (both operands are registers) and I-type (one operand is
a 16-bit immediate) formats.

• Jump and Branch instructions change the control flow of a
program. Jumps are always made to absolute 26-bit word
addresses (J-type format), or register addresses (R-type), for
returns and dispatches. Branches have 16-bit offsets relative to
the program counter (I-type). Jump and Link instructions save
their return address in register 31.

• Coprocessor instructions perform operations in the
coprocessors. Coprocessor loads and stores are I-type.
Coprocessor computational instructions have coprocessor-
dependent formats (see the FPU instructions in Appendix B).
Coprocessor zero (CP0) instructions manipulate the memory
management and exception handling facilities of the processor.

• Special instructions perform a variety of tasks, including
movement of data between special and general registers, trap,
and breakpoint. They are always R-type.

MIPS R4000 Microprocessor User's Manual A-3

CPU Instruction Set Details

A.2 Instruction Formats
Every CPU instruction consists of a single word (32 bits) aligned on a word
boundary and the major instruction formats are shown in Figure A-1.

Figure A-1 CPU Instruction Formats

015162021252631

015162021252631

0252631

op rs rt immediate

op target

functop rs rt
1110 6 5

rd shamt

R-Type (Register)

J-Type (Jump)

I-Type (Immediate)

op 6-bit operation code

rs 5-bit source register specifier

rt 5-bit target (source/destination) or branch condition

immediate
16-bit immediate, branch displacement or address
displacement

target 26-bit jump target address

rd 5-bit destination register specifier

shamt 5-bit shift amount

funct 6-bit function field

Appendix A

A-4 MIPS R4000 Microprocessor User's Manual

A.3 Instruction Notation Conventions
In this appendix, all variable subfields in an instruction format (such as rs,
rt, immediate, etc.) are shown in lowercase names.

For the sake of clarity, we sometimes use an alias for a variable subfield in
the formats of specific instructions. For example, we use rs = base in the
format for load and store instructions. Such an alias is always lower case,
since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located at
the end of this Appendix, and the bit encoding also accompanies each
instruction.

In the instruction descriptions that follow, the Operation section describes
the operation performed by each instruction using a high-level language
notation. The R4000 can operate as either a 32- or 64-bit microprocessor
and the operation for both modes is included with the instruction
description.

Special symbols used in the notation are described in Table A-1.

MIPS R4000 Microprocessor User's Manual A-5

CPU Instruction Set Details

Table A-1 CPU Instruction Operation Notations

COC[z] Coprocessor unit z condition signal.
BigEndianMem Big-endian mode as configured at reset (0 → Little, 1 → Big). Specifies the en-

dianness of the memory interface (see LoadMemory and StoreMemory), and
the endianness of Kernel and Supervisor mode execution.

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is
available in User mode only, and is effected by setting the RE bit of the Status
register. Thus, ReverseEndian may be computed as (SR25 and User mode).

BigEndianCPU The endianness for load and store instructions (0 → Little, 1 → Big). In User
mode, this endianness may be reversed by setting SR25. Thus, BigEndianCPU
may be computed as BigEndianMem XOR ReverseEndian.

LLbit Bit of state to specify synchronization instructions. Set by LL, cleared by ERET
and Invalidate and read by SC.

T+i: Indicates the time steps between operations. Each of the statements within a
time step are defined to be executed in sequential order (as modified by con-
ditional and loop constructs). Operations which are marked T+i: are executed
at instruction cycle i relative to the start of execution of the instruction. Thus,
an instruction which starts at time j executes operations marked T+i: at time
i + j. The interpretation of the order of execution between two instructions or
two operations which execute at the same time should be pessimistic; the or-
der is not defined.

←
||

Symbol

Assignment.

Bit string concatenation.

+ 2’s complement or floating-point addition.

- 2’s complement or floating-point subtraction.

*
2’s complement or floating-point multiplication.

div 2’s complement integer division.

2’s complement modulo.

2’s complement less than comparison.

mod

<

and Bit-wise logical AND.

or Bit-wise logical OR.

xor Bit-wise logical XOR.

nor Bit-wise logical NOR.

xy

xy:z

Replication of bit value x into a y-bit string. Note: x is always a single-bit value.

Selection of bits y through z of bit string x. Little-endian bit notation is always
used. If y is less than z, this expression is an empty (zero length) bit string.

GPR[x]

CPR[z,x]

CCR[z,x]

Coprocessor unit z, general register x.

Coprocessor unit z, control register x.

Floating-point division./

 Meaning

General-Register x. The content of GPR[0] is always zero. Attempts to alter
the content of GPR[0] have no effect.

Appendix A

A-6 MIPS R4000 Microprocessor User's Manual

Instruction Notation Examples

The following examples illustrate the application of some of the
instruction notation conventions:

Example #1:

GPR[rt] ←

Sixteen zero bits are concatenated with an immediate
value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General-Purpose Register rt.

Example #2:

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

immediate || 016

(immediate15)16 || immediate15...0

MIPS R4000 Microprocessor User's Manual A-7

CPU Instruction Set Details

A.4 Load and Store Instructions
In the R4000 implementation, the instruction immediately following a
load may use the loaded contents of the register. In such cases, the
hardware interlocks, requiring additional real cycles, so scheduling load
delay slots is still desirable, although not required for functional code.

Two special instructions are provided in the R4000 implementation of the
MIPS ISA, Load Linked and Store Conditional. These instructions are
used in carefully coded sequences to provide one of several
synchronization primitives, including test-and-set, bit-level locks,
semaphores, and sequencers/event counts.

In the load and store descriptions, the functions listed in Table A-2 are
used to summarize the handling of virtual addresses and physical
memory.

Table A-2 Load and Store Common Functions

Function Meaning

AddressTranslation
Uses the TLB to find the physical address given the virtual
address. The function fails and an exception is taken if the
required translation is not present in the TLB.

LoadMemory

Uses the cache and main memory to find the contents of
the word containing the specified physical address. The
low-order two bits of the address and the Access Type field
indicates which of each of the four bytes within the data
word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded into the
cache.

StoreMemory

Uses the cache, write buffer, and main memory to store the
word or part of word specified as data in the word
containing the specified physical address. The low-order
two bits of the address and the Access Type field indicates
which of each of the four bytes within the data word
should be stored.

Appendix A

A-8 MIPS R4000 Microprocessor User's Manual

As shown in Table A-3, the Access Type field indicates the size of the data
item to be loaded or stored. Regardless of access type or byte-numbering
order (endianness), the address specifies the byte which has the smallest
byte address in the addressed field. For a big-endian machine, this is the
leftmost byte and contains the sign for a 2’s complement number; for a
little-endian machine, this is the rightmost byte.

Table A-3 Access Type Specifications for Loads/Stores

The bytes within the addressed doubleword which are used can be
determined directly from the access type and the three low-order bits of
the address.

Access Type Mnemonic Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

MIPS R4000 Microprocessor User's Manual A-9

CPU Instruction Set Details

A.5 Jump and Branch Instructions
All jump and branch instructions have an architectural delay of exactly
one instruction. That is, the instruction immediately following a jump or
branch (that is, occupying the delay slot) is always executed while the
target instruction is being fetched from storage. A delay slot may not itself
be occupied by a jump or branch instruction; however, this error is not
detected and the results of such an operation are undefined.

If an exception or interrupt prevents the completion of a legal instruction
during a delay slot, the hardware sets the EPC register to point at the jump
or branch instruction that precedes it. When the code is restarted, both the
jump or branch instructions and the instruction in the delay slot are
reexecuted.

Because jump and branch instructions may be restarted after exceptions or
interrupts, they must be restartable. Therefore, when a jump or branch
instruction stores a return link value, register 31 (the register in which the
link is stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump and
Link Register instruction must use a register whose two low-order bits are
zero. If these low-order bits are not zero, an address exception will occur
when the jump target instruction is subsequently fetched.

Appendix A

A-10 MIPS R4000 Microprocessor User's Manual

A.6 Coprocessor Instructions
Coprocessors are alternate execution units, which have register files
separate from the CPU. The MIPS architecture provides four coprocessor
units, or classes, and these coprocessors have two register spaces, each
space containing thirty-two 32-bit registers.

• The first space, coprocessor general registers, may be directly
loaded from memory and stored into memory, and their
contents may be transferred between the coprocessor and
processor.

• The second space, coprocessor control registers, may only have
their contents transferred directly between the coprocessor and
the processor. Coprocessor instructions may alter registers in
either space.

A.7 System Control Coprocessor (CP0) Instructions
There are some special limitations imposed on operations involving CP0
that is incorporated within the CPU. Although load and store instructions
to transfer data to/from coprocessors and to move control to/from
coprocessor instructions are generally permitted by the MIPS architecture,
CP0 is given a somewhat protected status since it has responsibility for
exception handling and memory management. Therefore, the move to/
from coprocessor instructions are the only valid mechanism for writing to
and reading from the CP0 registers.

Several CP0 instructions are defined to directly read, write, and probe TLB
entries and to modify the operating modes in preparation for returning to
User mode or interrupt-enabled states.

MIPS R4000 Microprocessor User's Manual A-11

CPU Instruction Set Details

Format:

ADD rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.
In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

An overflow exception occurs if the carries out of bits 30 and 31 differ (2’s
complement overflow). The destination register rd is not modified when
an integer overflow exception occurs.

Operation:

Exceptions:

Integer overflow exception

ADDAdd

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

ADD

32 T: GPR[rd] ←GPR[rs] + GPR[rt]

64 T: temp ← GPR[rs] + GPR[rt]

GPR[rd] ← (temp31)32 || temp31...0

Appendix A

A-12 MIPS R4000 Microprocessor User's Manual

Format:

ADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.
In 64-bit mode, the operand must be valid sign-extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ (2’s
complement overflow). The destination register rt is not modified when
an integer overflow exception occurs.

Operation:

Exceptions:

Integer overflow exception

ADDI Add Immediate

31 2526 2021 1516 0

ADDI rs rt immediate

6 5 5 16
0 0 1 0 0 0

ADDI

32 T: GPR [rt] ← GPR[rs] +(immediate15)16 || immediate15...0

64 T: temp ← GPR[rs] + (immediate15)48 || immediate15...0

GPR[rt] ← (temp31)32 || temp31...0

MIPS R4000 Microprocessor User's Manual A-13

CPU Instruction Set Details

Format:

ADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.
No integer overflow exception occurs under any circumstances. In 64-bit
mode, the operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction is
that ADDIU never causes an overflow exception.

Operation:

Exceptions:

None

ADDIU Add Immediate Unsigned

31 2526 2021 1516 0

ADDIU rs rt immediate

6 5 5 16
0 0 1 0 0 1

ADDIU

32 T: GPR [rt] ← GPR[rs] + (immediate15)16 || immediate15...0

64 T: temp ← GPR[rs] + (immediate15)48 || immediate15...0

GPR[rt] ← (temp31)32 || temp31...0

Appendix A

A-14 MIPS R4000 Microprocessor User's Manual

Format:

ADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.
No overflow exception occurs under any circumstances. In 64-bit mode,
the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction is
that ADDU never causes an overflow exception.

Operation:

Exceptions:

None

ADDU Add Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 ADDU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

ADDU

32 T: GPR[rd] ←GPR[rs] + GPR[rt]

64 T: temp ← GPR[rs] + GPR[rt]

GPR[rd] ← (temp31)32 || temp31...0

MIPS R4000 Microprocessor User's Manual A-15

CPU Instruction Set Details

Format:

AND rd, rs, rt

Description:

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical AND operation. The result is placed
into general register rd.

Operation:

Exceptions:

None

ANDAnd

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 AND

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

AND

32 T: GPR[rd] ← GPR[rs] and GPR[rt]

64 T: GPR[rd] ← GPR[rs] and GPR[rt]

Appendix A

A-16 MIPS R4000 Microprocessor User's Manual

Format:

ANDI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of
general register rs in a bit-wise logical AND operation. The result is placed
into general register rt.

Operation:

Exceptions:

None

ANDI And Immediate

31 2526 2021 1516 0

ANDI rs rt immediate

6 5 5 16
0 0 1 1 0 0

ANDI

32 T: GPR[rt] ← 016 || (immediate and GPR[rs]15...0)

64 T: GPR[rt] ← 048 || (immediate and GPR[rs]15...0)

MIPS R4000 Microprocessor User's Manual A-17

CPU Instruction Set Details

Format:

BCzF offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If coprocessor z’s condition signal (CpCond), as sampled
during the previous instruction, is false, then the program branches to the
target address with a delay of one instruction.

Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.

Operation:

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

BCzFBranch On Coprocessor z False

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCF

21 20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 0 0

BCzF

T: target ← (offset15)14 || offset || 02
32 T–1: condition ← not COC[z]

T+1: if condition then
PC ← PC + target

endif

T: target ← (offset15)46 || offset || 02
64 T–1: condition ← not COC[z]

T+1: if condition then
PC ← PC + target

endif

Appendix A

A-18 MIPS R4000 Microprocessor User's Manual

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

BCzF (continued)
Branch On Coprocessor z False BCzF

BCzF
0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

BC0F 0 0 0 01

24 23 22 21

Coprocessor Unit Number
Branch conditionBC sub-opcode

20 19 18 17 16

0 0 0 0 0

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

BC1F 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 0 0

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

BC2F 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 0 0

Opcode

MIPS R4000 Microprocessor User's Manual A-19

CPU Instruction Set Details

Format:

BCzFL offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of coprocessor z’s condition line, as
sampled during the previous instruction, is false, the target address is
branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay
slot is nullified.

Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

BCzFL

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCFL

21 20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 1 0

BCzFL Branch On Coprocessor z
False Likely

Appendix A

A-20 MIPS R4000 Microprocessor User's Manual

Operation:

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

BCzFL
(continued)

Branch On Coprocessor z BCzFLFalse Likely

T: target ← (offset15)14 || offset || 02
32 T–1: condition ← not COC[z]

T+1: if condition then
PC ← PC + target

endif

else
NullifyCurrentInstruction

T: target ← (offset15)46 || offset || 02
64 T–1: condition ← not COC[z]

T+1: if condition then
PC ← PC + target

endif

else
NullifyCurrentInstruction

BCzFL
0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

BC0FL 0 0 0 01

24 23 22 21

Branch conditionBC sub-opcode

20 19 18 17 16

0 0 0 1 0

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

BC1FL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 0

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

BC2FL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 0

Coprocessor Unit Number

Opcode

MIPS R4000 Microprocessor User's Manual A-21

CPU Instruction Set Details

Format:

BCzT offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the coprocessor z’s condition signal (CpCond) is true,
then the program branches to the target address, with a delay of one
instruction.

Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.

Operation:

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

BCzTBranch On Coprocessor z True

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCT

21 20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 0 1

BCzT

T: target ← (offset15)14 || offset || 02
32 T–1: condition ← COC[z]

T+1: if condition then
PC ← PC + target

endif

T: target ← (offset15)46 || offset || 02
64 T–1: condition ← COC[z]

T+1: if condition then
PC ← PC + target

endif

Appendix A

A-22 MIPS R4000 Microprocessor User's Manual

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

BCzT (continued)
Branch On Coprocessor z True BCzT

BCzT
0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

BC0T 0 0 0 01

24 23 22 21

Branch conditionBC sub-opcode

20 19 18 17 16

0 0 0 0 1

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

BC1T 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 0 1

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

BC2T 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 0 1

Coprocessor Unit Number
Opcode

MIPS R4000 Microprocessor User's Manual A-23

CPU Instruction Set Details

Format:

BCzTL offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of coprocessor z’s condition line, as
sampled during the previous instruction, is true, the target address is
branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay
slot is nullified.

Because the condition line is sampled during the previous instruction,
there must be at least one instruction between this instruction and a
coprocessor instruction that changes the condition line.

Operation:

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

BCzTLBranch On Coprocessor z

5

16 15

BC

31 2526

COPz

6

0

16

offsetBCTL

21 20

5
0 1 0 0 x x* 0 1 0 0 0 0 0 0 1 1

BCzTL True Likely

T: target ← (offset15)14 || offset || 02
32 T–1: condition ← COC[z]

T+1: if condition then

PC ← PC + target

endif

else
NullifyCurrentInstruction

T: target ← (offset15)46|| offset || 02
64 T–1: condition ← COC[z]

T+1: if condition then
PC ← PC + target

endif

else
NullifyCurrentInstruction

Appendix A

A-24 MIPS R4000 Microprocessor User's Manual

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

BCzTL
(continued)

Branch On Coprocessor z BCzTLTrue Likely

BCzTL
0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

BC0TL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 1

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

BC1TL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 1

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

BC2TL 0 0 0 01

24 23 22 21 20 19 18 17 16

0 0 0 1 1

Branch conditionBC sub-opcode
Coprocessor Unit Number

Opcode

MIPS R4000 Microprocessor User's Manual A-25

CPU Instruction Set Details

Format:

BEQ rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are equal, then the
program branches to the target address, with a delay of one instruction.

Operation:

Exceptions:

None

BEQBranch On EqualBEQ
31 2526 2021 1516 0

BEQ rs rt offset

6 5 5 16
0 0 0 1 0 0

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs] = GPR[rt])
T+1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs] = GPR[rt])
T+1: if condition then

PC ← PC + target
endif

Appendix A

A-26 MIPS R4000 Microprocessor User's Manual

Format:

BEQL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are equal, the target
address is branched to, with a delay of one instruction. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

Exceptions:

None

BEQL Branch On Equal Likely

31 2526 2021 1516 0

BEQL rs rt offset

6 5 5 16
0 1 0 1 0 0

BEQL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs] = GPR[rt])
T+1: if condition then

PC ← PC + target
else

endif
NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs] = GPR[rt])

T+1: if condition then
PC ← PC + target

else

endif
NullifyCurrentInstruction

MIPS R4000 Microprocessor User's Manual A-27

CPU Instruction Set Details

Format:

BGEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
one instruction.

Operation:

Exceptions:

None

BGEZOr Equal To Zero
Branch On Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZ offset

6 5 5 16
0 0 0 0 0 1 0 0 0 0 1

BGEZ

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0)
T+1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 0)
T+1: if condition then

PC ← PC + target
endif

Appendix A

A-28 MIPS R4000 Microprocessor User's Manual

Format:

BGEZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction is not
trapped, however.

Operation:

Exceptions:

None

BGEZAL Or Equal To Zero And Link
Branch On Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZAL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 0 1

BGEZAL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 0)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

MIPS R4000 Microprocessor User's Manual A-29

CPU Instruction Set Details

Format:

BGEZALL rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction. General register rs may not
be general register 31, because such an instruction is not restartable. An
attempt to execute this instruction is not trapped, however. If the
conditional branch is not taken, the instruction in the branch delay slot is
nullified.

Operation:

Exceptions:

None

BGEZALLOr Equal To Zero
Branch On Greater Than

31 2526 2021 1516 0

REGIMM rs BGEZALL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 1 1

BGEZALL
And Link Likely

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

NullifyCurrentInstruction
else

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 0)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

NullifyCurrentInstruction
else

Appendix A

A-30 MIPS R4000 Microprocessor User's Manual

Format:

BGEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
one instruction. If the conditional branch is not taken, the instruction in
the branch delay slot is nullified.

Operation:

Exceptions:

None

BGEZL Than Or Equal To Zero Likely
Branch On Greater

31 2526 2021 1516 0

REGIMM rs BGEZL offset

6 5 5 16
0 0 0 0 0 1 0 0 0 1 1

BGEZL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0)
T+1: if condition then

PC ← PC + target

endif

else
NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 0)
T+1: if condition then

PC ← PC + target

endif

else
NullifyCurrentInstruction

MIPS R4000 Microprocessor User's Manual A-31

CPU Instruction Set Details

Format:

BGTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs are compared to zero. If
the contents of general register rs have the sign bit cleared and are not
equal to zero, then the program branches to the target address, with a
delay of one instruction.

Operation:

Exceptions:

None

BGTZBranch On Greater Than Zero

31 2526 2021 1516 0

BGTZ rs 0 offset

6 5 5 16
0 0 0 1 1 1 0 0 0 0 0

BGTZ

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0) and (GPR[rs] ≠ 032)

T+1: if condition then
PC ← PC + target

endif

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 0) and (GPR[rs] ≠ 064)

T+1: if condition then
PC ← PC + target

endif

Appendix A

A-32 MIPS R4000 Microprocessor User's Manual

Format:

BGTZL rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs are compared to zero. If
the contents of general register rs have the sign bit cleared and are not
equal to zero, then the program branches to the target address, with a
delay of one instruction. If the conditional branch is not taken, the
instruction in the branch delay slot is nullified.

Operation:

Exceptions:

None

BGTZL Than Zero Likely
Branch On Greater

31 2526 2021 1516 0

BGTZL rs 0 offset

6 5 5 16
0 1 0 1 1 1 0 0 0 0 0

BGTZL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 0) and (GPR[rs] ≠ 032)
T+1: if condition then

PC ← PC + target

endif

else
NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 0) and (GPR[rs] ≠ 064)
T+1: if condition then

PC ← PC + target
else

NullifyCurrentInstruction
endif

MIPS R4000 Microprocessor User's Manual A-33

CPU Instruction Set Details

Format:

BLEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs are compared to zero. If
the contents of general register rs have the sign bit set, or are equal to zero,
then the program branches to the target address, with a delay of one
instruction.

Operation:

Exceptions:

None

BLEZBranch on Less Than

31 2526 2021 1516 0

BLEZ rs 0 offset

6 5 5 16

Or Equal To Zero

0 0 0 1 1 0 0 0 0 0 0

BLEZ

32 T: target ← (offset15)14 || offset || 02

T+1: if condition then
PC ← PC + target

endif

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 1) or (GPR[rs] = 064)
T+1: if condition then

PC ← PC + target
endif

condition ← (GPR[rs]31 = 1) or (GPR[rs] = 032)

Appendix A

A-34 MIPS R4000 Microprocessor User's Manual

Format:

BLEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs is compared to zero. If
the contents of general register rs have the sign bit set, or are equal to zero,
then the program branches to the target address, with a delay of one
instruction.

If the conditional branch is not taken, the instruction in the branch delay
slot is nullified.

Operation:

Exceptions:

None

BLEZL Branch on Less Than

31 2526 2021 1516 0

BLEZL rs 0 offset

6 5 5 16

Or Equal To Zero Likely

0 1 0 1 1 0 0 0 0 0 0

BLEZL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1) or (GPR[rs] = 032)
T+1: if condition then

PC ← PC + target

endif

else
NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 1) or (GPR[rs] = 064)
T+1: if condition then

PC ← PC + target
else

NullifyCurrentInstruction
endif

MIPS R4000 Microprocessor User's Manual A-35

CPU Instruction Set Details

Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit set,
then the program branches to the target address, with a delay of one
instruction.

 Operation:

Exceptions:

None

BLTZBranch On Less Than Zero

31 2526 2021 1516 0

REGIMM rs BLTZ offset

6 5 5 16
0 0 0 0 0 1 0 0 0 0 0

BLTZ

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1)
T+1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 1)
T+1: if condition then

PC ← PC + target
endif

Appendix A

A-36 MIPS R4000 Microprocessor User's Manual

Format:

BLTZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit set, then the program branches to the target
address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction with
register 31 specified as rs is not trapped, however.

Operation:

Exceptions:

None

BLTZAL Than Zero And Link
Branch On Less

31 2526 2021 1516 0

REGIMM rs BLTZAL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 0 0

BLTZAL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 1)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

MIPS R4000 Microprocessor User's Manual A-37

CPU Instruction Set Details

Format:

BLTZALL rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. Unconditionally, the address of the instruction after the
delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit set, then the program branches to the target
address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction with
register 31 specified as rs is not trapped, however. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

Exceptions:

None

BLTZALLThan Zero And Link Likely
Branch On Less

31 2526 2021 1516 0

REGIMM rs BLTZALL offset

6 5 5 16
0 0 0 0 0 1 1 0 0 1 0

BLTZALL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

NullifyCurrentInstruction
else

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 1)

T+1: if condition then
PC ← PC + target

endif

GPR[31] ← PC + 8

NullifyCurrentInstruction
else

Appendix A

A-38 MIPS R4000 Microprocessor User's Manual

Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the contents of general register rs have the sign bit set,
then the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

 Operation:

Exceptions:

None

BLTZL Branch On Less Than Zero Likely

31 2526 2021 1516 0

REGIMM rs BLTZL offset

6 5 5 16
0 0 0 0 0 1 0 0 0 1 0

BLTZL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs]31 = 1)
T+1: if condition then

PC ← PC + target

endif

else
NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs]63 = 1)
T+1: if condition then

PC ← PC + target
else

NullifyCurrentInstruction
endif

MIPS R4000 Microprocessor User's Manual A-39

CPU Instruction Set Details

Format:

BNE rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are not equal, then
the program branches to the target address, with a delay of one
instruction.

Operation:

Exceptions:

None

BNEBranch On Not Equal

31 2526 2021 1516 0

BNE rs rt offset

6 5 5 16
0 0 0 1 0 1

BNE

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs] ≠ GPR[rt])
T+1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs] ≠ GPR[rt])
T+1: if condition then

PC ← PC + target
endif

Appendix A

A-40 MIPS R4000 Microprocessor User's Manual

Format:

BNEL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are not equal, then
the program branches to the target address, with a delay of one
instruction.

If the conditional branch is not taken, the instruction in the branch delay
slot is nullified.

Operation:

Exceptions:

None

BNEL Branch On Not Equal Likely

31 2526 2021 1516 0

BNEL rs rt offset

6 5 5 16
0 1 0 1 0 1

BNEL

32 T: target ← (offset15)14 || offset || 02

condition ← (GPR[rs] ≠ GPR[rt])
T+1: if condition then

PC ← PC + target
else

endif
NullifyCurrentInstruction

64 T: target ← (offset15)46 || offset || 02

condition ← (GPR[rs] ≠ GPR[rt])
T+1: if condition then

PC ← PC + target
else

endif
NullifyCurrentInstruction

MIPS R4000 Microprocessor User's Manual A-41

CPU Instruction Set Details

Format:

BREAK

Description:

A breakpoint trap occurs, immediately and unconditionally transferring
control to the exception handler.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:

Breakpoint exception

BREAKBreakpoint

31 2526

SPECIAL

6

0

BREAKcode

6 5

620
0 0 0 0 0 0 0 0 1 1 0 1

BREAK

32, 64 T: BreakpointException

Appendix A

A-42 MIPS R4000 Microprocessor User's Manual

Format:

CACHE op, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The virtual address is translated to
a physical address using the TLB, and the 5-bit sub-opcode specifies a
cache operation for that address.

If CP0 is not usable (User or Supervisor mode) the CP0 enable bit in the
Status register is clear, and a coprocessor unusable exception is taken. The
operation of this instruction on any operation/cache combination not
listed below, or on a secondary cache when none is present, is undefined.
The operation of this instruction on uncached addresses is also undefined.

The Index operation uses part of the virtual address to specify a cache
block.

For a primary cache of 2CACHEBITS bytes with 2LINEBITS bytes per tag,
vAddrCACHEBITS ... LINEBITS specifies the block.

For a secondary cache of 2CACHEBITS bytes with 2LINEBITS bytes per tag,
pAddrCACHEBITS ... LINEBITS specifies the block.

Index Load Tag also uses vAddrLINEBITS... 3 to select the doubleword for
reading ECC or parity. When the CE bit of the Status register is set, Hit
WriteBack, Hit WriteBack Invalidate, Index WriteBack Invalidate, and Fill
also use vAddrLINEBITS ... 3 to select the doubleword that has its ECC or
parity modified. This operation is performed unconditionally.

The Hit operation accesses the specified cache as normal data references,
and performs the specified operation if the cache block contains valid data
with the specified physical address (a hit). If the cache block is invalid or
contains a different address (a miss), no operation is performed.

CACHE Cache

31 2526 2021 1516 0

CACHE base op offset

6 5 5 16
1 0 1 1 1 1

CACHE

MIPS R4000 Microprocessor User's Manual A-43

CPU Instruction Set Details

Write back from a primary cache goes to the secondary cache (if there is
one), otherwise to memory. Write back from a secondary cache always
goes to memory. A secondary write back always writes the most recent
data; the data comes from the primary data cache, if present, and modified
(the W bit is set). Otherwise the data comes from the specified secondary
cache. The address to be written is specified by the cache tag and not the
translated physical address.

TLB Refill and TLB Invalid exceptions can occur on any operation. For
Index operations (where the physical address is used to index the cache
but need not match the cache tag) unmapped addresses may be used to
avoid TLB exceptions. This operation never causes TLB Modified or
Virtual Coherency exceptions.

Bits 17...16 of the instruction specify the cache as follows:

Code Name Cache

 0 I primary instruction

 1 D primary data

 2 SI secondary instruction

 3 SD secondary data (or combined instruction/data)

(continued)CACHE Cache CACHE

Appendix A

A-44 MIPS R4000 Microprocessor User's Manual

Bits 20...18 (this value is listed under the Code column) of the instruction
specify the operation as follows:

Code Caches Name Operation

0 I, SI
Index
Invalidate

Set the cache state of the cache block to Invalid.

0 D
Index
Writeback
Invalidate

Examine the cache state and Writeback bit (W bit) of the primary data
cache block at the index specified by the virtual address. If the state is
not Invalid and the W bit is set, write the block back to the secondary
cache (if present) or to memory (if no secondary cache). The address to
write is taken from the primary cache tag. When a secondary cache is
present, and the CE bit of the Status register is set, the contents of the
ECC register is XOR’d into the computed check bits during the write to
the secondary cache for the addressed doubleword. Set the cache state
of primary cache block to Invalid. The W bit is unchanged (and irrelevant
because the state is Invalid).

O SD
Index
Writeback
Invalidate

Examine the cache state of the secondary data cache block at the index
specified by the physical address. If the block is dirty (the state is Dirty
Exclusive or Dirty Shared), write the data back to memory. Like all
secondary writebacks, the operation writes any modified data for the
addresses from the primary data cache. The address to write is taken
from the secondary cache tag. The PIdx field of the secondary tag is
used to determine the locations in the primaries to check for matching
primary blocks. In all cases, set the state of the secondary cache block
and all matching primary subblocks to Invalid. No Invalidate is sent on
the R4000’s system interface.

1 All
Index Load
Tag

Read the tag for the cache block at the specified index and place it iinto
the TagLo and TagHi CP0 registers, ignoring any ECC or parity errors.
Also load the data ECC or parity bits into the ECC register.

2 All
Index Store
Tag

Write the tag for the cache block at the specified index from the TagLo
and TagHi CP0 registers. The processor uses computed parity for the
primary caches and the TagLo register in the case of the secondary
cache.

CACHE CACHE(continued)
Cache

MIPS R4000 Microprocessor User's Manual A-45

CPU Instruction Set Details

Code Caches Name Operation

3 SD
Create Dirty
Exclusive

This operation is used to avoid loading data needlessly from memory
when writing new contents into an entire cache block. If the cache block
is valid but does not contain the specified address (a valid miss) the
secondary block is vacated. The data is written back to memory if dirty
and all matching blocks in both primary caches are invalidated. As usual
during a secondary writeback, if the primary data cache contains
modified data (matching blocks with W bit set) that modified data is
written to memory. If the cache block is valid and contains the specified
physical address (a hit), the operation cleans up the primary caches to
avoid virtual aliases: all blocks in both primary caches that match the
secondary line are invalidated without writeback. Note that the search for
matching primary blocks uses the virtual index of the PIdx field of the
secondary cache tag (the virtual index when the location was last used)
and not the virtual index of the virtual address used in the operation (the
virtual index where the location will now be used). If the secondary tag
and address do not match (miss), or the tag and address do match (hit)
and the block is in a shared state, an invalidate for the specified address
is sent over the System interface. In all cases, the cache block tag must
be set to the specified physical address, the cache state must be set to
Dirty Exclusive, and the virtual index field set from the virtual address.
The CH bit in the Status register is set or cleared to indicate a hit or miss.

3 D
Create Dirty
Exclusive

This operation is used to avoid loading data needlessly from secondary
cache or memory when writing new contents into an entire cache block.
If the cache block does not contain the specified address, and the block
is dirty, write it back to the secondary cache (if present) or otherwise to
memory. In all cases, set the cache block tag to the specified physical
address, set the cache state to Dirty Exclusive.

4 I,D Hit Invalidate
If the cache block contains the specified address, mark the cache block
invalid.

4 SI, SD Hit Invalidate

If the cache block contains the specified address, mark the cache block
invalid and also invalidate all matching blocks, if present, in the primary
caches (the PIdx field of the secondary tag is used to determine the
locations in the primaries to search). The CH bit in the Status register is
set or cleared to indicate a hit or miss.

5 D
Hit Writeback
Invalidate

If the cache block contains the specified address, write the data back if it
is dirty, and mark the cache block invalid. When a secondary cache is
present, and the CE bit of the Status register is set, the contents of the
ECC register is XOR’d into the computed check bits during the write to
the secondary cache for the addressed doubleword.

CACHE CACHE(continued)
Cache

Appendix A

A-46 MIPS R4000 Microprocessor User's Manual

Code Caches Name Operation

5 SD
Hit Writeback
Invalidate

If the cache block contains the specified address, write back the data (if
dirty), and mark the secondary cache block and all matching blocks in
both primary caches invalid. As usual with secondary writebacks,
modified data in the primary data cache (matching block with the W bit
set) is used during the writeback. The PIdx field of the secondary tag is
used to determine the locations in the primaries to check for matching
primary blocks. The CH bit in the Status register is set or cleared to
indicate a hit or miss.

5 I Fill

Fill the primary instruction cache block from secondary cache or memory.
If the CE bit of the Status register is set, the content of the ECC register
is used instead of the computed parity bits for addressed doubleword
when written to the instruction cache. For the R4000PC, the cache is
filled from memory. For the R4000SC and R4000MC, the cache is filled
from the secondary cache whether or not the secondary cache block is
valid or contains the specified address.

6 D Hit Writeback

If the cache block contains the specified address, and the W bit is set,
write back the data. The W bit is not cleared; a subsequent miss to the
block will write it back again. This second writeback is redundant, but not
incorrect. When a secondary cache is present, and the CE bit of the
Status register is set, the content of the ECC register is XOR’d into the
computed check bits during the write to the secondary cache for the
addressed doubleword. Note: The W bit is not cleared during this
operation due to an artifact of the implementation; the W bit is
implemented as part of the data side of the cache array so that it can be
written during a data write.

6 SD Hit Writeback

If the cache block contains the specified address, and the cache state is
Dirty Exclusive or Dirty Shared, data is written back to memory. The
cache state is unchanged; a subsequent miss to the block causes it to be
written back again. This second writeback is redundant, but not
incorrect. The CH bit in the Status register is set or cleared to indicate a
hit or miss. The writeback looks in the primary data cache for modified
data, but does not invalidate or clear the Writeback bit in the primary data
cache. Note: The state of the secondary block is not changed to clean
during this operation because the W bit of matching sub-blocks cannot
be cleared to put the primary block in a clean state.

6 I Hit Writeback

If the cache block contains the specified address, data is written back
unconditionally. When a secondary cache is present, and the CE bit of
the Status register is set, the contents of the ECC register is XOR’d into
the computed check bits during the write to the secondary cache for the
addressed doubleword.

CACHE CACHE(continued)
Cache

MIPS R4000 Microprocessor User's Manual A-47

CPU Instruction Set Details

Operation:

Exceptions:

Coprocessor unusable exception

Code Caches Name Operation

7 SI,SD Hit Set Virtual

This operation is used to change the virtual index of secondary cache
contents, avoiding unnecessary memory operations. If the cache block
contains the specified address, invalidate matching blocks in the primary
caches at the index formed by concatenating PIdx in the secondary
cache tag (not the virtual address of the operation) and vAddr11..4, and
then set the virtual index field of the secondary cache tag from the
specified virtual address. Modified data in the primary data cache is not
preserved by the operation and should be explicitly written back before
this operation. The CH bit in the Status register is set or cleared to
indicate a hit or miss.

CACHE CACHE(continued)
Cache

32, 64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

CacheOp (op, vAddr, pAddr)

Appendix A

A-48 MIPS R4000 Microprocessor User's Manual

Format:

CFCz rt, rd

Description:

The contents of coprocessor control register rd of coprocessor unit z are
loaded into general register rt.

This instruction is not valid for CP0.

Operation:

Exceptions:

Coprocessor unusable exception

*Opcode Bit Encoding:

CoprocessorCFCz

11

Move Control From

31 2526 2021 1516

COPz CF rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 0 1 0 0 0 0 0 0

CFCz

32 T: data ← CCR[z,rd]
T+1: GPR[rt] ← data

64 T: data ← (CCR[z,rd]31)32 || CCR[z,rd]
T+1: GPR[rt] ← data

CFCz
0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

CFC1 0 0 1 00

24 23 22 21

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

CFC2 0 0 1 00

24 23 22 21

Coprocessor Unit Number
Coprocessor SuboperationOpcode

MIPS R4000 Microprocessor User's Manual A-49

CPU Instruction Set Details

Format:

COPz cofun

Description:

A coprocessor operation is performed. The operation may specify and
reference internal coprocessor registers, and may change the state of the
coprocessor condition line, but does not modify state within the processor
or the cache/memory system. Details of coprocessor operations are
contained in Appendix B.

Operation:

Exceptions:

Coprocessor unusable exception
Coprocessor interrupt or Floating-Point Exception (R4000 CP1 only)

*Opcode Bit Encoding:

COPzCoprocessor Operation

31 25 2426

COPz

6

0

cofun

251

CO
0 1 0 0 x x* 1

COPz

32, 64 T: CoprocessorOperation (z, cofun)

COPz
0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

C0P0 1

CO sub-opcode (see end of Appendix A)

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

C0P1 1

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

C0P2 1

Coprocessor Unit NumberOpcode

Appendix A

A-50 MIPS R4000 Microprocessor User's Manual

Format:

CTCz rt, rd

Description:

The contents of general register rt are loaded into control register rd of
coprocessor unit z.

This instruction is not valid for CP0.

Operation:

Exceptions:

Coprocessor unusable

*See “CPU Instruction Opcode Bit Encoding” at the end of Appendix A.

CTCz

11

Move Control to Coprocessor

31 2526 2021 1516

COPz CT rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x * 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

CTCz

32,64 T: data ← GPR[rt]
T + 1: CCR[z,rd] ← data

MIPS R4000 Microprocessor User's Manual A-51

CPU Instruction Set Details

Format:

DADD rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.

An overflow exception occurs if the carries out of bits 62 and 63 differ (2’s
complement overflow). The destination register rd is not modified when
an integer overflow exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Integer overflow exception
Reserved instruction exception (R4000 in 32-bit mode)

DADDDoubleword Add

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DADD

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0

DADD

64 T: GPR[rd] ←GPR[rs] + GPR[rt]

Appendix A

A-52 MIPS R4000 Microprocessor User's Manual

Format:

DADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.

An overflow exception occurs if carries out of bits 62 and 63 differ (2’s
complement overflow). The destination register rt is not modified when
an integer overflow exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Integer overflow exception
Reserved instruction exception (R4000 in 32-bit mode)

DADDI Doubleword Add Immediate

31 2526 2021 1516 0

DADDI rs rt immediate

6 5 5 16
0 1 1 0 0 0

DADDI

64 T: GPR [rt] ← GPR[rs] + (immediate15)48 || immediate15...0

MIPS R4000 Microprocessor User's Manual A-53

CPU Instruction Set Details

Format:

DADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general
register rs to form the result. The result is placed into general register rt.
No integer overflow exception occurs under any circumstances.

The only difference between this instruction and the DADDI instruction is
that DADDIU never causes an overflow exception.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DADDIUDoubleword Add

31 2526 2021 1516 0

DADDIU rs rt immediate

6 5 5 16
0 1 1 0 0 1

DADDIU Immediate Unsigned

64 T: GPR [rt] ← GPR[rs] + (immediate15)48 || immediate15...0

Appendix A

A-54 MIPS R4000 Microprocessor User's Manual

Format:

DADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt
are added to form the result. The result is placed into general register rd.

No overflow exception occurs under any circumstances.

The only difference between this instruction and the DADD instruction is
that DADDU never causes an overflow exception.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DADDU Doubleword Add Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DADDU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1

DADDU

64 T: GPR[rd] ←GPR[rs] + GPR[rt]

MIPS R4000 Microprocessor User's Manual A-55

CPU Instruction Set Details

Format:

DDIV rs, rt

Description:

The contents of general register rs are divided by the contents of general
register rt, treating both operands as 2’s complement values. No overflow
exception occurs under any circumstances, and the result of this operation
is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to check
for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

 Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DDIVDoubleword Divide

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DDIV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

DDIV

← undefined
← undefined
← undefined

HI ← GPR[rs] mod GPR[rt]

T–2: LO ← undefined

T: LO ← GPR[rs] div GPR[rt]

HI
T–1: LO

HI

64

Appendix A

A-56 MIPS R4000 Microprocessor User's Manual

Format:

DDIVU rs, rt

Description:

The contents of general register rs are divided by the contents of general
register rt, treating both operands as unsigned values. No integer
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to check
for a zero divisor.

When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DDIVU Doubleword Divide Unsigned

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DDIVU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

DDIVU

← undefined
← undefined
← undefined

← (0 || GPR[rs]) mod (0 || GPR[rt])

T–2: LO ← undefined

T: LO ← (0 || GPR[rs]) div (0 || GPR[rt])

HI
T–1: LO

HI

64

HI

MIPS R4000 Microprocessor User's Manual A-57

CPU Instruction Set Details

Format:

DIV rs, rt

Description:

The contents of general register rs are divided by the contents of general
register rt, treating both operands as 2’s complement values. No overflow
exception occurs under any circumstances, and the result of this operation
is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check
for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

DIVDivide

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DIV
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0

DIV

Appendix A

A-58 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:

None

(continued)DIV Divide DIV

← undefined
← undefined
← undefined

HI ← GPR[rs] mod GPR[rt]

T–2: LO ← undefined

T: LO ← GPR[rs] div GPR[rt]

HI
T–1: LO

HI

← undefined
← undefined
← undefined

T–2: LO ← undefined

T: q ← GPR[rs]31...0 div GPR[rt]31...0

HI
T–1: LO

HI

LO ← (q31)32 || q31...0
HI ← (r31)32 || r31...0

r ← GPR[rs]31...0 mod GPR[rt]31...0

32

64

MIPS R4000 Microprocessor User's Manual A-59

CPU Instruction Set Details

Format:

DIVU rs, rt

Description:

The contents of general register rs are divided by the contents of general
register rt, treating both operands as unsigned values. No integer
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check
for a zero divisor.

When the operation completes, the quotient word of the double result is
loaded into special register LO, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
those instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by two or more instructions.

DIVU Divide Unsigned

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DIVU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

DIVU

Appendix A

A-60 MIPS R4000 Microprocessor User's Manual

Operation:

Exceptions:

None

(continued)DIVU Divide Unsigned DIVU

← undefined
← undefined
← undefined

HI ← (0 || GPR[rs]) mod (0 || GPR[rt])

T–2: LO ← undefined

T: LO ← (0 || GPR[rs]) div (0 || GPR[rt])

HI
T–1: LO

HI

← undefined
← undefined
← undefined

T–2: LO ← undefined

T: q ← (0 || GPR[rs]31...0) div (0 || GPR[rt]31...0)

HI
T–1: LO

HI

LO ← (q31)32 || q31...0
HI ← (r31)32 || r31...0

r ← (0 || GPR[rs]31...0) mod (0 || GPR[rt]31...0)

32

64

MIPS R4000 Microprocessor User's Manual A-61

CPU Instruction Set Details

Format:

DMFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general
register rt.

This operation is defined for the R4000 operating in 64-bit mode and in 32-
bit kernel mode. Execution of this instruction in 32-bit user or supervisor
mode causes a reserved instruction exception. All 64-bits of the general
register destination are written from the coprocessor register source. The
operation of DMFC0 on a 32-bit coprocessor 0 register is undefined.

Operation:

Exceptions:

Coprocessor unusable exception
Reserved instruction exception (R4000 in 32-bit user mode

 R4000 in 32-bit supervisor mode)

DMFC0 Doubleword Move From

rd

11 10

5

31 2526 2021 1516 0

COP0 DMF rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00

DMFC0

 64 T: data ←CPR[0,rd]

T+1: GPR[rt] ← data

Appendix A

A-62 MIPS R4000 Microprocessor User's Manual

Format:

DMTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd
of the CP0.

This operation is defined for the R4000 operating in 64-bit mode or in 32-
bit kernel mode. Execution of this instruction in 32-bit user or supervisor
mode causes a reserved instruction exception.

All 64-bits of the coprocessor 0 register are written from the general
register source. The operation of DMTC0 on a 32-bit coprocessor 0 register
is undefined.

Because the state of the virtual address translation system may be altered
by this instruction, the operation of load instructions, store instructions,
and TLB operations immediately prior to and after this instruction are
undefined.

Operation:

Exceptions:

Coprocessor unusable exception (R4000 in 32-bit user mode
R4000 in 32-bit supervisor mode)

DMTC0 Doubleword Move To

rd

11 10

5

31 2526 2021 1516 0

COP0 DMT rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 00

DMTC0

 64 T: data ← GPR[rt]

T+1: CPR[0,rd] ← data

MIPS R4000 Microprocessor User's Manual A-63

CPU Instruction Set Details

Format:

DMULT rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both
operands as 2’s complement values. No integer overflow exception occurs
under any circumstances.

When the operation completes, the low-order word of the double result is
loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two other instructions.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DMULT Doubleword Multiply

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DMULT
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

DMULT

64 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← GPR[rs] * GPR[rt]
LO ← t63...0
H I ← t127...64

Appendix A

A-64 MIPS R4000 Microprocessor User's Manual

Format:

DMULTU rs, rt

Description:

The contents of general register rs and the contents of general register rt
are multiplied, treating both operands as unsigned values. No overflow
exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is
loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two instructions.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DMULTUDoublewor d Multiply

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 DMULTU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1

DMULTU Unsigned

64 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← (0 || GPR[rs]) * (0 || GPR[rt])
LO ← t63...0
HI ←t127...64

MIPS R4000 Microprocessor User's Manual A-65

CPU Instruction Set Details

Format:

DSLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros
into the low-order bits. The result is placed in register rd.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DSLLDoubleword Shift Left Logical

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 0 0 0

DSLL

0 0 0 0 0

64 T: s ← 0 || sa

GPR[rd] ← GPR[rt](63–s)...0 || 0s

Appendix A

A-66 MIPS R4000 Microprocessor User's Manual

Format:

DSLLV rd, rt, rs

Description:

The contents of general register rt are shifted left by the number of bits
specified by the low-order six bits contained in general register rs,
inserting zeros into the low-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DSLLV Doubleword Shift Left

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSLLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 1 0 1 0 00 0 0 0 0

DSLLVLogical Variable

64 T: s ← GPR[rs]5...0

GPR[rd]← GPR[rt](63–s)...0 || 0s

MIPS R4000 Microprocessor User's Manual A-67

CPU Instruction Set Details

Format:

DSLL32 rd, rt, sa

Description:

The contents of general register rt are shifted left by 32+sa bits, inserting
zeros into the low-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DSLL32 Doubleword Shift Left

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSLL32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 1 0 0

DSLL32Logical + 32

0
0 0 0 0 0

64 T: s ← 1 || sa

GPR[rd]← GPR[rt](63–s)...0 || 0s

Appendix A

A-68 MIPS R4000 Microprocessor User's Manual

Format:

DSRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-
extending the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DSRADoubleword

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSRA

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1

DSRA Shift Right Arithmetic

64 T: s ← 0 || sa

GPR[rd] ← (GPR[rt]63)s || GPR[rt] 63...s

MIPS R4000 Microprocessor User's Manual A-69

CPU Instruction Set Details

Format:

DSRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits
specified by the low-order six bits of general register rs, sign-extending the
high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DSRAV Doubleword Shift Right

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSRAV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1

DSRAVArithmetic Variable

64 T: s ← GPR[rs]5...0

GPR[rd] ← (GPR[rt]63)s || GPR[rt]63...s

Appendix A

A-70 MIPS R4000 Microprocessor User's Manual

Format:

DSRA32 rd, rt, sa

Description:

The contents of general register rt are shifted right by 32+sa bits, sign-
extending the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DSRA32Doubleword Shift Right

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa DSRA32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

DSRA32 Arithmetic + 32

64 T: s ←1 || sa

GPR[rd] ← (GPR[rt]63)s || GPR[rt] 63...s

MIPS R4000 Microprocessor User's Manual A-71

CPU Instruction Set Details

Format:

DSRL rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, inserting
zeros into the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DSRLDoubleword

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSRL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 0 1 0

DSRL

0
0 0 0 0 0

Shift Right Logical

64 T: s ← 0 || sa

GPR[rd] ← 0s || GPR[rt]63...s

Appendix A

A-72 MIPS R4000 Microprocessor User's Manual

Format:

DSRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits
specified by the low-order six bits of general register rs, inserting zeros
into the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DSRLV Doubleword Shift Right

31 2526 2021 1516

SPECIAL rt

6 5 5

rd 0 DSRLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0

DSRLVLogical Variable

rs

64 T: s ← GPR[rs]5...0

GPR[rd] ← 0s || GPR[rt]63...s

MIPS R4000 Microprocessor User's Manual A-73

CPU Instruction Set Details

Format:

DSRL32 rd, rt, sa

Description:

The contents of general register rt are shifted right by 32+sa bits, inserting
zeros into the high-order bits. The result is placed in register rd.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DSRL32Doubleword Shift Right

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa DSRL32

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 1 1 1 1 0

DSRL32 Logical + 32

0
0 0 0 0 0

64 T: s ← 1 || sa

GPR[rd] ← 0s || GPR[rt]63...s

Appendix A

A-74 MIPS R4000 Microprocessor User's Manual

Format:

DSUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd.

The only difference between this instruction and the DSUBU instruction is
that DSUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 62 and
63 differ (2’s complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Integer overflow exception
Reserved instruction exception (R4000 in 32-bit mode)

DSUB DSUBDoubleword Subtract

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSUB

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0

64 T: GPR[rd] ← GPR[rs] – GPR[rt]

MIPS R4000 Microprocessor User's Manual A-75

CPU Instruction Set Details

Format:

DSUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd.

The only difference between this instruction and the DSUB instruction is
that DSUBU never traps on overflow. No integer overflow exception
occurs under any circumstances.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

Reserved instruction exception (R4000 in 32-bit mode)

DSUBU Doubleword Subtract Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 DSUBU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1

DSUBU

64 T: GPR[rd] ← GPR[rs] – GPR[rt]

Appendix A

A-76 MIPS R4000 Microprocessor User's Manual

Format:

ERET

Description:

ERET is the R4000 instruction for returning from an interrupt, exception,
or error trap. Unlike a branch or jump instruction, ERET does not execute
the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR2 = 1), then load the PC from
the ErrorEPC and clear the ERL bit of the Status register (SR2). Otherwise
(SR2 = 0), load the PC from the EPC, and clear the EXL bit of the Status
register (SR1).

An ERET executed between a LL and SC also causes the SC to fail.

Operation:

Exceptions:

Coprocessor unusable exception

ERETException Return

0

6

6 531 25 2426

COP0

6

0

ERET

191

CO
0 1 0 0 0 0 0 1 1 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ERET

32, 64 T: if SR2 = 1 then
PC ← ErrorEPC
SR ← SR31...3 || 0 || SR1...0

else
PC ← EPC
SR ← SR31...2 || 0 || SR0

endif
LLbit ← 0

MIPS R4000 Microprocessor User's Manual A-77

CPU Instruction Set Details

Format:

J target

Description:

The 26-bit target address is shifted left two bits and combined with the
high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction.

Operation:

Exceptions:

None

J Jump

31 2526

J

6

0

target

26
0 0 0 0 1 0

J

32 T: temp ← target
T+1: PC ← PC31...28 || temp || 02

64 T: temp ← target
T+1: PC ← PC63...28 || temp || 02

Appendix A

A-78 MIPS R4000 Microprocessor User's Manual

Format:

JAL target

Description:

The 26-bit target address is shifted left two bits and combined with the
high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction. The address of the instruction after the delay slot is placed in
the link register, r31.

Operation:

Exceptions:

None

JAL Jump And Link

31 2526

JAL

6

0

target

26
0 0 0 0 1 1

JAL

GPR[31] ← PC + 8
32 T: temp ← target

T+1: PC ← PC 31...28 || temp || 02

GPR[31] ← PC + 8
64 T: temp ← target

T+1: PC ← PC 63...28 || temp || 02

MIPS R4000 Microprocessor User's Manual A-79

CPU Instruction Set Details

Format:

JALR rs
JALR rd, rs

Description:

The program unconditionally jumps to the address contained in general
register rs, with a delay of one instruction. The address of the instruction
after the delay slot is placed in general register rd. The default value of rd,
if omitted in the assembly language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an instruction
does not have the same effect when re-executed. However, an attempt to
execute this instruction is not trapped, and the result of executing such an
instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register
instruction must specify a target register (rs) whose two low-order bits are
zero. If these low-order bits are not zero, an address exception will occur
when the jump target instruction is subsequently fetched.

Operation:

Exceptions:

None

JALR Jump And Link Register

31 2526 2021 1516

SPECIAL rs 0

6 5 5

rd 0 JALR

5 5 6

11 10 6 5 0

0 0 1 0 0 10 0 0 0 00 0 0 0 00 0 0 0 0 0

JALR

32, 64 T: temp ← GPR [rs]
GPR[rd] ← PC + 8

T+1: PC ← temp

Appendix A

A-80 MIPS R4000 Microprocessor User's Manual

Format:

JR rs

Description:

The program unconditionally jumps to the address contained in general
register rs, with a delay of one instruction.

Since instructions must be word-aligned, a Jump Register instruction
must specify a target register (rs) whose two low-order bits are zero. If
these low-order bits are not zero, an address exception will occur when the
jump target instruction is subsequently fetched.

Operation:

Exceptions:

None

JRJump Register

21 2031 2526

SPECIAL

6

0

JRrs 0

6 5

5 15 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

JR

32, 64 T: temp ← GPR[rs]

T+1: PC ← temp

MIPS R4000 Microprocessor User's Manual A-81

CPU Instruction Set Details

Format:

LB rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the byte at the
memory location specified by the effective address are sign-extended and
loaded into general register rt.

Operation:

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LB Load Byte

31 2526 2021 1516 0

LB base rt offset

6 5 5 16
1 0 0 0 0 0

LB

T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor BigEndianCPU3

GPR[rt] ← (mem7+8*byte)24 || mem7+8*byte...8*byte

pAddr ← pAddrPSIZE – 1 ... 3 || (pAddr2...0 xor ReverseEndian3)

T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor BigEndianCPU3

GPR[rt] ← (mem7+8*byte)56 || mem7+8*byte...8*byte

pAddr ← pAddrPSIZE – 1 ... 3 || (pAddr2...0 xor ReverseEndian3)

32

64

Appendix A

A-82 MIPS R4000 Microprocessor User's Manual

Format:

LBU rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the byte at the
memory location specified by the effective address are zero-extended and
loaded into general register rt.

Operation:

Exceptions:

TLB refill exception TLB invalid exception
Bus error exception Address error exception

LBULoad Byte Unsigned

31 2526 2021 1516 0

LBU base rt offset

6 5 5 16
1 0 0 1 0 0

LBU

T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1 ...3 || (pAddr2...0 xor ReverseEndian3)
mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor BigEndianCPU3

GPR[rt] ← 024 || mem7+8* byte...8* byte

T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor BigEndianCPU3

GPR[rt] ← 056 || mem7+8* byte...8* byte

32

64

MIPS R4000 Microprocessor User's Manual A-83

CPU Instruction Set Details

Format:

LD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the 64-bit
doubleword at the memory location specified by the effective address are
loaded into general register rt.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit user mode

R4000 in 32-bit supervisor mode)

LDLoad Doubleword

31 2526 2021 1516 0

LD base rt offset

6 5 5 16
1 1 0 1 1 1

LD

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

GPR[rt] ← mem

Appendix A

A-84 MIPS R4000 Microprocessor User's Manual

Format:

LDCz rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The processor reads a doubleword
from the addressed memory location and makes the data available to
coprocessor unit z. The manner in which each coprocessor uses the data
is defined by the individual coprocessor specifications.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

This instruction is not valid for use with CP0.

This instruction is undefined when the least-significant bit of the
rt field is non-zero.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

LDCz Load Doubleword To Coprocessor

31 2526 2021 1516 0

LDCz base rt offset

6 5 5 16
1 1 0 1 x x*

LDCz

MIPS R4000 Microprocessor User's Manual A-85

CPU Instruction Set Details

Operation:

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

(continued)LDCz Load Doubleword To Coprocessor LDCz

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COPzLD (rt, mem)

COPzLD (rt, mem)

LDCz
1 0 1 0 11

31 30 29 28 27 26Bit # 0

LDC1

1 0 1 1 01

31 30 29 28 27 26Bit # 0

LDC2

Coprocessor Unit NumberOpcode

Appendix A

A-86 MIPS R4000 Microprocessor User's Manual

Format:

LDL rt, offset(base)

Description:

This instruction can be used in combination with the LDR instruction to
load a register with eight consecutive bytes from memory, when the bytes
cross a doubleword boundary. LDL loads the left portion of the register
with the appropriate part of the high-order doubleword; LDR loads the
right portion of the register with the appropriate part of the low-order
doubleword.

The LDL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the doubleword in memory which
contains the specified starting byte. From one to eight bytes will be
loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte
into the high-order (left-most) byte of the register; then it loads bytes from
memory into the register until it reaches the low-order byte of the
doubleword in memory. The least-significant (right-most) byte(s) of the
register will not be changed.

LDL Load Doubleword Left

31 2526 2021 1516 0

LDL base rt offset

6 5 5 16
0 1 1 0 1 0

LDL

address 0
address 8

memory
register

LDL $24,3($0)

$24

(big-endian)

before

after

10 2 3 4 5 6 7
98 10 11 12 13 14 15

A B C D E F G H

$243 4 5 6 7 F G H

MIPS R4000 Microprocessor User's Manual A-87

CPU Instruction Set Details

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LDL (or LDR)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

(continued)LDL Load Doubleword Left LDL

endif

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)

pAddr ← pAddrPSIZE–1...3 || 03

GPR[rt] ← mem7+8*byte...0 || GPR[rt]55–8*byte...0

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)

if BigEndianMem = 0 then

byte ← vAddr2...0 xor BigEndianCPU3

Appendix A

A-88 MIPS R4000 Microprocessor User's Manual

Given a doubleword in a register and a doubleword in memory, the
operation of LDL is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

(continued)LDL Load Doubleword Left LDL

LDL

A C DBRegister

I K LJMemory

E G HF

M O PN

0 P B C D E F G H 0 0 7 I J K L M N O P 7 0 0
1 O P C D E F G H 1 0 6 J K L M N O P H 6 0 1
2 N O P D E F G H 2 0 5 K L M N O P G H 5 0 2
3 M N O P E F G P 3 0 4 L M N O P F G H 4 0 3
4 L M N O P F G H 4 0 3 M N O P E F G H 3 0 4
5 K L M N O P G H 5 0 2 N O P D E F G H 2 0 5
6 J K L M N O P H 6 0 1 O P C D E F G H 1 0 6
7 I J K L M N O P 7 0 0 P B C D E F G H 0 0 7

BigEndianCPU = 0

vAddr 2..0 destination destinationtype type offsetoffset

BigEndianCPU = 1

LEM BEM LEM BEM

MIPS R4000 Microprocessor User's Manual A-89

CPU Instruction Set Details

Format:

LDR rt, offset(base)

Description:

This instruction can be used in combination with the LDL instruction to
load a register with eight consecutive bytes from memory, when the bytes
cross a doubleword boundary. LDR loads the right portion of the register
with the appropriate part of the low-order doubleword; LDL loads the left
portion of the register with the appropriate part of the high-order
doubleword.

The LDR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the doubleword in memory which
contains the specified starting byte. From one to eight bytes will be
loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte
into the low-order (right-most) byte of the register; then it loads bytes from
memory into the register until it reaches the high-order byte of the
doubleword in memory. The most significant (left-most) byte(s) of the
register will not be changed.

LDRLoad Doubleword Right

31 2526 2021 1516 0

LDR base rt offset

6 5 5 16
0 1 1 0 1 1

LDR

A

LDR $24,4($0)

after

address 0
address 8

register

$24

(big-endian)

before10 2 3 4 5 6 7
98 10 11 12 13 14 15

B C D E F G H

A

register

$24B C 0 1 2 3 4

memory

Appendix A

A-90 MIPS R4000 Microprocessor User's Manual

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LDR (or LDL)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

(continued)
LDRLoad Doubleword RightLDR

endif

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)

pAddr ← pAddr31...3 || 03

GPR[rt] ← GPR[rt]63...64-8*byte || mem63...8*byte

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)

if BigEndianMem = 1 then

byte ← vAddr2...0 xor BigEndianCPU3

MIPS R4000 Microprocessor User's Manual A-91

CPU Instruction Set Details

Given a doubleword in a register and a doubleword in memory, the
operation of LDR is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

(continued) LDRLoad Doubleword RightLDR

LDR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O P 7 0 0 A B C D E F G I 0 7 0
1 A I J K L M N O 6 1 0 A B C D E F I J 1 6 0
2 A B I J K L M N 5 2 0 A B C D E I J K 2 5 0
3 A B C I J K L M 4 3 0 A B C D I J K L 3 4 0
4 A B C D I J K L 3 4 0 A B C I J K L M 4 3 0
5 A B C D E I J K 2 5 0 A B I J K L M N 5 2 0
6 A B C D E F I J 1 6 0 A I J K L M N O 6 1 0
7 A B C D E F G I 0 7 0 I J K L M N O P 7 0 0

BigEndianCPU = 0

vAddr 2..0 destination destinationtype type offsetoffset

BigEndianCPU = 1

LEM BEM LEM BEM

Appendix A

A-92 MIPS R4000 Microprocessor User's Manual

Format:

LH rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the halfword at the
memory location specified by the effective address are sign-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address
error exception occurs.

Operation:

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LH Load Halfword

31 2526 2021 1516 0

LH base rt offset

6 5 5 16
1 0 0 0 0 1

LH

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
GPR[rt] ← (mem15+8*byte)16 || mem15+8*byte...8* byte

pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian || 0))
mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
GPR[rt] ← (mem15+8*byte)48 || mem15+8*byte...8* byte

pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian || 0))
mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual A-93

CPU Instruction Set Details

Format:

LHU rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the halfword at the
memory location specified by the effective address are zero-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address
error exception occurs.

Operation:

Exceptions:

TLB refill exception TLB invalid exception
Bus Error exception Address error exception

LHULoad Halfword Unsigned

31 2526 2021 1516 0

LHU base rt offset

6 5 5 16
1 0 0 1 0 1

LHU

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
GPR[rt] ← 016 || mem15+8*byte...8*byte

pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
GPR[rt] ← 048 || mem15+8*byte...8*byte

pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

Appendix A

A-94 MIPS R4000 Microprocessor User's Manual

Format:

LL rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general
register rt. In 64-bit mode, the loaded word is sign-extended.

The processor begins checking the accessed word for modification by
other processor and devices.

Load Linked and Store Conditional can be used to atomically update
memory locations as shown:

This atomically increments the word addressed by T0. Changing the ADD
to an OR changes this to an atomic bit set. This instruction is available in
User mode, and it is not necessary for CP0 to be enabled.

The operation of LL is undefined if the addressed location is uncached
and, for synchronization between multiple processors, the operation of LL
is undefined if the addressed location is noncoherent. A cache miss that
occurs between LL and SC may cause SC to fail, so no load or store
operation should occur between LL and SC, otherwise the SC may never
be successful. Exceptions also cause SC to fail, so persistent exceptions
must be avoided. If either of the two least-significant bits of the effective
address are non-zero, an address error exception takes place.

LL Load Linked

31 2526 2021 1516 0

LL base rt offset

6 5 5 16
1 1 0 0 0 0

LL

L1:
LL T1, (T0)
ADD T2, T1, 1
SC T2, (T0)
BEQ T2, 0, L1
NOP

MIPS R4000 Microprocessor User's Manual A-95

CPU Instruction Set Details

Operation:

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

(continued)LL Load Linked LL

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← mem31+8*byte...8*byte
LLbit ← 1

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← (mem31+8*byte)32 || mem31+8*byte...8*byte
LLbit ← 1

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))

byte ← vAddr2...0 xor (BigEndianCPU || 02)

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))

byte ← vAddr2...0 xor (BigEndianCPU || 02)

Appendix A

A-96 MIPS R4000 Microprocessor User's Manual

Format:

LLD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the doubleword at
the memory location specified by the effective address are loaded into
general register rt.

The processor begins checking the accessed word for modification by
other processor and devices.

Load Linked Doubleword and Store Conditional Doubleword can be used
to atomically update memory locations:

This atomically increments the word addressed by T0. Changing the ADD
to an OR changes this to an atomic bit set.

LLD Load Linked Doubleword

31 2526 2021 1516 0

LLD base rt offset

6 5 5 16
1 1 0 1 0 0

LLD

L1:
LLD T1, (T0)
ADD T2, T1, 1
SCD T2, (T0)
BEQ T2, 0, L1
NOP

MIPS R4000 Microprocessor User's Manual A-97

CPU Instruction Set Details

The operation of LLD is undefined if the addressed location is uncached
and, for synchronization between multiple processors, the operation of
LLD is undefined if the addressed location is noncoherent. A cache miss
that occurs between LLD and SCD may cause SCD to fail, so no load or
store operation should occur between LLD and SCD, otherwise the SCD
may never be successful. Exceptions also cause SCD to fail, so persistent
exceptions must be avoided.

This instruction is available in User mode, and it is not necessary for CP0
to be enabled.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

(continued)LLD Load Linked Doubleword LLD

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

GPR[rt] ← mem
LLbit ← 1

Appendix A

A-98 MIPS R4000 Microprocessor User's Manual

Format:

LUI rt, immediate

Description:

The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits of
zeros. The result is placed into general register rt. In 64-bit mode, the
loaded word is sign-extended.

Operation:

Exceptions:

None

LUI Load Upper Immediate

31 2526 2021 1516 0

LUI rt immediate

6 5 5 16
0 0 1 1 1 1

LUI

0
0 0 0 0 0

32 T: GPR[rt] ← immediate || 016

64 T: GPR[rt] ← (immediate15)32 || immediate || 016

MIPS R4000 Microprocessor User's Manual A-99

CPU Instruction Set Details

Format:

LW rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general
register rt. In 64-bit mode, the loaded word is sign-extended. If either of
the two least-significant bits of the effective address is non-zero, an
address error exception occurs.

Operation:

Exceptions:

TLB refill exception TLB invalid exception
Bus error exception Address error exception

LWLoad Word

31 2526 2021 1516 0

LW base rt offset

6 5 5 16
1 0 0 0 1 1

LW

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← mem31+8*byte...8*byte

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← (mem31+8*byte)32 || mem31+8*byte...8*byte

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))

byte ← vAddr2...0 xor (BigEndianCPU || 02)

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))

byte ← vAddr2...0 xor (BigEndianCPU || 02)

Appendix A

A-100 MIPS R4000 Microprocessor User's Manual

Format:

LWCz rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The processor reads a word from
the addressed memory location, and makes the data available to
coprocessor unit z.

The manner in which each coprocessor uses the data is defined by the
individual coprocessor specifications.

If either of the two least-significant bits of the effective address is non-zero,
an address error exception occurs.

This instruction is not valid for use with CP0.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

LWCz Load Word To Coprocessor

31 2526 2021 1516 0

LWCz base rt offset

6 5 5 16
1 1 0 0 x x*

LWCz

MIPS R4000 Microprocessor User's Manual A-101

CPU Instruction Set Details

Operation:

Exceptions:

TLB refill exception TLB invalid exception
Bus error exception Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

(continued)LWCz Load Word To Coprocessor LWCz

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
COPzLW (byte, rt, mem)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base}
(pAddr, uncached)← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
COPzLW (byte, rt, mem)

LWCz
1 0 0 0 11

31 30 29 28 27 26Bit # 0

LWC1

1 0 0 1 01

31 30 29 28 27 26Bit # 0

LWC2

Coprocessor Unit NumberOpcode

Appendix A

A-102 MIPS R4000 Microprocessor User's Manual

Format:

LWL rt, offset(base)

Description:

This instruction can be used in combination with the LWR instruction to
load a register with four consecutive bytes from memory, when the bytes
cross a word boundary. LWL loads the left portion of the register with the
appropriate part of the high-order word; LWR loads the right portion of
the register with the appropriate part of the low-order word.

The LWL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the word in memory which
contains the specified starting byte. From one to four bytes will be loaded,
depending on the starting byte specified. In 64-bit mode, the loaded word
is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte
into the high-order (left-most) byte of the register; then it loads bytes from
memory into the register until it reaches the low-order byte of the word in
memory. The least-significant (right-most) byte(s) of the register will not
be changed.

LWL Load Word Left

31 2526 2021 1516 0

LWL base rt offset

6 5 5 16
1 0 0 0 1 0

LWL

address 0
address 4

0 1 2 3
4 5 6 7

memory

A B C D

register

$24

(big-endian)

before

after 1 2 3 D $24

LWL $24,1($0)

MIPS R4000 Microprocessor User's Manual A-103

CPU Instruction Set Details

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LWL (or LWR)
instruction which also specifies register rt. No address exceptions due to
alignment are possible.

Operation:

(continued)LWL Load Word Left LWL

pAddr ← pAddrPSIZE–1...2 || 02

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

endif

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)

GPR[rt] ← (temp31)32 || temp

mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp ← mem32*word+8*byte+7...32*word || GPR[rt]23-8*byte...0

if BigEndianMem = 0 then

byte ← vAddr1...0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU

 if BigEndianMem = 0 then
pAddr ← pAddrPSIZE–1...2 || 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU

pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)

mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)
temp ← mem32*word+8*byte+7...32*word || GPR[rt]23-8*byte...0

GPR[rt] ← temp

Appendix A

A-104 MIPS R4000 Microprocessor User's Manual

Given a doubleword in a register and a doubleword in memory, the
operation of LWL is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory
S sign-extend of destination31

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LWL LWL(continued)
Load Word Left

LWL

A C DBRegister

I K LJMemory

E G HF

M O PN

0 S S S S P F G H 0 0 7 S S S S I J K L 3 4 0
1 S S S S O P G H 1 0 6 S S S S J K L H 2 4 1
2 S S S S N O P H 2 0 5 S S S S K L G H 1 4 2
3 S S S S M N O P 3 0 4 S S S S L F G H 0 4 3
4 S S S S L F G H 0 4 3 S S S S M N O P 3 0 4
5 S S S S K L G H 1 4 2 S S S S N O P H 2 0 5
6 S S S S J K L H 2 4 1 S S S S O P G H 1 0 6
7 S S S S I J K L 3 4 0 S S S S P F G H 0 0 7

BigEndianCPU = 0

vAddr 2..0 destination destinationtype type offsetoffset

BigEndianCPU = 1

LEM BEM LEM BEM

MIPS R4000 Microprocessor User's Manual A-105

CPU Instruction Set Details

Format:

LWR rt, offset(base)

Description:

This instruction can be used in combination with the LWL instruction to
load a register with four consecutive bytes from memory, when the bytes
cross a word boundary. LWR loads the right portion of the register with
the appropriate part of the low-order word; LWL loads the left portion of
the register with the appropriate part of the high-order word.

The LWR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the word in memory which
contains the specified starting byte. From one to four bytes will be loaded,
depending on the starting byte specified. In 64-bit mode, if bit 31 of the
destination register is loaded, then the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads that byte
into the low-order (right-most) byte of the register; then it loads bytes from
memory into the register until it reaches the high-order byte of the word
in memory. The most significant (left-most) byte(s) of the register will not
be changed.

LWRLoad Word Right

31 2526 2021 1516 0

LWR base rt offset

6 5 5 16
1 0 0 1 1 0

LWR

address 0
address 4

0 1 2 3
4 5 6 7

A B C D

register

LWR $24,4($0)

$24

memory
(big-endian)

before

after A B C 4

Appendix A

A-106 MIPS R4000 Microprocessor User's Manual

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LWR (or LWL)
instruction which also specifies register rt. No address exceptions due to
alignment are possible.

Operation:

(continued) LWRLoad Word RightLWR

pAddr ← pAddrPSIZE–31...3 || 03

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

endif

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)

pAddr ← pAddrPSIZE–31...3 || 03

GPR[rt] ← (temp31)32 || temp

mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)

if BigEndianMem = 1 then

byte ← vAddr1...0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU

temp ← GPR[rt]31...32-8*byte || mem31+32*word...32*word+8*byte

endif

pAddr ← pAddrPSIZE–1...3 || (pAddr2...0 xor ReverseEndian3)

GPR[rt] ← temp

mem ← LoadMemory (uncached, 0 || byte, pAddr, vAddr, DATA)

if BigEndianMem = 1 then

byte ← vAddr1...0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU

temp ← GPR[rt]31...32-8*byte || mem31+32*word...32*word+8*byte

MIPS R4000 Microprocessor User's Manual A-107

CPU Instruction Set Details

Given a word in a register and a word in memory, the operation of LWR
is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory
S sign-extend of destination31
X either unchanged or sign-extend of destination31

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LWRLWR (continued)
Load Word Right

LWR
A C DBRegister

I K LJMemory

E G HF

M O PN

0 S S S S M N O P 0 0 4 X X X X E F G I 0 7 0
1 X X X X E M N O 1 1 4 X X X X E F I J 1 6 0
2 X X X X E F M N 2 2 4 X X X X E I J K 2 5 0
3 X X X X E F G M 3 3 4 S S S S I J K L 3 4 0
4 S S S S I J K L 0 4 0 X X X X E F G M 0 3 4
5 X X X X E I J K 1 5 0 X X X X E F M N 1 2 4
6 X X X X E F I J 2 6 0 X X X X E M N O 2 1 4
7 X X X X E F G I 3 7 0 S S S S M N O P 3 0 4

BigEndianCPU = 0

vAddr 2..0 destination destinationtype type offsetoffset

BigEndianCPU = 1

LEM BEM LEM BEM

Appendix A

A-108 MIPS R4000 Microprocessor User's Manual

Format:

LWU rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general
register rt. The loaded word is zero-extended.

If either of the two least-significant bits of the effective address is non-zero,
an address error exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

TLB refill exception
TLB invalid exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

LWULoad Word Unsigned

31 2526 2021 1516 0

LWU base rt offset

6 5 5 16
1 0 0 1 1 1

LWU

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

GPR[rt] ← 032 || mem31+8*byte...8*byte

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))

byte ← vAddr2...0 xor (BigEndianCPU || 02)

MIPS R4000 Microprocessor User's Manual A-109

CPU Instruction Set Details

Format:

MFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general
register rt.

Operation:

Exceptions:

Coprocessor unusable exception

MFC0 Move From

rd

11 10

5

31 2526 2021 1516 0

COP0 MF rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MFC0

32 T: data ← CPR[0,rd]

T+1: GPR[rt] ← data

64 T: data ← CPR[0,rd]

T+1: GPR[rt] ← (data31)32 || data31...0

Appendix A

A-110 MIPS R4000 Microprocessor User's Manual

Format:

MFCz rt, rd

Description:

The contents of coprocessor register rd of coprocessor z are loaded into
general register rt.

Operation:

Exceptions:

Coprocessor unusable exception

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

MFCz

11

Move From Coprocessor

31 2526 2021 1516

COPz MF rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MFCz

32 T: data ← CPR[z,rd]

T+1: GPR[rt] ← data

64 T: if rd0 = 0 then

data ← CPR[z,rd4...1 || 0]31...0

else

data ← CPR[z,rd4...1 || 0]63...32

endif

T+1: GPR[rt] ← (data31)32 || data

MIPS R4000 Microprocessor User's Manual A-111

CPU Instruction Set Details

Opcode Bit Encoding:

(continued)MFCz MFCzMove From Coprocessor

MFCz

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

MFC1 0 0 0 00

24 23 22 21

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

MFC2 0 0 0 00

24 23 22 21

Coprocessor Suboperation

0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

MFC0 0 0 0 00

24 23 22 21

Coprocessor Unit Number

Opcode

Appendix A

A-112 MIPS R4000 Microprocessor User's Manual

Format:

MFHI rd

Description:

The contents of special register HI are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two
instructions which follow a MFHI instruction may not be any of the
instructions which modify the HI register: MULT, MULTU, DIV, DIVU,
MTHI, DMULT, DMULTU, DDIV, DDIVU.

Operation:

Exceptions:

None

MFHI

0

Move From HI

31 2526 1516 0

rd

6 10 5

6 5

6

SPECIAL MFHI0

5

11 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

MFHI

32, 64 T: GPR[rd] ← HI

MIPS R4000 Microprocessor User's Manual A-113

CPU Instruction Set Details

Format:

MFLO rd

Description:

The contents of special register LO are loaded into general register rd.

To ensure proper operation in the event of interruptions, the two
instructions which follow a MFLO instruction may not be any of the
instructions which modify the LO register: MULT, MULTU, DIV, DIVU,
MTLO, DMULT, DMULTU, DDIV, DDIVU.

Operation:

Exceptions:

None

MFLOMove From Lo

0

31 2526 1516 0

rd

6 10 5

6 5

6

SPECIAL MFLO0

5

11 10

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0

MFLO

32, 64 T: GPR[rd] ← LO

Appendix A

A-114 MIPS R4000 Microprocessor User's Manual

Format:

MTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd
of CP0.

Because the state of the virtual address translation system may be altered
by this instruction, the operation of load instructions, store instructions,
and TLB operations immediately prior to and after this instruction are
undefined.

Operation:

Exceptions:

Coprocessor unusable exception

MTC0 Move To

rd

11 10

5

31 2526 2021 1516 0

COP0 MT rt 0

6 5 5 11

System Control Coprocessor

0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 00

MTC0

32, 64 T: data ← GPR[rt]
T+1: CPR[0,rd] ← data

MIPS R4000 Microprocessor User's Manual A-115

CPU Instruction Set Details

Format:

MTCz rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd
of coprocessor z.

Operation:

Exceptions:

Coprocessor unusable exception

*Opcode Bit Encoding:

MTCz

11

Move To Coprocessor
31 2526 2021 1516

COPz MT rt

6 5 5

rd 0

5

11 10 0

0 1 0 0 x x* 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

MTCz

32 T: data ← GPR[rt]
T+1: CPR[z,rd] ← data

64 T: data ← GPR[rt]31...0
T+1: if rd0 = 0

CPR[z,rd4...1 || 0] ← CPR[z, rd4...1 || 0]63...32 || data
else

CPR[z,rd4...1 || 0] ← data || CPR[z,rd4...1 || 0]31...0
endif

MTCz

0 0 0 0 11

31 30 29 28 27 26Bit # 25 0

C0P1 0 1 0 00

24 23 22 21

0 0 0 1 01

31 30 29 28 27 26Bit # 25 0

C0P2 0 1 0 00

24 23 22 21

Coprocessor Suboperation

0 0 0 0 01

31 30 29 28 27 26Bit # 25 0

C0P0 0 1 0 00

24 23 22 21

Coprocessor Unit NumberOpcode

Appendix A

A-116 MIPS R4000 Microprocessor User's Manual

Format:

MTHI rs

Description:

The contents of general register rs are loaded into special register HI.

If a MTHI operation is executed following a MULT, MULTU, DIV, or
DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI
instructions, the contents of special register LO are undefined.

Operation:

Exceptions:

None

rs

MTHI Move To HI

21 2031 2526

SPECIAL

6

0

MTHI0

6 5

5 15 6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1

MTHI

32,64 T–2: HI ← undefined

T–1: HI ← undefined

T: HI ← GPR[rs]

MIPS R4000 Microprocessor User's Manual A-117

CPU Instruction Set Details

Format:

MTLO rs

Description:

The contents of general register rs are loaded into special register LO.

If a MTLO operation is executed following a MULT, MULTU, DIV, or
DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI
instructions, the contents of special register HI are undefined.

Operation:

Exceptions:

None

rs

MTLOMove To LO

21 2031 2526

SPECIAL

6

0

MTLO0

6 5

5 15 6
0 1 0 0 1 1

MTLO

32,64 T–2: LO ← undefined

T–1: LO ← undefined

T: LO ← GPR[rs]

Appendix A

A-118 MIPS R4000 Microprocessor User's Manual

Format:

MULT rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both
operands as 32-bit 2’s complement values. No integer overflow exception
occurs under any circumstances. In 64-bit mode, the operands must be
valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the double result is
loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two other instructions.

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 MULT
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

MULT Multiply MULT

MIPS R4000 Microprocessor User's Manual A-119

CPU Instruction Set Details

Operation:

Exceptions:

None

MULT Multiply MULT(continued)

32 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← GPR[rs] * GPR[rt]
LO ← t31...0
H I ← t63...32

64 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← GPR[rs]31...0 * GPR[rt]31...0
LO ← (t31)32 || t31...0
HI ← (t63)32 || t63...32

Appendix A

A-120 MIPS R4000 Microprocessor User's Manual

Format:

MULTU rs, rt

Description:

The contents of general register rs and the contents of general register rt
are multiplied, treating both operands as unsigned values. No overflow
exception occurs under any circumstances. In 64-bit mode, the operands
must be valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the double result is
loaded into special register LO, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of
these instructions are undefined. Correct operation requires separating
reads of HI or LO from writes by a minimum of two instructions.

MULTUMultiply Unsigned

31 2526 2021 1516 0

rs rt

6 5 5

6 5

10 6

SPECIAL 0 MULTU
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1

MULTU

MIPS R4000 Microprocessor User's Manual A-121

CPU Instruction Set Details

Operation:

Exceptions:

None

MULTUMultiply UnsignedMULTU (continued)

32 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← (0 || GPR[rs]) * (0 || GPR[rt])
LO ← t31...0
HI ← t63...32

64 T–2: LO ← undefined
HI ← undefined

T–1: LO ← undefined
HI ← undefined

T: t ← (0 || GPR[rs]31...0) * (0 || GPR[rt]31...0)
LO ← (t31)32 || t31...0
HI ← (t63)32 || t63...32

Appendix A

A-122 MIPS R4000 Microprocessor User's Manual

Format:

NOR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical NOR operation. The result is placed
into general register rd.

Operation:

Exceptions:

None

NOR Nor

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 NOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

NOR

32, 64 T: GPR[rd] ← GPR[rs] nor GPR[rt]

MIPS R4000 Microprocessor User's Manual A-123

CPU Instruction Set Details

Format:

OR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical OR operation. The result is placed
into general register rd.

Operation:

Exceptions:

None

OROr

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 OR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

OR

32, 64 T: GPR[rd] ← GPR[rs] or GPR[rt]

Appendix A

A-124 MIPS R4000 Microprocessor User's Manual

Format:

ORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of
general register rs in a bit-wise logical OR operation. The result is placed
into general register rt.

Operation:

Exceptions:

None

31 2526 2021 1516 0

ORI rs rt immediate

6 5 5 16
0 0 1 1 0 1

ORIOr ImmediateORI

32 T: GPR[rt] ← GPR[rs]31...16 || (immediate or GPR[rs]15...0)

64 T: GPR[rt] ← GPR[rs]63...16 || (immediate or GPR[rs]15...0)

MIPS R4000 Microprocessor User's Manual A-125

CPU Instruction Set Details

Format:

SB rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The least-significant byte of register
rt is stored at the effective address.

Operation:

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SBStore Byte

31 2526 2021 1516 0

SB base rt offset

6 5 5 16
1 0 1 0 0 0

SB

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

byte ← vAddr2...0 xor BigEndianCPU3

data ← GPR[rt]63–8*byte...0 || 08*byte

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor ReverseEndian3)

byte ← vAddr2...0 xor BigEndianCPU3

data ← GPR[rt]63–8*byte...0 || 08*byte

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor ReverseEndian3)

Appendix A

A-126 MIPS R4000 Microprocessor User's Manual

Format:

SC rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are conditionally stored at the memory location specified by the effective
address.

If any other processor or device has modified the physical address since
the time of the previous Load Linked instruction, or if an ERET instruction
occurs between the Load Linked instruction and this store instruction, the
store fails and is inhibited from taking place.

The success or failure of the store operation (as defined above) is indicated
by the contents of general register rt after execution of the instruction. A
successful store sets the contents of general register rt to 1; an unsuccessful
store sets it to 0.

The operation of Store Conditional is undefined when the address is
different from the address used in the last Load Linked.

This instruction is available in User mode; it is not necessary for CP0 to be
enabled.

If either of the two least-significant bits of the effective address is non-zero,
an address error exception takes place.

If this instruction should both fail and take an exception, the exception
takes precedence.

SC Store Conditional

31 2526 2021 1516 0

SC base rt offset

6 5 5 16
1 1 1 0 0 0

SC

MIPS R4000 Microprocessor User's Manual A-127

CPU Instruction Set Details

Operation:

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

(continued)SC Store Conditional SC

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
data ← GPR[rt]63-8*byte...0 || 08*byte

if LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

endif
GPR[rt] ← 031 || LLbit

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
data ← GPR[rt]63-8*byte...0 || 08*byte

if LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

endif
GPR[rt] ← 063 || LLbit

Appendix A

A-128 MIPS R4000 Microprocessor User's Manual

Format:

SCD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are conditionally stored at the memory location specified by the effective
address.

If any other processor or device has modified the physical address since
the time of the previous Load Linked Doubleword instruction, or if an
ERET instruction occurs between the Load Linked Doubleword
instruction and this store instruction, the store fails and is inhibited from
taking place.

The success or failure of the store operation (as defined above) is indicated
by the contents of general register rt after execution of the instruction. A
successful store sets the contents of general register rt to 1; an unsuccessful
store sets it to 0.

The operation of Store Conditional Doubleword is undefined when the
address is different from the address used in the last Load Linked
Doubleword.

This instruction is available in User mode; it is not necessary for CP0 to be
enabled.

If either of the three least-significant bits of the effective address is non-
zero, an address error exception takes place.

SCD Store Conditional Doubleword

31 2526 2021 1516 0

SCD base rt offset

6 5 5 16
1 1 1 1 0 0

SCD

MIPS R4000 Microprocessor User's Manual A-129

CPU Instruction Set Details

If this instruction should both fail and take an exception, the exception
takes precedence.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

(continued)SCD Store Conditi onal Doublewor d SCD

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← GPR[rt]
if LLbit then
 StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] ← 063 || LLbit

Appendix A

A-130 MIPS R4000 Microprocessor User's Manual

Format:

SD rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are stored at the memory location specified by the effective address.

If either of the three least-significant bits of the effective address are non-
zero, an address error exception occurs.

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit user mode

 R4000 in 32-bit supervisor mode)

SDStore Doubleword

31 2526 2021 1516 0

SD base rt offset

6 5 5 16
1 1 1 1 1 1

SD

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

data ← GPR[rt]
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual A-131

CPU Instruction Set Details

Format:

SDCz rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. Coprocessor unit z sources a
doubleword, which the processor writes to the addressed memory
location. The data to be stored is defined by individual coprocessor
specifications.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

This instruction is not valid for use with CP0.

This instruction is undefined when the least-significant bit of the rt field is
non-zero.

Operation:

*See the table, “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

SDCz Store Doubleword

31 2526 2021 1516 0

SDCz base rt offset

6 5 5 16
1 1 1 1 x x*

SDCzFrom Coprocessor

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← COPzSD(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← COPzSD(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Appendix A

A-132 MIPS R4000 Microprocessor User's Manual

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

(continued)
SDCz Store Doubleword SDCzFrom Coprocessor

SDCz
1 1 1 0 11

31 30 29 28 27 26Bit # 0

SDC1

1 1 1 1 01

31 30 29 28 27 26Bit # 0

SDC2

Coprocessor Unit NumberSD opcode

MIPS R4000 Microprocessor User's Manual A-133

CPU Instruction Set Details

Format:

SDL rt, offset(base)

Description:

This instruction can be used with the SDR instruction to store the contents
of a register into eight consecutive bytes of memory, when the bytes cross
a doubleword boundary. SDL stores the left portion of the register into the
appropriate part of the high-order doubleword of memory; SDR stores the
right portion of the register into the appropriate part of the low-order
doubleword.

The SDL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. It alters only the word in memory which contains that byte.
From one to four bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the most-significant byte of the register and
copies it to the specified byte in memory; then it copies bytes from register
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

SDL Store Doubleword Left

31 2526 2021 1516 0

SDL base rt offset

6 5 5 16
1 0 1 1 0 0

SDL

14

SDL $24,1($0)

after

address 0
address 8

memory
register

$24

(big-endian)

before10 2 3 4 5 6 7
98 10 11 12 13 14 15

A B C D E F G H

address 0
address 8

0
98 10 11 12 13 15

C D E F G HB

Appendix A

A-134 MIPS R4000 Microprocessor User's Manual

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

SDL Store Doublewor d Left SDL(continued)

endif

If BigEndianMem = 0 then

64 T: vAddr ← ((offset15)48 || offset 15...0) + GPR[base]

data ← 056–8*byte || GPR[rt]63...56–8*byte

pAddr ← pAddr31...3 || 03

Storememory (uncached, byte, data, pAddr, vAddr, DATA)

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE –1...3 || (pAddr2...0 xor ReverseEndian3)

byte ← vAddr2...0 xor BigEndianCPU3

MIPS R4000 Microprocessor User's Manual A-135

CPU Instruction Set Details

Given a doubleword in a register and a doubleword in memory, the
operation of SDL is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

SDL Store Doubleword Left SDL(continued)

SDL

A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O A 0 0 7 A B C D E F G H 7 0 0
1 I J K L M N A B 1 0 6 I A B C D E F G 6 0 1
2 I J K L M A B C 2 0 5 I J A B C D E F 5 0 2
3 I J K L A B C D 3 0 4 I J K A B C D E 4 0 3
4 I J K A B C D E 4 0 3 I J K L A B C D 3 0 4
5 I J A B C D E F 5 0 2 I J K L M A B C 2 0 5
6 I A B C D E F G 6 0 1 I J K L M N A B 1 0 6
7 A B C D E F G H 7 0 0 I J K L M N O A 0 0 7

offset

BigEndianCPU = 1BigEndianCPU = 0
offset

LEM BEM LEM BEMvAddr 2..0 typedestination destination type

Appendix A

A-136 MIPS R4000 Microprocessor User's Manual

Format:

SDR rt, offset(base)

Description:

This instruction can be used with the SDL instruction to store the contents
of a register into eight consecutive bytes of memory, when the bytes cross
a boundary between two doublewords. SDR stores the right portion of the
register into the appropriate part of the low-order doubleword; SDL stores
the left portion of the register into the appropriate part of the low-order
doubleword of memory.

The SDR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. It alters only the word in memory which contains that byte.
From one to eight bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the least-significant (rightmost) byte of the
register and copies it to the specified byte in memory; then it copies bytes
from register to memory until it reaches the high-order byte of the word in
memory. No address exceptions due to alignment are possible.

31 2526 2021 1516 0

SDR base rt offset

6 5 5 16
1 0 1 1 0 1

SDR Store Doubleword Right SDR

SDR $24,4($0)

after

Aaddress 0
address 8

register

$24

(big-endian)

before B C D E F G H

memory

address 0
address 8

(big-endian)
memory

10 2 3 4 5 6 7
98 10 11 12 13 14 15

4 5 6 7
98 10 11 12 13 14 15

E F G H

MIPS R4000 Microprocessor User's Manual A-137

CPU Instruction Set Details

This operation is only defined for the R4000 operating in 64-bit mode.
Execution of this instruction in 32-bit mode causes a reserved instruction
exception.

Operation:

SDR Store Doublewor d Right SDR(continued)

endif

If BigEndianMem = 0 then

64 T: vAddr ← ((offset15)48 || offset 15...0) + GPR[base]

data ← GPR[rt]63–8*byte || 08*byte

pAddr ← pAddrPSIZE – 31...3 || 03

StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr, DATA)

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)

byte ← vAddr1...0 xor BigEndianCPU3

Appendix A

A-138 MIPS R4000 Microprocessor User's Manual

Given a doubleword in a register and a doubleword in memory, the
operation of SDR is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Reserved instruction exception (R4000 in 32-bit mode)

SDR Store Doubleword Right SDR(continued)

SDR

A C DBRegister

I K LJMemory

E G HF

M O PN

0 A B C D E F G H 7 0 0 H J K L M N O P 0 7 0
1 B C D E F G H P 6 1 0 G H K L M N O P 1 6 0
2 C D E F G H O P 5 2 0 F G H L M N O P 2 5 0
3 D E F G H N O P 4 3 0 E F G H M N O P 3 4 0
4 E F G H M N O P 3 4 0 D E F G H N O P 4 3 0
5 F G H L M N O P 2 5 0 C D E F G H O P 5 2 0
6 G H K L M N O P 1 6 0 B C D E F G H P 6 1 0
7 H J K L M N O P 0 7 0 A B C D E F G H 7 0 0

offset

BigEndianCPU = 1BigEndianCPU = 0
offset

LEM BEM LEM BEM
vAddr 2..0 typedestination destination type

MIPS R4000 Microprocessor User's Manual A-139

CPU Instruction Set Details

Format:

SH rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address. The least-significant
halfword of register rt is stored at the effective address. If the least-
significant bit of the effective address is non-zero, an address error
exception occurs.

Operation:

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SH Store Halfword

31 2526 2021 1516 0

SH base rt offset

6 5 5 16
1 0 1 0 0 1

SH

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
data ← GPR[rt]63–8*byte...0 || 08*byte

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

byte ← vAddr2...0 xor (BigEndianCPU2 || 0)
data ← GPR[rt]63–8*byte...0 || 08*byte

pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian2 || 0))

Appendix A

A-140 MIPS R4000 Microprocessor User's Manual

Format:

SLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros
into the low-order bits.

The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign extended when placed in the
destination register. It is sign extended for all shift amounts, including
zero; SLL with a zero shift amount truncates a 64-bit value to 32 bits and
then sign extends this 32-bit value. SLL, unlike nearly all other word
operations, does not require an operand to be a properly sign-extended
word value to produce a valid sign-extended word result.

NOTE: SLL with a shift amount of zero may be treated as a NOP by
some assemblers, at some optimization levels. If using SLL with a
zero shift to truncate 64-bit values, check the assembler you are using.

Operation:

Exceptions:

None

SLLShift Left Logical

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa SLL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0

SLL

0
0 0 0 0 0

32 T: GPR[rd] ← GPR[rt]31– sa...0 || 0sa

64 T: s ← 0 || sa

temp ← GPR[rt]31-s...0 || 0s

GPR[rd] ← (temp31)32 || temp

MIPS R4000 Microprocessor User's Manual A-141

CPU Instruction Set Details

Format:

SLLV rd, rt, rs

Description:

The contents of general register rt are shifted left the number of bits
specified by the low-order five bits contained in general register rs,
inserting zeros into the low-order bits.

The result is placed in register rd.

In 64-bit mode, the 32-bit result is sign extended when placed in the
destination register. It is sign extended for all shift amounts, including
zero; SLLV with a zero shift amount truncates a 64-bit value to 32 bits and
then sign extends this 32-bit value. SLLV, unlike nearly all other word
operations, does not require an operand to be a properly sign-extended
word value to produce a valid sign-extended word result.

NOTE: SLLV with a shift amount of zero may be treated as a NOP by
some assemblers, at some optimization levels. If using SLLV with a
zero shift to truncate 64-bit values, check the assembler you are using.

Operation:

Exceptions:

None

SLLV Shift Left Logical Variable

31 2526 2021 1516

SPECIAL rt

6 5 5

rd 0 SLLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0

SLLV

rs

32 T: s ← GP[rs]4...0

GPR[rd]← GPR[rt](31–s)...0 || 0s

64 T: s ← 0 || GP[rs]4...0

temp ← GPR[rt](31-s)...0 || 0s

GPR[rd] ← (temp31)32 || temp

Appendix A

A-142 MIPS R4000 Microprocessor User's Manual

Format:

SLT rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of
general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the contents of general register
rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

Exceptions:

None

SLTSet On Less Than

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLT

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 1 0 1 00 0 0 0 0

SLT

32 T: if GPR[rs] < GPR[rt] then
GPR[rd] ← 031 || 1

else
GPR[rd] ← 032

endif

64 T: if GPR[rs] < GPR[rt] then
GPR[rd] ← 063 || 1

else
GPR[rd] ← 064

endif

MIPS R4000 Microprocessor User's Manual A-143

CPU Instruction Set Details

Format:

SLTI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of
general register rs. Considering both quantities as signed integers, if rs is
less than the sign-extended immediate, the result is set to one; otherwise
the result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

Exceptions:

None

SLTI Set On Less Than Immediate

31 2526 2021 1516 0

SLTI rs rt immediate

6 5 5 16
0 0 1 0 1 0

SLTI

32 T: if GPR[rs] < (immediate15)16 || immediate15...0 then

GPR[rd] ← 031 || 1

else

GPR[rd] ← 032

endif

64 T: if GPR[rs] < (immediate15)48 || immediate15...0 then

GPR[rd] ← 063 || 1

else

GPR[rd] ← 064

endif

Appendix A

A-144 MIPS R4000 Microprocessor User's Manual

Format:

SLTIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of
general register rs. Considering both quantities as unsigned integers, if rs
is less than the sign-extended immediate, the result is set to one; otherwise
the result is set to zero.

The result is placed into general register rt.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

Exceptions:

None

SLTIUImmediate Unsigned
Set On Less Than

31 2526 2021 1516 0

SLTIU rs rt immediate

6 5 5 16
0 0 1 0 1 1

SLTIU

32 T: if (0 || GPR[rs]) < (immediate15)16 || immediate15...0 then

GPR[rd] ← 031 || 1

else

GPR[rd] ← 032

endif

64 T: if (0 || GPR[rs]) < (immediate15)48 || immediate15...0 then

GPR[rd] ← 063 || 1

else

GPR[rd] ← 064

endif

MIPS R4000 Microprocessor User's Manual A-145

CPU Instruction Set Details

Format:

SLTU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of
general register rs. Considering both quantities as unsigned integers, if the
contents of general register rs are less than the contents of general register
rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The
comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

Exceptions:

None

SLTU Set On Less Than Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SLTU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

SLTU

32 T: if (0 || GPR[rs]) < 0 || GPR[rt] then
GPR[rd] ← 031 || 1

else
GPR[rd] ← 032

endif

64 T: if (0 || GPR[rs]) < 0 || GPR[rt] then
GPR[rd] ← 063 || 1

else
GPR[rd] ← 064

endif

Appendix A

A-146 MIPS R4000 Microprocessor User's Manual

Format:

SRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-
extending the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

Exceptions:

None

SRAShift Right Arithmetic

31 2526 2021 1516

SPECIAL 0 rt

6 5 5

rd sa SRA

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

SRA

32 T: GPR[rd] ← (GPR[rt]31)sa || GPR[rt] 31...sa

64 T: s ← 0 || sa

temp ← (GPR[rt]31)s || GPR[rt] 31...s

GPR[rd] ← (temp31)32 || temp

MIPS R4000 Microprocessor User's Manual A-147

CPU Instruction Set Details

Format:

SRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits
specified by the low-order five bits of general register rs, sign-extending
the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

Exceptions:

None

SRAV Shift Right

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRAV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

SRAVArithmetic Variable

32 T: s ← GPR[rs]4...0

GPR[rd] ← (GPR[rt]31)s || GPR[rt]31...s

64 T: s ← GPR[rs]4...0

temp ← (GPR[rt]31)s || GPR[rt]31...s

GPR[rd] ← (temp31)32 || temp

Appendix A

A-148 MIPS R4000 Microprocessor User's Manual

Format:

SRL rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, inserting
zeros into the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

Exceptions:

None

SRLShift Right Logical

31 2526 2021 1516

SPECIAL rt

6 5 5

rd sa SRL

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 1 0

SRL

0
0 0 0 0 0

32 T: GPR[rd] ← 0 sa || GPR[rt]31...sa

64 T: s ← 0 || sa

temp ← 0s || GPR[rt]31...s

GPR[rd] ← (temp31)32 || temp

MIPS R4000 Microprocessor User's Manual A-149

CPU Instruction Set Details

Format:

SRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits
specified by the low-order five bits of general register rs, inserting zeros
into the high-order bits.

The result is placed in register rd.

In 64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

Exceptions:

None

SRLV Shift Right Logical Variable

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SRLV

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0

SRLV

32 T: s ← GPR[rs]4...0

GPR[rd] ← 0s || GPR[rt]31...s

64 T: s ← GPR[rs]4...0

temp ← 0s || GPR[rt]31...s

GPR[rd] ← (temp31)32 || temp

Appendix A

A-150 MIPS R4000 Microprocessor User's Manual

Format:

SUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of
general register rs to form a result. The result is placed into general
register rd. In 64-bit mode, the operands must be valid sign-extended, 32-
bit values.

The only difference between this instruction and the SUBU instruction is
that SUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 30 and
31 differ (2’s complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.

Operation:

Exceptions:

Integer overflow exception

SUB SUBSubtract

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUB

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0

32 T: GPR[rd] ← GPR[rs] – GPR[rt]

64 T: temp ← GPR[rs] - GPR[rt]

GPR[rd] ← (temp31)32 || temp31...0

MIPS R4000 Microprocessor User's Manual A-151

CPU Instruction Set Details

Format:

SUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of
general register rs to form a result.

The result is placed into general register rd.

In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUB instruction is
that SUBU never traps on overflow. No integer overflow exception occurs
under any circumstances.

Operation:

Exceptions:

None

SUBU Subtract Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 SUBU

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

SUBU

32 T: GPR[rd] ← GPR[rs] – GPR[rt]

64 T: temp ← GPR[rs] - GPR[rt]

GPR[rd] ← (temp31)32 || temp31...0

Appendix A

A-152 MIPS R4000 Microprocessor User's Manual

Format:

SW rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. The contents of general register rt
are stored at the memory location specified by the effective address.

If either of the two least-significant bits of the effective address are non-
zero, an address error exception occurs.

Operation:

Exceptions:

TLB refill exception TLB invalid exception
TLB modification exception Bus error exception
Address error exception

SWStore Word

31 2526 2021 1516 0

SW base rt offset

6 5 5 16
1 0 1 0 1 1

SW

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
data ← GPR[rt]63-8*byte || 08*byte

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
data ← GPR[rt]63-8*byte || 08*byte

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual A-153

CPU Instruction Set Details

Format:

SWCz rt, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form a virtual address. Coprocessor unit z sources a word,
which the processor writes to the addressed memory location.

The data to be stored is defined by individual coprocessor specifications.

This instruction is not valid for use with CP0.

If either of the two least-significant bits of the effective address is non-zero,
an address error exception occurs.

Operation:

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction
Opcode Bit Encoding” at the end of Appendix A.

SWCz Store Word From Coprocessor

31 2526 2021 1516 0

SWCz base rt offset

6 5 5 16
1 1 1 0 x x*

SWCz

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
data ← COPzSW (byte, rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
data ← COPzSW (byte,rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr DATA)

Appendix A

A-154 MIPS R4000 Microprocessor User's Manual

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

SWCz Store Word From Coprocessor SWCz(Continued)

SWCz
1 1 0 0 11

31 30 29 28 27 26Bit # 0

SWC1

1 1 0 1 01

31 30 29 28 27 26Bit # 0

SWC2

Coprocessor Unit NumberSW opcode

MIPS R4000 Microprocessor User's Manual A-155

CPU Instruction Set Details

Format:

SWL rt, offset(base)

Description:

This instruction can be used with the SWR instruction to store the contents
of a register into four consecutive bytes of memory, when the bytes cross
a word boundary. SWL stores the left portion of the register into the
appropriate part of the high-order word of memory; SWR stores the right
portion of the register into the appropriate part of the low-order word.

The SWL instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. It alters only the word in memory which contains that byte.
From one to four bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the most-significant byte of the register and
copies it to the specified byte in memory; then it copies bytes from register
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

SWL Store Word Left

31 2526 2021 1516 0

SWL base rt offset

6 5 5 16
1 0 1 0 1 0

SWL

address 0
address 4

0 1 2 3
4 5 6 7

A B C D

register

address 0
address 4

0
4 5 6 7

A B C

$24

memory
(big-endian)

before

after

SWL $24,1($0)

Appendix A

A-156 MIPS R4000 Microprocessor User's Manual

Operation:

SWL Store Word Left SWL(Continued)

32 T: vAddr ← ((offset15)16 || offset 15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddr31...2 || 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 || 024-8*byte || GPR[rt]31...24-8*byte

else
data ← 024-8*byte || GPR[rt]31...24-8*byte || 032

endif
Storememory (uncached, byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset 15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddr31...2 || 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 || 024-8*byte || GPR[rt]31...24-8*byte

else
data ← 024-8*byte || GPR[rt]31...24-8*byte || 032

endif
StoreMemory(uncached, byte, data, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual A-157

CPU Instruction Set Details

Given a doubleword in a register and a doubleword in memory, the
operation of SWL is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SWL Store Word Left SWL(Continued)

SWL

A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L M N O E 0 0 7 E F G H M N O P 3 4 0
1 I J K L M N E F 1 0 6 I E F G M N O P 2 4 1
2 I J K L M E F G 2 0 5 I J E F M N O P 1 4 2
3 I J K L E F G H 3 0 4 I J K E M N O P 0 4 3
4 I J K E M N O P 0 4 3 I J K L E F G H 3 0 4
5 I J E F M N O P 1 4 2 I J K L M E F G 2 0 5
6 I E F G M N O P 2 4 1 I J K L M N E F 1 0 6
7 E F G H M N O P 3 4 0 I J K L M N O E 0 0 7

offset

BigEndianCPU = 1BigEndianCPU = 0
offset

LEM BEM LEM BEM
vAddr 2..0 typedestination destination type

Appendix A

A-158 MIPS R4000 Microprocessor User's Manual

Format:

SWR rt, offset(base)

Description:

This instruction can be used with the SWL instruction to store the contents
of a register into four consecutive bytes of memory, when the bytes cross
a boundary between two words. SWR stores the right portion of the
register into the appropriate part of the low-order word; SWL stores the
left portion of the register into the appropriate part of the low-order word
of memory.

The SWR instruction adds its sign-extended 16-bit offset to the contents of
general register base to form a virtual address which may specify an
arbitrary byte. It alters only the word in memory which contains that byte.
From one to four bytes will be stored, depending on the starting byte
specified.

Conceptually, it starts at the least-significant (rightmost) byte of the
register and copies it to the specified byte in memory; then copies bytes
from register to memory until it reaches the high-order byte of the word in
memory.

No address exceptions due to alignment are possible.

31 2526 2021 1516 0

SWR base rt offset

6 5 5 16
1 0 1 1 1 0

SWR Store Word Right SWR

address 0
address 4

0 1 2 3
4 5 6 7

A B C D

register

address 0
address 4

0
D 5 6 7

1 2 3

$24

memory
(big-endian)

before

after

SWR $24,1($0)

MIPS R4000 Microprocessor User's Manual A-159

CPU Instruction Set Details

Operation:

SWR Store Word Right SWR(Continued)

32 T: vAddr ← ((offset15)16 || offset 15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddr31...2 || 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 || GPR[rt]31-8*byte...0 || 08*byte

else
data ← GPR[rt]31-8*byte...0 || 08*byte || 032

endif
Storememory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 || offset 15...0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE – 1...3 || (pAddr2...0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddr31...2 || 02

endif
byte ← vAddr1...0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 || GPR[rt]31-8*byte...0 || 08*byte

else
data ← GPR[rt]31-8*byte...0 || 08*byte || 032

endif
StoreMemory(uncached, WORD-byte, data, pAddr, vAddr, DATA)

Appendix A

A-160 MIPS R4000 Microprocessor User's Manual

Given a doubleword in a register and a doubleword in memory, the
operation of SWR is as follows:

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see Table 2-1) sent to memory
Offset pAddr2...0 sent to memory

Exceptions:

TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SWR Store Word Right SWR(Continued)

SWR

A C DBRegister

I K LJMemory

E G HF

M O PN

0 I J K L E F G H 3 0 4 H J K L M N O P 0 7 0
1 I J K L F G H P 2 1 4 G H K L M N O P 1 6 0
2 I J K L G H O P 1 2 4 F G H L M N O P 2 5 0
3 I J K L H N O P 0 3 4 E F G H M N O P 3 4 0
4 E F G H M N O P 3 4 0 I J K L H N O P 0 3 4
5 F G H L M N O P 2 5 0 I J K L G H O P 1 2 4
6 G H K L M N O P 1 6 0 I J K L F G H P 2 1 4
7 H J K L M N O P 0 7 0 I J K L E F G H 3 0 4

offset
BigEndianCPU = 1BigEndianCPU = 0

offset

LEM BEM LEM BEM
vAddr 2..0 typedestination destination type

MIPS R4000 Microprocessor User's Manual A-161

CPU Instruction Set Details

Format:

SYNC

Description:

The SYNC instruction ensures that any loads and stores fetched prior to the
present instruction are completed before any loads or stores after this
instruction are allowed to start. Use of the SYNC instruction to serialize
certain memory references may be required in a multiprocessor
environment for proper synchronization. For example:

The SYNC in processor A prevents DATA being written after FLAG,
which could cause processor B to read stale data. The SYNC in processor
B prevents DATA from being read before FLAG, which could likewise
result in reading stale data. For processors which only execute loads and
stores in order, with respect to shared memory, this instruction is a NOP.

LL and SC instructions implicitly perform a SYNC.

This instruction is allowed in User mode.

Operation:

Exceptions:

None

SYNC Synchronize

31 2526

SPECIAL

6 20

0 SYNC

6

6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

SYNC

Processor A Processor B

SW R1, DATA 1: LW R2, FLAG
LI R2, 1 BEQ R2, R0, 1B
SYNC NOP
SW R2, FLAG SYNC

LW R1, DATA

32, 64 T: SyncOperation()

Appendix A

A-162 MIPS R4000 Microprocessor User's Manual

Format:

SYSCALL

Description:

A system call exception occurs, immediately and unconditionally
transferring control to the exception handler.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:

System Call exception

System Call

31 2526

SPECIAL

6 20

Code SYSCALL

6

6 5 0

0 0 0 0 0 0 0 0 1 1 00

SYSCALL SYSCALL

32, 64 T: SystemCallException

MIPS R4000 Microprocessor User's Manual A-163

CPU Instruction Set Details

Format:

TEQ rs, rt

Description:

The contents of general register rt are compared to general register rs. If
the contents of general register rs are equal to the contents of general
register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:

Trap exception

Trap If Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TEQ

10 6

6 5 0

0 0 0 0 0 0 1 1 0 1 0 0

TEQTEQ

32, 64 T: if GPR[rs] = GPR[rt] then

TrapException

endif

Appendix A

A-164 MIPS R4000 Microprocessor User's Manual

Format:

TEQI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of
general register rs. If the contents of general register rs are equal to the
sign-extended immediate, a trap exception occurs.

Operation:

Exceptions:

Trap exception

TEQI Trap If Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTEQI

16

0

0 0 0 0 0 1 0 1 1 0 0

TEQI

32 T: if GPR[rs] = (immediate15)16 || immediate15...0 then

TrapException

endif

64 T: if GPR[rs] = (immediate15)48 || immediate15...0 then

TrapException

endif

MIPS R4000 Microprocessor User's Manual A-165

CPU Instruction Set Details

Format:

TGE rs, rt

Description:

The contents of general register rt are compared to the contents of general
register rs. Considering both quantities as signed integers, if the contents
of general register rs are greater than or equal to the contents of general
register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:

Trap exception

TGETrap If Greater Than Or Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TGE

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 0 0

TGE

32, 64 T: if GPR[rs] ≥ GPR[rt] then
TrapException

endif

Appendix A

A-166 MIPS R4000 Microprocessor User's Manual

Format:

TGEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of
general register rs. Considering both quantities as signed integers, if the
contents of general register rs are greater than or equal to the sign-
extended immediate, a trap exception occurs.

Operation:

Exceptions:

Trap exception

TGEI Trap If Greater Than Or Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTGEI

16

0

0 0 0 0 0 1 0 1 0 0 0

TGEI

32 T: if GPR[rs] ≥ (immediate15)16 || immediate15...0 then
TrapException

endif

64 T: if GPR[rs] ≥ (immediate15)48 || immediate15...0 then
TrapException

endif

MIPS R4000 Microprocessor User's Manual A-167

CPU Instruction Set Details

Format:

TGEIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of
general register rs. Considering both quantities as unsigned integers, if the
contents of general register rs are greater than or equal to the sign-
extended immediate, a trap exception occurs.

Operation:

Exceptions:

Trap exception

TGEIUTrap If Greater Than Or Equal

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTGEIU

16

0

Immediate Unsigned

0 0 0 0 0 1 0 1 0 0 1

TGEIU

32 T: if (0 || GPR[rs]) ≥ (0 || (immediate15)16 || immediate15...0) then
TrapException

endif

64 T: if (0 || GPR[rs]) ≥ (0 || (immediate15)48 || immediate15...0) then
TrapException

endif

Appendix A

A-168 MIPS R4000 Microprocessor User's Manual

Format:

TGEU rs, rt

Description:

The contents of general register rt are compared to the contents of general
register rs. Considering both quantities as unsigned integers, if the
contents of general register rs are greater than or equal to the contents of
general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:

Trap exception

TGEU Trap If Greater Than Or Equal Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TGEU

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 0 1

TGEU

T: if (0 || GPR[rs]) ≥ (0 || GPR[rt]) then
TrapException

endif

MIPS R4000 Microprocessor User's Manual A-169

CPU Instruction Set Details

Format:

TLBP

Description:

The Index register is loaded with the address of the TLB entry whose
contents match the contents of the EntryHi register. If no TLB entry
matches, the high-order bit of the Index register is set.

The architecture does not specify the operation of memory references
associated with the instruction immediately after a TLBP instruction, nor
is the operation specified if more than one TLB entry matches.

Operation:

Exceptions:

Coprocessor unusable exception

TLBPProbe TLB For Matching Entry

0

6

6 531 25 2426

COP0

6

0

TLBP

191

CO
0 1 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBP

32 T: Index← 1 || 025 || undefined6

for i in 0...TLBEntries–1
if (TLB[i]95...77 = EntryHi31...12) and (TLB[i]76 or
(TLB[i]71...64 = EntryHi7...0)) then

Index ← 026 || i 5...0
endif

endfor

64 T: Index← 1 || 0 25 || undefined6

for i in 0...TLBEntries–1
if (TLB[i]167...141 and not (015 || TLB[i]216...205))
= EntryHi39...13) and not (015 || TLB[i]216...205)) and
(TLB[i]140 or (TLB[i]135...128 = EntryHi7...0)) then

Index ← 026 || i 5...0
endif

endfor

Appendix A

A-170 MIPS R4000 Microprocessor User's Manual

Format:

TLBR

Description:

The G bit (which controls ASID matching) read from the TLB is written
into both of the EntryLo0 and EntryLo1 registers.

The EntryHi and EntryLo registers are loaded with the contents of the TLB
entry pointed at by the contents of the TLB Index register. The operation
is invalid (and the results are unspecified) if the contents of the TLB Index
register are greater than the number of TLB entries in the processor.

Operation:

Exceptions:

Coprocessor unusable exception

TLBR Read Indexed TLB Entry

0

6

6 531 25 2426

COP0

6

0

TLBR

191

CO
0 1 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBR

32 T: PageMask ← TLB[Index5...0]127...96
EntryHi ← TLB[Index5...0]95...64 and not TLB[Index5...0]127...96
EntryLo1 ←TLB[Index5...0]63...32
EntryLo0 ← TLB[Index5...0]31...0

64 T: PageMask ← TLB[Index5...0]255...192
EntryHi ← TLB[Index5...0]191...128 and not TLB[Index5...0]255...192
EntryLo1 ←TLB[Index5...0]127...65 || TLB[Index5...0]140
EntryLo0 ← TLB[Index5...0]63...1 || TLB[Index5...0]140

MIPS R4000 Microprocessor User's Manual A-171

CPU Instruction Set Details

Format:

TLBWI

Description:

The G bit of the TLB is written with the logical AND of the G bits in the
EntryLo0 and EntryLo1 registers.

The TLB entry pointed at by the contents of the TLB Index register is loaded
with the contents of the EntryHi and EntryLo registers.

The operation is invalid (and the results are unspecified) if the contents of
the TLB Index register are greater than the number of TLB entries in the
processor.

Operation:

Exceptions:

Coprocessor unusable exception

TLBWIWrite Indexed TLB Entry

0

6

6 531 25 2426

COP0

6

0

TLBWI

191

CO
0 1 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBWI

32, 64T: TLB[Index5...0] ←
PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

Appendix A

A-172 MIPS R4000 Microprocessor User's Manual

Format:

TLBWR

Description:

The G bit of the TLB is written with the logical AND of the G bits in the
EntryLo0 and EntryLo1 registers.

The TLB entry pointed at by the contents of the TLB Random register is
loaded with the contents of the EntryHi and EntryLo registers.

Operation:

Exceptions:

Coprocessor unusable exception

TLBWR Write Random TLB Entry

0

6

6 531 25 2426

COP0

6

0

TLBWR

191

CO
0 1 0 0 0 0 0 0 0 1 1 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01

TLBWR

32, 64T: TLB[Random5...0] ←
PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0

MIPS R4000 Microprocessor User's Manual A-173

CPU Instruction Set Details

Format:

TLT rs, rt

Description:

The contents of general register rt are compared to general register rs.
Considering both quantities as signed integers, if the contents of general
register rs are less than the contents of general register rt, a trap exception
occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:

Trap exception

TLTTrap If Less Than

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TLT

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 1 0

TLT

32, 64 T: if GPR[rs] < GPR[rt] then
TrapException

endif

Appendix A

A-174 MIPS R4000 Microprocessor User's Manual

Format:

TLTI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of
general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the sign-extended immediate, a
trap exception occurs.

Operation:

Exceptions:

Trap exception

TLTI Trap If Less Than Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTLTI

16

0

0 0 0 0 0 1 0 1 0 1 0

TLTI

32 T: if GPR[rs] < (immediate15)16 || immediate15...0 then
TrapException

endif

64 T: if GPR[rs] < (immediate15)48 || immediate15...0 then
TrapException

endif

MIPS R4000 Microprocessor User's Manual A-175

CPU Instruction Set Details

Format:

TLTIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of
general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the sign-extended immediate, a
trap exception occurs.

Operation:

Exceptions:

Trap exception

TLTIUTrap If Less Than Immediate Unsigned

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTLTIU

16

0

0 0 0 0 0 1 0 1 0 1 1

TLTIU

32 T: if (0 || GPR[rs]) < (0 || (immediate15)16 || immediate15...0) then
TrapException

endif

64 T: if (0 || GPR[rs]) < (0 || (immediate15)48 || immediate15...0) then
TrapException

endif

Appendix A

A-176 MIPS R4000 Microprocessor User's Manual

Format:

TLTU rs, rt

Description:

The contents of general register rt are compared to general register rs.
Considering both quantities as unsigned integers, if the contents of
general register rs are less than the contents of general register rt, a trap
exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:

Trap exception

TLTU Trap If Less Than Unsigned

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TLTU

10 6

6 5 0

0 0 0 0 0 0 1 1 0 0 1 1

TLTU

32, 64T: if (0 || GPR[rs]) < (0 || GPR[rt]) then

TrapException

endif

MIPS R4000 Microprocessor User's Manual A-177

CPU Instruction Set Details

Format:

TNE rs, rt

Description:

The contents of general register rt are compared to general register rs. If
the contents of general register rs are not equal to the contents of general
register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved
by the exception handler only by loading the contents of the memory word
containing the instruction.

Operation:

Exceptions:

Trap exception

TNETrap If Not Equal

31 2526 2021 1516

SPECIAL rs rt

6 5 5

code TNE

10 6

6 5 0

0 0 0 0 0 0 1 1 0 1 1 0

TNE

32, 64T: if GPR[rs] ≠ GPR[rt] then

TrapException

endif

Appendix A

A-178 MIPS R4000 Microprocessor User's Manual

Format:

TNEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of
general register rs. If the contents of general register rs are not equal to the
sign-extended immediate, a trap exception occurs.

Operation:

Exceptions:

Trap exception

TNEI Trap If Not Equal Immediate

31 2526 2021 1516

REGIMM rs

6 5 5

immediateTNEI

16

0

0 0 0 0 0 1 0 1 1 1 0

TNEI

32 T: if GPR[rs] ≠ (immediate15)16 || immediate15...0 then
TrapException

endif

64 T: if GPR[rs] ≠ (immediate15)48 || immediate15...0 then
TrapException

endif

MIPS R4000 Microprocessor User's Manual A-179

CPU Instruction Set Details

Format:

XOR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of
general register rt in a bit-wise logical exclusive OR operation.

The result is placed into general register rd.

Operation:

Exceptions:

None

XORExclusive Or

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 XOR

5 5 6

11 10 6 5 0

0 0 0 0 0 0 1 0 0 1 1 00 0 0 0 0

XOR

32, 64 T: GPR[rd] ← GPR[rs] xor GPR[rt]

Appendix A

A-180 MIPS R4000 Microprocessor User's Manual

Format:

XORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of
general register rs in a bit-wise logical exclusive OR operation.

The result is placed into general register rt.

Operation:

 Exceptions:

None

XORI Exclusive OR Immediate

31 2526 2021 1516 0

XORI rs rt immediate

6 5 5 16
0 0 1 1 1 0

XORI

32 T: GPR[rt] ← GPR[rs] xor (016 || immediate)

64 T: GPR[rt] ← GPR[rs] xor (048 || immediate)

MIPS R4000 Microprocessor User's Manual A-181

CPU Instruction Set Details

CPU Instruction Opcode Bit Encoding

The remainder of this Appendix presents the opcode bit encoding for the
CPU instruction set (ISA and extensions), as implemented by the R4000.
Figure A-2 lists the R4000 Opcode Bit Encoding.

Figure A-2 R4000 Opcode Bit Encoding

SPECIAL
ADDI
COP0

DADDIε DADDIUε LDLε LDRε * * * *

BEQL BNEL BLEZL BGTZL

LB
SB CACHE

LWUε

*

LL LDC1 LDC2 LDε
SC SDC1 SDC2 SDε

DSLLε * DSRLε DSRAε DSLL32ε * DSRL32ε DSRA32ε
TGE TGEU TLT TLTU TEQ TNE

2...0

REGIMM rt18...16

SLL
 JR

MFHI
MULT
ADD

SLT

*
DSLLVε * DSRLVε DSRAVε
DMULTε DMULTUε DDIVε DDIVUε

DADDε DADDUε DSUBε DSUBUε* *

*

COPz rs

SPECIAL function

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

31...29
0
1
2
3
4
5
6

 5...3
0
1
2
3
4
5
6
7

20...19
0
1
2
3

7

28...26 Opcode
0 1 2 3 4 5 6 7

SYSCALL BREAK

SH SWL SW SWR
LWC1 LWC2 *
SWC1 SWC2 *

LH LWL LW LBU LHU LWR

SRL SRA SLLV SRLV SRAV
 JALR
MTHI MFLO MTLO

MULTU DIV DIVU
ADDU SUB SUBU AND OR XOR NOR

SLTU

COP1 COP2 *

ADDIU SLTI SLTIU ANDI ORI XORI LUI
REGIMM J JAL BEQ BNE BLEZ BGTZ

* *

BLTZL
TLTI

BLTZALL

BGEZL
TLTIU

BGEZALL
TNEITEQI

MF

23...21
0 1 2 3 4 5 6 725, 24

0
1
2
3

CF
BC

MT CT

CO

DMFε γ DMTε γ

SDLε
LLDε
SCDε

SDRε

* * SYNC

δ

γ γ γ γ γ γ γ

* * * * * * * *
* * * *

* * * *

* *
BLTZ

BLTZAL

BGEZ

BGEZAL
TGEI TGEIU

Appendix A

A-182 MIPS R4000 Microprocessor User's Manual

Figure A-2 (cont.) R4000 Opcode Bit Encoding

Key:

* Operation codes marked with an asterisk cause reserved
instruction exceptions in all current implementations and are
reserved for future versions of the architecture.

γ Operation codes marked with a gamma cause a reserved
instruction exception. They are reserved for future versions of the
architecture.

δ Operation codes marked with a delta are valid only for R4000
processors with CP0 enabled, and cause a reserved instruction
exception on other processors.

φ Operation codes marked with a phi are invalid but do not cause
reserved instruction exceptions in R4000 implementations.

ξ Operation codes marked with a xi cause a reserved instruction
exception on R4000 processors.

χ Operation codes marked with a chi are valid only on R4000.

ε Operation codes marked with epsilon are valid when the processor
is operating either in the Kernel mode or in the 64-bit non-Kernel
(User or Supervisor) mode. These instructions cause a reserved
instruction exception if 64-bit operation is not enabled in User or
Supervisor mode.

BCF

18...16
0 1 2 3 4 5 6 720...19

0
1
2
3

BCFL
γ γ γ γ γ γ γ

γ γBCT BCTL γ γ
γ

γ γ γ γ γ γ γγ
γ γ γ γ γ γ γγ

CP0 Function
2 ... 0

0 1 2 3 4 5 6 75 ... 3
0
1
2
3

TLBWITLBR TLBWR
TLBP

ξ

0
1
2
3

ERET χ

φ φφ

φ φ φ φ φ φ φφ

φφ

φ φ φ φ φ φ φφ
φ φ φ φ φ φ φφ
φ φ φ φ φ φ φφ
φ φ φ φ φ φ φ
φ φ φ φ φ φ φ
φ φ φ φ φ φ φ

COPz rt

MIPS R4000 Microprocessor User's Manual B-1

FPU Instruction Set Details

B

This appendix provides a detailed description of each floating-point unit
(FPU) instruction (refer to Appendix A for a detailed description of the
CPU instructions). The instructions are listed alphabetically, and any
exceptions that may occur due to the execution of each instruction are
listed after the description of each instruction. Descriptions of the
immediate causes and the manner of handling exceptions are omitted
from the instruction descriptions in this appendix (refer to Chapter 7 for
detailed descriptions of floating-point exceptions and handling).

Figure B-3 at the end of this appendix lists the entire bit encoding for the
constant fields of the floating-point instruction set; the bit encoding for
each instruction is included with that individual instruction.

Appendix B

B-2 MIPS R4000 Microprocessor User's Manual

B.1 Instruction Formats
There are three basic instruction format types:

• I-Type, or Immediate instructions, which include load and
store operations

• M-Type, or Move instructions

• R-Type, or Register instructions, which include the two-
and three-register floating-point operations.

The instruction description subsections that follow show how these three
basic instruction formats are used by:

• Load and store instructions

• Move instructions

• Floating-Point computational instructions

• Floating-Point branch instructions

Floating-point instructions are mapped onto the MIPS coprocessor
instructions, defining coprocessor unit number one (CP1) as the floating-
point unit.

Each operation is valid only for certain formats. Implementations may
support some of these formats and operations through emulation, but
they only need to support combinations that are valid (marked V in Table
B-1). Combinations marked R in Table B-1 are not currently specified by
this architecture, and cause an unimplemented operation trap. They will
be available for future extensions to the architecture.

MIPS R4000 Microprocessor User's Manual B-3

FPU Instruction Set Details

Table B-1 Valid FPU Instruction Formats

Operation
Source Format

Single Double Word Longword

ADD V V R R

SUB V V R R

MUL V V R R

DIV V V R R

SQRT V V R R

ABS V V R R

MOV V V

NEG V V R R

TRUNC.L V V

ROUND.L V V

CEIL.L V V

FLOOR.L V V

TRUNC.W V V

ROUND.W V V

CEIL.W V V

FLOOR.W V V

CVT.S V V V

CVT.D V V V

CVT.W V V

CVT.L V V

C V V R R

Appendix B

B-4 MIPS R4000 Microprocessor User's Manual

The coprocessor branch on condition true/false instructions can be used
to logically negate any predicate. Thus, the 32 possible conditions require
only 16 distinct comparisons, as shown in Table B-2 below.

Table B-2 Logical Negation of Predicates by Condition True/False

Condition Relations Invalid
Operation

Exception If
Unordered

Mnemonic
Code

Greater
Than

Less
Than

Equal Unordered
True False

F T 0 F F F F No

UN OR 1 F F F T No

EQ NEQ 2 F F T F No

UEQ OGL 3 F F T T No

OLT UGE 4 F T F F No

ULT OGE 5 F T F T No

OLE UGT 6 F T T F No

ULE OGT 7 F T T T No

SF ST 8 F F F F Yes

NGLE GLE 9 F F F T Yes

SEQ SNE 10 F F T F Yes

NGL GL 11 F F T T Yes

LT NLT 12 F T F F Yes

NGE GE 13 F T F T Yes

LE NLE 14 F T T F Yes

NGT GT 15 F T T T Yes

MIPS R4000 Microprocessor User's Manual B-5

FPU Instruction Set Details

Floating-Point Loads, Stores, and Moves

All movement of data between the floating-point coprocessor and
memory is accomplished by coprocessor load and store operations, which
reference the floating-point coprocessor General Purpose registers. These
operations are unformatted; no format conversions are performed and,
therefore, no floating-point exceptions can occur due to these operations.

Data may also be directly moved between the floating-point coprocessor
and the processor by move to coprocessor and move from coprocessor
instructions. Like the floating-point load and store operations, move to/
from operations perform no format conversions and never cause floating-
point exceptions.

An additional pair of coprocessor registers are available, called Floating-
Point Control registers for which the only data movement operations
supported are moves to and from processor General Purpose registers.

Floating-Point Operations

The floating-point unit operation set includes:

• floating-point add

• floating-point subtract

• floating-point multiply

• floating-point divide

• floating-point square root

• convert between fixed-point and floating-point formats

• convert between floating-point formats

• floating-point compare

These operations satisfy the requirements of IEEE Standard 754
requirements for accuracy. Specifically, these operations obtain a result
which is identical to an infinite-precision result rounded to the specified
format, using the current rounding mode.

Instructions must specify the format of their operands. Except for
conversion functions, mixed-format operations are not provided.

Appendix B

B-6 MIPS R4000 Microprocessor User's Manual

B.2 Instruction Notation Conventions
In this appendix, all variable subfields in an instruction format (such as fs,
ft, immediate, and so on) are shown in lower-case. The instruction name
(such as ADD, SUB, and so on) is shown in upper-case.

For the sake of clarity, we sometimes use an alias for a variable subfield in
the formats of specific instructions. For example, we use rs = base in the
format for load and store instructions. Such an alias is always lower case,
since it refers to a variable subfield.

In some instructions, the instruction subfields op and function can have
constant 6-bit values. When reference is made to these instructions,
upper-case mnemonics are used. For instance, in the floating-point ADD
instruction we use op = COP1 and function = ADD. In other cases, a single
field has both fixed and variable subfields, so the name contains both
upper and lower case characters. Bit encodings for mnemonics are shown
in Figure B-3 at the end of this appendix, and are also included with each
individual instruction.

In the instruction description examples that follow, the Operation section
describes the operation performed by each instruction using a high-level
language notation.

Instruction Notation Examples

The following examples illustrate the application of some of the
instruction notation conventions:

Example #1:

GPR[rt] ←

Sixteen zero bits are concatenated with an immediate
value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General Purpose Register rt.

Example #2:

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

immediate || 016

(immediate15)16 || immediate15...0

MIPS R4000 Microprocessor User's Manual B-7

FPU Instruction Set Details

B.3 Load and Store Instructions
In the R4000 implementation, the instruction immediately following a
load may use the contents of the register being loaded. In such cases, the
hardware interlocks, requiring additional real cycles, so scheduling load
delay slots is still desirable, although not required for functional code.

The behavior of the load store instructions is dependent on the width of
the FGRs.

• When the FR bit in the Status register equals zero, the Floating-
Point General registers (FGRs) are 32-bits wide.

• When the FR bit in the Status register equals one, the Floating-
Point General registers (FGRs) are 64-bits wide.

In the load and store operation descriptions, the functions listed in
Table B-3 are used to summarize the handling of virtual addresses and
physical memory.

Table B-3 Load and Store Common Functions

Function Meaning

AddressTranslation
Uses the TLB to find the physical address given the virtual
address. The function fails and an exception is taken if the
required translation is not present in the TLB.

LoadMemory

Uses the cache and main memory to find the contents of
the word containing the specified physical address. The
low-order two bits of the address and the Access Type field
indicates which of each of the four bytes within the data
word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded into the
cache.

StoreMemory

Uses the cache, write buffer, and main memory to store the
word or part of word specified as data in the word
containing the specified physical address. The low-order
two bits of the address and the Access Type field indicates
which of each of the four bytes within the data word
should be stored.

Appendix B

B-8 MIPS R4000 Microprocessor User's Manual

Figure B-1 shows the I-Type instruction format used by load and store
operations.

Figure B-1 Load and Store Instruction Format

All coprocessor loads and stores reference aligned data items. Thus, for
word loads and stores, the access type field is always WORD, and the low-
order two bits of the address must always be zero.

For doubleword loads and stores, the access type field is always
DOUBLEWORD, and the low-order three bits of the address must always
be zero.

Regardless of byte-numbering order (endianness), the address specifies
that byte which has the smallest byte-address in the addressed field. For
a big-endian machine, this is the leftmost byte; for a little-endian machine,
this is the rightmost byte.

op is a 6-bit operation code

base is the 5-bit base register specifier

ft
is a 5-bit source (for stores) or destination (for loads) FPA register
specifier

offset is the 16-bit signed immediate offset

31 25 21 20 16 0

 I-Type (Immediate)

15

offset

26

ftbaseop

6 5 5 16

MIPS R4000 Microprocessor User's Manual B-9

FPU Instruction Set Details

B.4 Computational Instructions
Computational instructions include all of the arithmetic floating-point
operations performed by the FPU.

Figure B-2 shows the R-Type instruction format used for computational
operations.

Figure B-2 Computational Instruction Format

The function field indicates the floating-point operation to be performed.

Each floating-point instruction can be applied to a number of operand
formats. The operand format for an instruction is specified by the 5-bit
format field; decoding for this field is shown in Table B-4.

Table B-4 Format Field Decoding

Table B-5 lists all floating-point instructions.

Code Mnemonic Size Format

16 S single Binary floating-point

17 D double Binary floating-point

18 Reserved

19 Reserved

20 W single 32-bit binary fixed-point

21 L longword 64-bit binary fixed-point

22–31 Reserved

COP1 is a 6-bit operation code

fmt is a 5-bit format specifier

fs is a 5-bit source1 register

ft is a 5-bit source2 register

fd is a 5-bit destination register

function is a 6-bit function field

31 0

 R-Type (Register)

6 5 5 5 5 6

COP1 fmt ft fs fd function

11 1021 20 16 1526 25 6 5

Appendix B

B-10 MIPS R4000 Microprocessor User's Manual

Table B-5 Floating-Point Instructions and Operations

Code
(5: 0)

Mnemonic Operation

0 ADD Add

1 SUB Subtract

2 MUL Multiply

3 DIV Divide

4 SQRT Square root

5 ABS Absolute value

6 MOV Move

7 NEG Negate

8 ROUND.L Convert to 64-bit (long) fixed-point, rounded to nearest/
even

9 TRUNC.L Convert to 64-bit (long) fixed-point, rounded toward zero

10 CEIL.L Convert to 64-bit (long) fixed-point, rounded to +∞
11 FLOOR.L Convert to 64-bit (long) fixed-point, rounded to -∞
12 ROUND.W Convert to single fixed-point, rounded to nearest/even

13 TRUNC.W Convert to single fixed-point, rounded toward zero

14 CEIL.W Convert to single fixed-point, rounded to + ∞
15 FLOOR.W Convert to single fixed-point, rounded to – ∞

16–31 – Reserved

32 CVT.S Convert to single floating-point

33 CVT.D Convert to double floating-point

34 – Reserved

35 – Reserved

36 CVT.W Convert to 32-bit binary fixed-point

37 CVT.L Convert to 64-bit (long) binary fixed-point

38–47 – Reserved

48–63 C Floating-point compare

MIPS R4000 Microprocessor User's Manual B-11

FPU Instruction Set Details

In the following pages, the notation FGR refers to the 32 General Purpose
registers FGR0 through FGR31 of the FPU, and FPR refers to the floating-
point registers of the FPU.

• When the FR bit in the Status register (SR(26)) equals zero, only
the even floating-point registers are valid and the 32 General
Purpose registers of the FPU are 32-bits wide.

• When the FR bit in the Status register (SR(26)) equals one, both
odd and even floating-point registers may be used and the 32
General Purpose registers of the FPU are 64-bits wide.

The following routines are used in the description of the floating-point
operations to retrieve the value of an FPR or to change the value of an FGR:

value ← ValueFPR(fpr,fmt)

if SR26 = 1 then /* 64-bit wide FGRs */
case fmt of

S, W:
value ← FGR[fpr]31...0
return

D, L:
value ← FGR[fpr]
return

endcase
elseif fpr0 = 0 then /* valid specifier, 32-bit wide FGRs */

case fmt of
S, W:

value ← FGR[fpr]
return

D, L:
value ← FGR[fpr+1] || FGR[fpr]
return

endcase
else /* undefined result for odd 32-bit reg #s */

value ← undefined
endif

Appendix B

B-12 MIPS R4000 Microprocessor User's Manual

StoreFPR(fpr, fmt, value)

if SR26 = 1 then /* 64-bit wide FGRs */
case fmt of

S, W:
FGR[fpr] ← undefined32 || value
return

D, L:
FGR[fpr] ← value
return

endcase
elseif fpr0 = 0 then /* valid specifier, 32-bit wide FGRs */

case fmt of
S, W:

FGR[fpr+1] ← undefined
FGR[fpr] ← value
return

D, L:
FGR[fpr+1] ← value63...32
FGR[fpr] ← value31...0
return

endcase
else /* undefined result for odd 32-bit reg #s */

undefined_result
endif

MIPS R4000 Microprocessor User's Manual B-13

FPU Instruction Set Details

Format:

ABS.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in the
specified format and the arithmetic absolute value is taken. The result is
placed in the floating-point register specified by fd.

The absolute value operation is arithmetic; a NaN operand signals invalid
operation.

This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Coprocessor exception trap

Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception

ABS.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ABS

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1

ABS.fmtAbsolute Value

T: StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Appendix B

B-14 MIPS R4000 Microprocessor User's Manual

Format:

ADD.fmt fd, fs, ft

Description:

The contents of the FPU registers specified by fs and ft are interpreted in
the specified format and arithmetically added. The result is rounded as if
calculated to infinite precision and then rounded to the specified format
(fmt), according to the current rounding mode. The result is placed in the
floating-point register (FPR) specified by fd.

This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

ADD.fmtFloating-Point Add

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd ADD

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 0

ADD.fmt

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) + ValueFPR(ft, fmt))

MIPS R4000 Microprocessor User's Manual B-15

FPU Instruction Set Details

Format:

BC1F offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is false
(zero), the program branches to the target address, with a delay of one
instruction.

There must be at least one instruction between C.cond.fmt and BC1F.

Operation:

Exceptions:

Coprocessor unusable exception

BC1F Branch On FPA False

16 1531 2526

COP1

6

0

16

offset

(Coprocessor 1)

5

BC BCF

5

21 20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

BC1F

32 T–1: condition ← not COC[1]
T: target ← (offset15)14 || offset || 02

T+1: if condition then
PC ← PC + target

endif

64 T–1: condition ← not COC[1]
T: target ← (offset15)46 || offset || 02

T+1: if condition then
PC ← PC + target

endif

Appendix B

B-16 MIPS R4000 Microprocessor User's Manual

Format:

BC1FL offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is false
(zero), the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

There must be at least one instruction between C.cond.fmt and BC1FL.

Operation:

 Exceptions:

Coprocessor unusable exception

BC1FLBranch On FPU False Likely

16 1531 2526

COP1

6

0

16

offset

(Coprocessor 1)

5

BC BCFL

5

21 20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0

BC1FL

64 T–1: condition ← not COC[1]
T: target ← (offset15)46 || offset || 02

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif

32 T–1: condition ← not COC[1]
T: target ← (offset15)14 || offset || 02

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif

MIPS R4000 Microprocessor User's Manual B-17

FPU Instruction Set Details

Format:

BC1T offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is true (one),
the program branches to the target address, with a delay of one
instruction.

There must be at least one instruction between C.cond.fmt and BC1T.

Operation:

Exceptions:

Coprocessor unusable exception

BC1T Branch On FPU True

5

16 15

BC

31 2526

COP1

6

0

16

offset

(Coprocessor 1)

BCT

5

21 20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1

BC1T

32 T–1: condition ← COC[1]
T: target ← (offset15)14 || offset || 02

T+1: if condition then
PC ← PC + target

endif

64 T–1: condition ← COC[1]
T: target ← (offset15)46 || offset || 02

T+1: if condition then
PC ← PC + target

endif

Appendix B

B-18 MIPS R4000 Microprocessor User's Manual

Format:

BC1TL offset

Description:

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is true (one),
the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

There must be at least one instruction between C.cond.fmt and BC1TL.

Operation:

 Exceptions:

Coprocessor unusable exception

BC1TLBranch On FPU True Likely

5

16 15

BC

31 2526

COP1

6

0

16

offset

(Coprocessor 1)

BCTL

5

21 20

0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1

BC1TL

32 T–1: condition ← COC[1]
T: target ← (offset15)14 || offset || 02

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif
64 T–1: condition ← COC[1]

T: target ← (offset15)46 || offset || 02

T+1: if condition then
PC ← PC + target

else
NullifyCurrentInstruction

endif

MIPS R4000 Microprocessor User's Manual B-19

FPU Instruction Set Details

Format:

C.cond.fmt fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format, fmt, and arithmetically compared.

A result is determined based on the comparison and the conditions
specified in the cond field. If one of the values is a Not a Number (NaN),
and the high-order bit of the cond field is set, an invalid operation
exception is taken. After a one-instruction delay, the condition is available
for testing with branch on floating-point coprocessor condition
instructions. There must be at least one instruction between the compare
and the branch.

Comparisons are exact and can neither overflow nor underflow. Four
mutually-exclusive relations are possible results: less than, equal, greater
than, and unordered. The last case arises when one or both of the
operands are NaN; every NaN compares unordered with everything,
including itself.

Comparisons ignore the sign of zero, so +0 = –0.

This instruction is valid only for single- and double-precision floating-
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

*See “FPU Instruction Opcode Bit Encoding” at the end of Appendix B.

C.cond.fmt Floating-Point

31 0

6 5 5 5 5 4

COP1 fmt ft fs 0 cond*

11 1021 20 16 1526 25

2

FC*

6 5 4 3

0 1 0 0 0 1 0 0 0 0 0

Compare C.cond.fmt

Appendix B

B-20 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:

Coprocessor unusable
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception

Compare C.cond.fmtFloating-Point

(continued)
C.cond.fmt

T: if NaN(ValueFPR(fs, fmt)) or NaN(ValueFPR(ft, fmt)) then
less ← false
equal ← false
unordered ← true
if cond3 then

signal InvalidOperationException
endif

else
less ← ValueFPR(fs, fmt) < ValueFPR(ft, fmt)
equal ← ValueFPR(fs, fmt) = ValueFPR(ft, fmt)
unordered ← false

endif
condition ← (cond2 and less) or (cond1 and equal) or

 (cond0 and unordered)
FCR[31]23 ← condition
COC[1] ← condition

MIPS R4000 Microprocessor User's Manual B-21

FPU Instruction Set Details

Format:

CEIL.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to +∞ (2).

This instruction is valid only for conversion from single- or double-
precision floating-point formats. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of –263 to 263– 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 263–1 is returned.

CEIL.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CEIL.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0

Ceiling to Long CEIL.L.fmt

Appendix B

B-22 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

(continued)

CEIL.L.fmt Floating-Point

Fixed-Point Format
Ceiling to Long CEIL.L.fmt

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

MIPS R4000 Microprocessor User's Manual B-23

FPU Instruction Set Details

Format:

CEIL.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to +∞ (2).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of –231 to 231– 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 231–1 is returned.

CEIL.W.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CEIL.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0

Ceiling to Single CEIL.W.fmt

Appendix B

B-24 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

(continued)

CEIL.W.fmt Floating-Point

Fixed-Point Format
Ceiling to Single CEIL.W.fmt

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

MIPS R4000 Microprocessor User's Manual B-25

FPU Instruction Set Details

Format:

CFC1 rt, fs

Description:

The contents of the FPU control register fs are loaded into general register
rt.

This operation is only defined when fs equals 0 or 31.

The contents of general register rt are undefined for the instruction
immediately following CFC1.

Operation:

 Exceptions:

Coprocessor unusable exception

(Coprocessor 1)CFC1

11

Move Control Word From FPU

31 2526 2021 1516

COP1 CF rt

6 5 5

fs 0

5

11 10 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

CFC1

32 T: temp ← FCR[fs]
T+1: GPR[rt] ← temp

64 T: temp ← FCR[fs]
T+1: GPR[rt] ← (temp31)32 || temp

Appendix B

B-26 MIPS R4000 Microprocessor User's Manual

Format:

CTC1 rt, fs

Description:

The contents of general register rt are loaded into FPU control register fs.
This operation is only defined when fs equals 0 or 31.

Writing to Control Register 31, the floating-point Control/Status register,
causes an interrupt or exception if any cause bit and its corresponding
enable bit are both set. The register will be written before the exception
occurs. The contents of floating-point control register fs are undefined for
the instruction immediately following CTC1.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception
Division by zero exception
Inexact exception
Overflow exception
Underflow exception

CTC1

11

Move Control Word To FPU

31 2526 2021 1516

COP1 CT rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

CTC1

32 T: temp ← GPR[rt]
T+1: FCR[fs] ← temp

COC[1] ← FCR[31]23

64 T: temp ← GPR[rt]31...0
T+1: FCR[fs] ← temp

COC[1] ← FCR[31]23

MIPS R4000 Microprocessor User's Manual B-27

FPU Instruction Set Details

Format:

CVT.D.fmt fd, fs

Description:

The contents of the floating-point register specified by fs is interpreted in
the specified source format, fmt, and arithmetically converted to the
double binary floating-point format. The result is placed in the floating-
point register specified by fd.

This instruction is valid only for conversions from single floating-point
format, 32-bit or 64-bit fixed-point format.

If the single floating-point or single fixed-point format is specified, the
operation is exact. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
Underflow exception

CVT.D.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.D

11 1021 20 16 1526 25

Floating-Point Format

6 5

0 1 0 0 0 1 1 0 0 0 0 10 0 0 0 0

Convert to Double CVT.D.fmt

T: StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Appendix B

B-28 MIPS R4000 Microprocessor User's Manual

Format:

CVT.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd. This instruction is valid only for conversions from single-
or double-precision floating-point formats. The operation is not defined if
bit 0 of any register specification is set and the FR bit in the Status register
equals zero.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of –263 to 263–1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 263–1 is returned.

Operation:

 Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

CVT.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 1 0 0 1 0 10 0 0 0 0

Convert to Long CVT.L.fmt

T: StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

MIPS R4000 Microprocessor User's Manual B-29

FPU Instruction Set Details

Format:

CVT.S.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
binary floating-point format. The result is placed in the floating-point
register specified by fd. Rounding occurs according to the currently
specified rounding mode.

This instruction is valid only for conversions from double floating-point
format, or from 32-bit or 64-bit fixed-point format. The operation is not
defined if bit 0 of any register specification is set and the FR bit in the Status
register equals zero, since the register numbers specify an even-odd pair
of adjacent coprocessor general registers. When the FR bit in the Status
register equals one, both even and odd register numbers are valid.

Operation:

 Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
Underflow exception

CVT.S.fmtFloat ing-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.S

11 1021 20 16 1526 25

Floating-Point Format

6 5

0 1 0 0 0 1 1 0 0 0 0 00 0 0 0 0

Convert to SingleCVT.S.fmt

T: StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Appendix B

B-30 MIPS R4000 Microprocessor User's Manual

Format:

CVT.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd. This instruction is valid only for conversion from a single-
or double-precision floating-point formats. The operation is not defined if
bit 0 of any register specification is set and the FR bit in the Status register
equals zero, since the register numbers specify an even-odd pair of
adjacent coprocessor general registers. When the FR bit in the Status
register equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of –231 to 231–1, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
231 –1 is returned.

Operation:

 Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

CVT.W.fmt
Float ing-Po int

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd CVT.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 1 0 0 1 0 00 0 0 0 0

Convert to CVT.W.fmt

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

MIPS R4000 Microprocessor User's Manual B-31

FPU Instruction Set Details

Format:

DIV.fmt fd, fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and the value in the fs field is divided by
the value in the ft field. The result is rounded as if calculated to infinite
precision and then rounded to the specified format, according to the
current rounding mode. The result is placed in the floating-point register
specified by fd.

This instruction is valid for only single or double precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception Invalid operation exception
Division-by-zero exception Inexact exception
Overflow exception Underflow exception

DIV.fmtFloating-Point Divide

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd DIV

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 1 1

DIV.fmt

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt)/ValueFPR(ft, fmt))

Appendix B

B-32 MIPS R4000 Microprocessor User's Manual

Format:

DMFC1 rt, fs

Description:

The contents of register fs from the floating-point coprocessor is stored
into processor register rt.

The contents of general register rt are undefined for the instruction
immediately following DMFC1.

The FR bit in the Status register specifies whether all 32 registers of the
R4000 are addressable. When FR equals zero, this instruction is not
defined when the least significant bit of fs is non-zero. When FR is set, fs
may specify either odd or even registers.

Operation:

Exceptions:

Coprocessor unusable exception

Coprocessor Exceptions:

Unimplemented operation exception

DMFC1 Doubleword Move From

fs

11 10

5

31 2526 2021 1516 0

COP1 DMF rt 0

6 5 5 11

Floating-Point Coprocessor

0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00

DMFC1

 64 T: if SR26 = 1 then /* 64-bit wide FGRs */
data ← FGR[fs]

elseif fs0 = 0 then /* valid specifier, 32-bit wide FGRs */
data ← FGR[fs+1] || FGR[fs]

else /* undefined for odd 32-bit reg #s */
data ← undefined64

endif

T+1: GPR[rt] ← data

MIPS R4000 Microprocessor User's Manual B-33

FPU Instruction Set Details

Format:

DMTC1 rt, fs

Description:

The contents of general register rt are loaded into coprocessor register fs of
the CP1.

The contents of floating-point register fs are undefined for the instruction
immediately following DMTC1.

The FR bit in the Status register specifies whether all 32 registers of the
R4000 are addressable. When FR equals zero, this instruction is not
defined when the least significant bit of fs is non-zero. When FR equals
one, fs may specify either odd or even registers.

Operation:

Exceptions:

Coprocessor unusable exception

Coprocessor Exceptions:

Unimplemented operation exception

DMTC1 Doubleword Move To

fs

11 10

5

31 2526 2021 1516 0

COP1 DMT rt 0

6 5 5 11

Floating-Point Coprocessor

0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 00

DMTC1

 64 T: data ← GPR[rt]

T+1: if SR26 = 1 then /* 64-bit wide FGRs */
FGR[fs] ← data

elseif fs0 = 0 then /*valid specifier, 32-bit wide valid FGRs */
FGR[fs+1] ← data63...32
FGR[fs] ← data31...0

else /* undefined result for odd 32-bit reg #s */
undefined_result

endif

Appendix B

B-34 MIPS R4000 Microprocessor User's Manual

Format:

FLOOR.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to -∞ (3).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of –263 to 263– 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 263–1 is returned.

FLOOR.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd FLOOR.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1

Floor to Long FLOOR.L.fmt

MIPS R4000 Microprocessor User's Manual B-35

FPU Instruction Set Details

Operation:

 Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

FLOOR.L.fmt Floating-Point

Fixed-Point Format
Floor to Long FLOOR.L.fmt

(continued)

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Appendix B

B-36 MIPS R4000 Microprocessor User's Manual

Format:

FLOOR.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to –∞ (RM = 3).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of –231 to 231–1, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
231–1 is returned.

FLOOR.W.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd FLOOR.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 1 1 1 10 0 0 0 0

Floor to Single FLOOR.W.fmt

MIPS R4000 Microprocessor User's Manual B-37

FPU Instruction Set Details

Operation:

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

FLOOR.W.fmt Floating-Point

Fixed-Point Format
Floor to Single FLOOR.W.fmt

(continued)

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Appendix B

B-38 MIPS R4000 Microprocessor User's Manual

Format:

LDC1 ft, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address.

In 32-bit mode, the contents of the doubleword at the memory location
specified by the effective address is loaded into registers ft and ft+1 of the
floating-point coprocessor. This instruction is not valid, and is undefined,
when the least significant bit of ft is non-zero.

In 64-bit mode, the contents of the doubleword at the memory location
specified by the effective address are loaded into the 64-bit register ft of the
floating point coprocessor.

The FR bit of the Status register (SR26) specifies whether all 32 registers of
the R4000 are addressable. If FR equals zero, this instruction is not defined
when the least significant bit of ft is non-zero. If FR equals one, ft may
specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

LDC1 Load Doublewor d to FPU

31 2526 2021 1516 0

LDC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 0 1 0 1

LDC1

MIPS R4000 Microprocessor User's Manual B-39

FPU Instruction Set Details

Operation:

Exceptions:

Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LDC1 Load Doubleword to FPU
(Coprocessor 1) LDC1

(continued)

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

32, 64 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
data ← LoadMemory(uncached, DOUBLEWORD, pAddr, vAddr, DATA)
if SR26 = 1 then /* 64-bit wide FGRs */

FGR[ft] ← data
elseif ft0 = 0 then /* valid specifier, 32-bit wide FGRs */

FGR[ft+1] ← data63...32
FGR[ft] ← data31...0

else /* undefined result if odd */
undefined_result

endif

Appendix B

B-40 MIPS R4000 Microprocessor User's Manual

Format:

LWC1 ft, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address. The contents of the
word at the memory location specified by the effective address is loaded
into register ft of the floating-point coprocessor.

The FR bit of the Status register specifies whether all 64-bit Floating-Point
registers are addressable. If FR equals zero, LWC1 loads either the high or
low half of the 16 even Floating-Point registers. If FR equals one, LWC1
loads the low 32-bits of both even and odd Floating-Point registers.

If either of the two least-significant bits of the effective address is non-zero,
an address error exception occurs.

LWC1Load Word to FPU

31 2526 2021 1516 0

LWC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 0 0 0 1

LWC1

MIPS R4000 Microprocessor User's Manual B-41

FPU Instruction Set Details

Operation:

Exceptions:

Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

LWC1Load Word to FPU
(Coprocessor 1)LWC1

(continued)

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

32, 64 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
mem ← LoadMemory(uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2...0 xor (BigEndianCPU || 02)
/* “mem” is aligned 64-bits from memory. Pick out correct bytes. */
if SR26 = 1 then /* 64-bit wide FGRs */

FGR[ft] ← undefined32 || mem31+8*byte...8*byte
else /* 32-bit wide FGRs */

FGR[ft] ← mem31+8*byte...8*byte
endif

Appendix B

B-42 MIPS R4000 Microprocessor User's Manual

Format:

MFC1 rt, fs

Description:

The contents of register fs from the floating-point coprocessor are stored
into processor register rt.

The contents of register rt are undefined for the instruction immediately
following MFC1.

The FR bit of the Status register specifies whether all 32 registers of the
R4000 are addressable. If FR equals zero, MFC1 stores either the high or
low half of the 16 even Floating-Point registers. If FR equals one, MFC1
stores the low 32-bits of both even and odd Floating-Point registers.

Operation:

Exceptions:

Coprocessor unusable exception

MFC1

11

Move From FPU

31 2526 2021 1516

COP1 MF rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MFC1

32 T: data ← FGR[fs]31...0

T+1: GPR[rt] ← data

64 T: data ← FGR[fs]31...0

T+1: GPR[rt] ← (data31)32 || data

MIPS R4000 Microprocessor User's Manual B-43

FPU Instruction Set Details

Format:

MOV.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in the
specified format and are copied into the FPU register specified by fd.

The move operation is non-arithmetic; no IEEE 754 exceptions occur as a
result of the instruction.

This instruction is valid only for single- or double-precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

MOV.fmtFloating-Point Move

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd MOV

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 1 00 0 0 0 0

MOV.fmt

T: StoreFPR(fd, fmt, ValueFPR(fs, fmt))

Appendix B

B-44 MIPS R4000 Microprocessor User's Manual

Format:

MTC1 rt, fs

Description:

The contents of register rt are loaded into the FPU general register at
location fs.

The contents of floating-point register fs is undefined for the instruction
immediately following MTC1.

The FR bit of the Status register specifies whether all 32 registers of the
R4000 are addressable. If FR equals zero, MTC1 loads either the high or
low half of the 16 even Floating-Point registers. If FR equals one, MTC1
loads the low 32-bits of both even and odd Floating-Point registers.

Operation:

Exceptions:

Coprocessor unusable exception

MTC1

11

Move To FPU

31 2526 2021 1516

COP1 MT rt

6 5 5

fs 0

5

11 10 0

(Coprocessor 1)

0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0

MTC1

32,64 T: data ← GPR[rt]31...0
T+1: if SR26 = 1 then /* 64-bit wide FGRs */

FGR[fs] ← undefined32 || data
else /* 32-bit wide FGRs */

FGR[fs] ← data
endif

MIPS R4000 Microprocessor User's Manual B-45

FPU Instruction Set Details

Format:

MUL.fmt fd, fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and arithmetically multiplied. The
result is rounded as if calculated to infinite precision and then rounded to
the specified format, according to the current rounding mode. The result
is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
 Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

MUL.fmtFloating-Point Multiply

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd MUL

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 1 0

MUL.fmt

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) * ValueFPR(ft, fmt))

Appendix B

B-46 MIPS R4000 Microprocessor User's Manual

Format:

NEG.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in the
specified format and the arithmetic negation is taken (polarity of the sign-
bit is changed). The result is placed in the FPU register specified by fd.

The negate operation is arithmetic; an NaN operand signals invalid
operation.

This instruction is valid only for single- or double-precision floating-point
formats. The operation is not defined if bit 0 of any register specification
is set and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception

NEG.fmt Floating-Point Negate

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd NEG

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 1 10 0 0 0 0

NEG.fmt

T: StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

MIPS R4000 Microprocessor User's Manual B-47

FPU Instruction Set Details

Format:

ROUND.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to nearest/even (0).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of –263 to 263– 1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 263 –1 is returned.

ROUND.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ROUND.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0

Round to Long ROUND.L.fmt

Appendix B

B-48 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

ROUND.L.fmt Floating-Point

Fixed-Point Format
Round to Long ROUND.L.fmt

(continued)

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

MIPS R4000 Microprocessor User's Manual B-49

FPU Instruction Set Details

Format:

ROUND.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the single
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round to the nearest/even
(RM = 0).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of –231 to 231 –1, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
231 –1 is returned.

ROUND.W.fmtFloating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd ROUND.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 1 1 0 00 0 0 0 0

Round to Single
ROUND.W.fmt

Appendix B

B-50 MIPS R4000 Microprocessor User's Manual

Operation:

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

ROUND.W.fmtFloating-Point

Fixed-Point Format
Round to Single

ROUND.W.fmt

(continued)

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

MIPS R4000 Microprocessor User's Manual B-51

FPU Instruction Set Details

Format:

SDC1 ft, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address.

In 32-bit mode, the contents of registers ft and ft+1 from the floating-point
coprocessor are stored at the memory location specified by the effective
address. This instruction is not valid, and is undefined, when the least
significant bit of ft is non-zero.

In 64-bit mode, the 64-bit register ft is stored to the contents of the
doubleword at the memory location specified by the effective address.
The FR bit of the Status register (SR26) specifies whether all 32 registers of
the R4000 are addressable. When FR equals zero, this instruction is not
defined if the least significant bit of ft is non-zero. If FR equals one, ft may
specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-
zero, an address error exception takes place.

SDC1Store Doubleword from FPU

31 2526 2021 1516 0

SDC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 1 1 0 1

SDC1

Appendix B

B-52 MIPS R4000 Microprocessor User's Manual

Operation:

Exceptions:

Coprocessor unusable
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SDC1Store Doubleword from FPU
(Coprocessor 1)SDC1

(continued)

32 T: vAddr ← (offset15)16 || offset15...0) + GPR[base]
64 T: vAddr ← (offset15)48 || offset15...0) + GPR[base]

32,64 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
if SR26 = 1 /* 64-bit wide FGRs */

data ← FGR[ft]
elseif ft0 = 0 then /* valid specifier, 32-bit wide FGRs */

data ← FGR[ft+1] || FGR[ft]
else /* undefined for odd 32-bit reg #s */

data ← undefined64

endif
StoreMemory(uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual B-53

FPU Instruction Set Details

Format:

SQRT.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified format and the positive arithmetic square root is taken. The
result is rounded as if calculated to infinite precision and then rounded to
the specified format, according to the current rounding mode. If the value
of fs corresponds to –0, the result will be –0. The result is placed in the
floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception
Inexact exception

SQRT.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt fs fd SQRT

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 1 0 0

Square Root SQRT.fmt

0
0 0 0 0 0

T: StoreFPR(fd, fmt, SquareRoot(ValueFPR(fs, fmt)))

Appendix B

B-54 MIPS R4000 Microprocessor User's Manual

Format:

SUB.fmt fd, fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are
interpreted in the specified format and the value in the ft field is subtracted
from the value in the fs field. The result is rounded as if calculated to
infinite precision and then rounded to the specified format, according to
the current rounding mode. The result is placed in the floating-point
register specified by fd. This instruction is valid only for single- or double-
precision floating-point formats.

The operation is not defined if bit 0 of any register specification is set and
the FR bit in the Status register equals zero, since the register numbers
specify an even-odd pair of adjacent coprocessor general registers. When
the FR bit in the Status register equals one, both even and odd register
numbers are valid.

Operation:

Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

SUB.fmtFloating-Point Subtract

31 0

6 5 5 5 5 6

COP1 fmt ft fs fd SUB

11 1021 20 16 1526 25 6 5

0 1 0 0 0 1 0 0 0 0 0 1

SUB.fmt

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) – ValueFPR(ft, fmt))

MIPS R4000 Microprocessor User's Manual B-55

FPU Instruction Set Details

Format:

SWC1 ft, offset(base)

Description:

The 16-bit offset is sign-extended and added to the contents of general
register base to form an unsigned effective address. The contents of
register ft from the floating-point coprocessor are stored at the memory
location specified by the effective address.

The FR bit of the Status register specifies whether all 64-bit floating-point
registers are addressable.

If FR equals zero, SWC1 stores either the high or low half of the 16 even
floating-point registers.

If FR equals one, SWC1 stores the low 32-bits of both even and odd
floating-point registers.

If either of the two least-significant bits of the effective address are non-
zero, an address error exception occurs.

SWC1 Store Word from FPU

31 2526 2021 1516 0

SWC1 base ft offset

6 5 5 16

(Coprocessor 1)

1 1 1 0 0 1

SWC1

Appendix B

B-56 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:

Coprocessor unusable
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

SWC1 Store Word from FPU
(Coprocessor 1) SWC1

(continued)

32 T: vAddr ← ((offset15)16 || offset15...0) + GPR[base]
64 T: vAddr ← ((offset15)48 || offset15...0) + GPR[base]

32, 64 (pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1...3 || (pAddr2...0 xor (ReverseEndian || 02))
byte ← vAddr2...0 xor (BigEndianCPU || 02)
/* the bytes of the word are put in the correct byte lanes in
 * “data” for a 64-bit path to memory */
if SR26 = 1 then /* 64-bit wide FGRs */

data ← FGR[ft]63-8*byte...0 || 08*byte

else /* 32-bit wide FGRs */
data ← 032-8*byte || FGR[ft] || 08*byte

endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

MIPS R4000 Microprocessor User's Manual B-57

FPU Instruction Set Details

Format:

TRUNC.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in
the specified source format, fmt, and arithmetically converted to the long
fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round toward zero (1).

This instruction is valid only for conversion from single- or double-
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of –263 to 263–1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 263–1 is returned.

TRUNC.L.fmt Floating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd TRUNC.L

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 01

Truncate to Long TRUNC.L.fmt

Appendix B

B-58 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

TRUNC.L.fmt Floating-Point

Fixed-Point Format
Truncate to Long TRUNC.L.fmt

(continued)

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

MIPS R4000 Microprocessor User's Manual B-59

FPU Instruction Set Details

Format:

TRUNC.W.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in the
specified source format fmt and arithmetically converted to the single
fixed-point format. The result is placed in the FPU register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is
rounded as if the current rounding mode is round toward zero (RM = 1).

This instruction is valid only for conversion from a single- or double-
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register equals
zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals
one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of –231 to 231–1, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
–231 is returned.

TRUNC.W.fmtFloating-Point

31 0

6 5 5 5 5 6

COP1 fmt 0 fs fd TRUNC.W

11 1021 20 16 1526 25

Fixed-Point Format

6 5

0 1 0 0 0 1 0 0 1 1 0 10 0 0 0 0

Truncate to SingleTRUNC.W.fmt

Appendix B

B-60 MIPS R4000 Microprocessor User's Manual

Operation:

 Exceptions:

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

TRUNC.W.fmtTRUNC.W.fmt Floating-Point

Fixed-Point Format
Truncate to Single

(continued)

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

MIPS R4000 Microprocessor User's Manual B-61

FPU Instruction Set Details

FPU Instruction Opcode Bit Encoding

Figure B-3 Bit Encoding for FPU Instructions

31...29
0
1
2
3
4
5
6
7

28...26
Opcode

br

0 1 2 3 4 5 6 7

0
1

δ
δ δ δ δ

23...21
sub

0 1 2 3 4 5 6 725...24

δ δ δ
δ

LWC1
SWC1

COP1

LDC1

SDC1

DMFη

Lη δ δ
δ δ δ δδ δ δδ

MF
BC

CF MT

S

CT

D2
3

0
1

γ γ
γ γ γ γ

18...16
0 1 2 3 4 5 6 720...19

γ γ γ
BCF BCFLBCT BCTL

2
3

γ γ
γ

Wδ δ

γ γ γ γγ γ γγ
γ γ γ γγ γ γγ

DMTη

Appendix B

B-62 MIPS R4000 Microprocessor User's Manual

Figure B-3 (cont.) Bit Encoding for FPU Instructions

Key:

γ Operation codes marked with a gamma cause a reserved
instruction exception. They are reserved for future versions of the
architecture.

δ Operation codes marked with a delta cause unimplemented
operation exceptions in all current implementations and are
reserved for future versions of the architecture.

η Operation codes marked with an eta are valid only when MIPS III
instructions are enabled. Any attempt to execute these without
MIPS III instructions enabled causes an unimplemented operation
exception.

0 1 2 3 4 5 6 7
2...0

5...3
function

0
1
2
3
4
5
6

ADD SUB

7

δ δ δ δ

CVT.S

C.F

MUL DIV ABS MOV NEGSQRT
ROUND.Lη TRUNC.Lη CEIL.Lη FLOOR.Lη ROUND.W TRUNC.W CEIL.W FLOOR.W

δ δ δ δ

CVT.D CVT.W

C.UN C.EQ C.UEQ C.OLE C.ULE
C.LT C.NGEC.SF C.NGLE C.SEQ C.NGL C.LE C.NGT

C.OLT C.ULT

δ δ δ δδ δ δ δ
δ δ CVT.Lη δ δ

δ δ δδδ δ δ δ

MIPS R4000 Microprocessor User's Manual C-1

Subblock Ordering

C

A block of data elements (whether bytes, halfwords, words, or
doublewords) can be retrieved from storage in two ways: in sequential
order, or using a subblock order. This chapter describes these retrieval
methods, with an emphasis on subblock ordering.

Appendix C

C-2 MIPS R4000 Microprocessor User's Manual

C.1 Sequential Ordering
Sequential ordering retrieves the data elements of a block in serial, or
sequential, order.

Figure C-1 shows a sequential order in which byte 0 is taken first and byte
7 is taken last.

Figure C-1 Retrieving a Data Block in Sequential Order

C.2 Subblock Ordering
Subblock ordering allows the system to define the order in which the data
elements are retrieved. The smallest data element of a block transfer for
the R400 is a doubleword, and Figure C-2 shows the retrieval of a block of
data that consists of 8 doublewords, in which DW2 is taken first.

Figure C-2 Retrieving Data in a Subblock Order

Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

Byte 0
taken first

Byte 1
taken second Byte 2

taken third

Byte 3
taken fourth

Byte 4
taken fifth

Byte 5
taken sixth

Byte 6
taken seventh Byte 7

taken last

DW0 DW1 DW2 DW3 DW4 DW5 DW6 DW7

DW0
taken third

DW1
taken fourth DW2

taken first

DW 3
taken second

DW4
taken seventh

DW5
taken eighth

DW6
taken fifth DW7

taken sixth

2 3 0 1 6 7 4 5Order of retrieval

quadword

octalword

hexword (block)

MIPS R4000 Microprocessor User's Manual C-3

Subblock Ordering

Using the subblock ordering shown in Figure C-2, the doubleword at the
target address is retrieved first (DW2), followed by the remaining
doubleword (DW3) in this quadword.

Next, the quadword that fills out the octalword are retrieved in the same
order as the prior quadword (in this case DW0 is followed by DW 1). This
is followed by the remaining octalword (DW8, DW7, DW4, DW5), that fills
out the hexword.

It may be easier way to understand subblock ordering by taking a look at
the method used for generating the address of each doubleword as it is
retrieved. The subblock ordering logic generates this address by
executing a bit-wise exclusive-OR (XOR) of the starting block address with
the output of a binary counter that increments with each doubleword,
starting at doubleword zero (0002).

Using this scheme, Tables C-1 through Table C-3 list the subblock ordering
of doublewords for a 32-word block, based on three different starting-
block addresses: 00102, 10112, and 01012. The subblock ordering is
generated by an XOR of the subblock address (either 00102, 10112, and
01012) with the binary count of the doubleword (00002 through 11112).
Thus, the eighth doubleword retrieved from a block of data with a starting
address of 00102 is found by taking the XOR of address 00102 with the
binary count of DW8, 01112. The result is 01012, or DW5 (shown in Table
C-1).

The remaining tables illustrate this method of subblock ordering, using
various address permutations.

Appendix C

C-4 MIPS R4000 Microprocessor User's Manual

Table C-1 Sequence of Doublewords Transferred Using Subblock Ordering: Address 00102

Cycle
Starting Block

Address
Binary Count

Double Word
Retrieved

1 0010 0000 0010

2 0010 0001 0011

3 0010 0010 0000

4 0010 0011 0001

5 0010 0100 0110

6 0010 0101 0111

7 0010 0110 0100

8 0010 0111 0101

9 0010 1000 1010

10 0010 1001 1011

11 0010 1010 1000

12 0010 1011 1001

13 0010 1100 1110

14 0010 1101 1111

15 0010 1110 1100

16 0010 1111 1101

MIPS R4000 Microprocessor User's Manual C-5

Subblock Ordering

Table C-2 Sequence of Doublewords Transferred Using Subblock Ordering: Address 10112

Cycle
Starting Block

Address
Binary Count

Double Word
Retrieved

1 1011 0000 1011

2 1011 0001 1010

3 1011 0010 1001

4 1011 0011 1000

5 1011 0100 1111

6 1011 0101 1110

7 1011 0110 1101

8 1011 0111 1100

9 1011 1000 0011

10 1011 1001 0010

11 1011 1010 0001

12 1011 1011 0000

13 1011 1100 0111

14 1011 1101 0110

15 1011 1110 0101

16 1011 1111 0100

Appendix C

C-6 MIPS R4000 Microprocessor User's Manual

Table C-3 Sequence of Doublewords Transferred Using Subblock Ordering: Address 01012

Cycle
Starting Block

Address
Binary Count

Double Word
Retrieved

1 0101 0000 0101

2 0101 0001 0100

3 0101 0010 0111

4 0101 0011 0110

5 0101 0100 0001

6 0101 0101 0000

7 0101 0110 0011

8 0101 0111 0010

9 0101 1000 1101

10 0101 1001 1100

11 0101 1010 1111

12 0101 1011 1110

13 0101 1100 1001

14 0101 1101 1000

15 0101 1110 1011

16 0101 1111 1010

MIPS R4000 Microprocessor User's Manual D-1

Output Buffer ∆i/∆t Control Mechanism

D

The speed of the R4000 output drivers is controlled by a negative feedback
loop that insures the drive-off times are only as fast as necessary to meet
the system requirement for single cycle transfers. This guarantees the
minimum ground bounce from L*(∆i/∆t) of the switching buffers,
consistent with the system timing requirements.

D.1 Mode Bits
Four bits are used to control the pull-up and pull-down delays. These bits
are initially set to the values in the mode bits InitN(3:0) for pull-up and
InitP(3:0) for pull-down. If the ∆i/∆t control mechanism is enabled, it is
recommended to load the mode bits InitP(3:0) and InitN(3:0) to the values
which provide the slowest slew rate.

Under normal conditions, the ∆i/∆t control mechanism is enabled to
compensate the output buffer delay for any changes in the temperature or
power supply voltage. The EnblDPLL mode bit is set for this mode of
operation.

Appendix D

D-2 MIPS R4000 Microprocessor User's Manual

For situations where the jitter associated with the operation of the ∆i/∆t
control mechanism cannot be tolerated and where the variation in
temperature and supply voltage after ColdReset* is expected to be small,
the ∆i/∆t control mechanism can be instructed to lock during ColdReset*
and thereafter retain its control values. The EnblDPLLR mode bit is set
and EnblDPLL is cleared for this mode of operation.

In addition, if both the EnblDPLL and EnblDPLLR mode bits are cleared,
the speed of the output buffers are set by the InitP(3:0) and InitN(3:0)
mode bits.

D.2 Delay Times
Currently, delays of 0.5T, 0.75T, and T are supported, corresponding to the
Drv0_50, Drv0_75, and Drv1_00 mode bits, where T is the MasterClock
period. For example, in Drv0_75 mode, the entire signal transmission path
including the clock-to-Q, output buffer drive time, board flight time, input
buffer delay, and setup time will be traversed in 0.75 * the MasterClock
period, plus or minus the jitter due to the ∆i/∆t control mechanism.

All output drivers on the R4000, with the exception of the clock drivers, are
controlled by the ∆i/∆t control mechanism. The delay due to the output
buffer drive time component of the SCAddr(17:0), SCOEB, SCWRB,
SCDCSB, and SCTCSB pins is approximately 66% of the delay of drivers
of the other pins.

By measuring the transmission line delay of the trace that connects the
R4000 IO_Out and IO_In pins, the R4000 determines the worst case
propagation delay from an R4000 output driver to a receiving device. This
representative trace must have one and a half times the length and
approximately the same capacitive loading as the worst case trace on any
R4000 output.

MIPS R4000 Microprocessor User's Manual D-3

Output Buffer Control Mechanism

The designer determines the trace characteristics by:

• measuring the longest path from an R4000 output driver to a
receiving device, L

• calculating the maximum capacitive loading on any signal pin,
C

• connecting an incident-wave trace of length L with a capacitive
loading of C between the IO_In and IO_Out pins of the R4000

• connecting a reflected wave trace of length L/2 to the IO_In
pin of the R4000.

An R4000 with appropriate traces connected to the IO_In and IO_Out
pins is illustrated in Figure D-1.

Figure D-1 O_In/IO_Out Board Trace

CPU Board

R4000

“Reflected wave” trace

“Incident Wave” Trace
C Load = C

Length = L/2

IO_InIO_Out

a
b

c

 L = a + b + c + d

 C = Total Capacitance Loading

d

The longest trace from an
R4000 output driver to a
receiving device

 of the worst case trace

Appendix D

D-4 MIPS R4000 Microprocessor User's Manual

MIPS R4000 Microprocessor User's Manual E-1

PLL Passive Components

E

The Phase Locked Loop circuit requires several passive components for
proper operation, which are connected to PLLCap0, PLLCap1, VccP, and
VssP, as illustrated in Figure E-1.

In addition, the capacitors for PLLCap0 (Cp) and PLLCap1 (Cp) can be
connected to either VssP (as shown), VccP, or one to VssP and one to
VccP. Note that C2 and the Cp capacitors are incorporated into both the
179PGA and 447PGA package designs as surface-mounted chip
capacitors.

Appendix E

E-2 MIPS R4000 Microprocessor User's Manual

Figure E-1 PLL Passive Components

VccP

R4000

PLLCap1

C1 C3

VssP

Vss

Vcc

PLLCap0

Cp

Cp

C2

R

R L

L

C1, C3,
Rs and Ls
are Board
Caps

%1

%2

MIPS R4000 Microprocessor User's Manual E-3

PLL Passive Components

Figure E-2 shows a top view of the 179-pin package with capacitors.

Figure E-2 179-Pin Package

Figure E-3 shows a top view of the 447-pin package with chip capacitors.

Figure E-3 447-Pin Package

It is essential to isolate the analog power and ground for the PLL circuit
(VccP/VssP) from the regular power and ground (Vcc/Vss). Initial
evaluations have yielded good results with the following values:

R = 5 ohms C1 = 1 nF C2 = 82 nF

C3 = 10 µF Cp = 470 pF

Since the optimum values for the filter components depend upon the
application and the system noise environment, these values should be
considered as starting points for further experimentation within your
specific application. In addition, the chokes (inductors: L) can be
considered for use as an alternative to the resistors (R) for use in filtering
the power supply.

%1

C2

%2

x: Vss-Vcc Bypass Caps

x

x

x

x

x

die
C2: VssP-VccP Bypass Caps
%1, %2: PLL Caps

%1 C2 %2

x: Vss-Vcc Bypass Capsx

x x

die C2: VssP-VccP Bypass Caps
%1, %2: PLL Caps

x

x

x

x x

Appendix E

E-4 MIPS R4000 Microprocessor User's Manual

MIPS R4000 Microprocessor User's Manual F-1

Coprocessor 0 Hazards

F

The contents of the System Coprocessor registers and the TLB affect the
operation of the processor in many ways. For instance, an instruction that
changes CP0 data also affects subsequent instructions that use the data.

In the CPU, general registers are interlocked and the result of an
instruction can generally be used by the next instruction; if the result is not
available right away, the processor stalls until it is available. CP0 registers
and the TLB are not interlocked, however; there may be some delay before
a value written by one instruction is available to following instructions.

There is a required-data dependence between an instruction that changes a
register or TLB entry (a writer) and the next instruction that uses it (a user).
(A writer can write multiple data items, forming multiple writer/user
pairs.) The writer/user instruction pair places a hazard on the data if there
must be a delay between the time the writer instruction writes the data,
and the user instruction can use the data.

In addition to instructions, events can be writers and users of CP0
information. For instance, an exception writes information to CP0
registers and events that occur for every instruction, like an instruction

Appendix F

F-2 MIPS R4000 Microprocessor User's Manual

fetch, use CP0 information. Therefore, when manipulating CP0 contents,
the systems programmer must identify hazards and write code that avoids
these hazards.

Table F-1 describes how to identify and avoid hazards, listing instructions
and events that use CP0 registers and the TLB. This table also tells when
written information is available (column 3) and when this latest
information can actually be used (column 2). Exception event writer timing
refers to the instruction identified with the exception; user event timing
information is the pipestage of each instruction during which the user
event uses the data. In the case of a hazard, the number of instructions
required between a writer and user is:

available_stage - (use_stage + 1)

To identify a hazard, look for an instruction/event writer/user pair that
has a required-data dependence and use the timing information in the
table to calculate the delay required between the writer and user. If no
delay is required, there is no hazard. If there is a hazard, place enough
instructions between the writer and user so that the written information is
available or effective when the user needs it.

NOTE: Any instructions inserted between a writer/reader pair with
a hazard must not depend on or modify the data creating the hazard
(for example NOP instructions may be used).

The following steps are used to determine a hazard delay:

1. Find the pipeline stage of the writer instruction in which the result
is available. For example, the MTC0 instruction writes a CP0
general register, and the new value is available at stage 7.

2. Find the pipeline stage in which the user instruction reads or uses
the data item that the writer changes. The TLBWR instruction, for
example, uses different registers through different stages; all source
register values must be stable by stage 5 and remain unchanged
through stage 8.

 3. Calculate the number of instructions that must be inserted between
the hazardous pair, by using this formula: available_stage -
(use_stage + 1). For example, with an MTC0/TLBWR pair, MTC0
data is available at stage 7, and TLBWR data must be stable by
stage 5 so the computation is: 7 - (5 + 1) = 1. This means 1
instruction must be inserted between the MTC0 and TLBWR. If the
result of the computation is less than or equal to zero, there is no
hazard and no instructions are required between the pair.

MIPS R4000 Microprocessor User's Manual F-3

Coprocessor 0 Hazards

Table F-1 R4000 Coprocessor 0 Data Writer and User Timing

EntryHi.ASID refers to the ASID field of the EntryHi register.
Config[K0, DB] refers to the K0 and DB fields of the Config register.

α The EXL and ERL bits in the Status register are permanently
cleared in stage 8, if no exceptions abort the ERET. However the
effect of clearing them is visible to an instruction fetch starting in
stage 4, so the “returned to” instructions use the modified values in
the Status register.

 Instruction or Event CP0 Data Used, Stage Used CP0 Data Written, Stage Available
MTC0 / DMTC0 CPR[0,rd] 7γδ
MFC0 / DMFC0 CPR[0,rd] 4βγ

TLBR Index, TLB 5-7
PageMask, EntryHi,
EntryLo0, EntryLo1

8

TLBWI
TLBWR

Index or Random,
PageMask, EntryHi,
EntryLo0, EntryLo1

5-8 TLB 8

TLBP PageMask, EntryHi 3-6 Index 7

ERET
EPC or ErrorEPC, TLB 4 Status[EXL, ERL] 4-8α
Status 3 LLbit 7

Index Load Tag TagLo, TagHi, ECC 8βε
Index Store Tag TagLo, TagHi, ECC 8ε
CACHE Hit ops Status[CH] 8ε
CACHE ops cache line (see note) ε cache line (see note) ε

Load/Store

EntryHi.ASID
Status[KSU, EXL, ERL, RE],
Config[K0, DB], TLB

4

Config[SB] 7
WatchHi, WatchLo 4-5

Load/Store exception
EPC, Status, Cause,
BadVaddr, Context, XContext

8

Instruction fetch
exception

EPC, Status 8
Cause, BadVAddr, Context,
XContext

4

Instruction fetch

EntryHi[ASID],
Status[KSU, EXL, ERL, RE],
Config[K0, IB]

0α

Config.SB 3
TLB (mapped addresses) 2

Coproc. usable test Status[CU, KSU, EXL, ERL] 2
Interrupt signals
sampled

Cause[IP],
Status[IM, IE, EXL, ERL]

3

TLB shutdown Status.TS 7

Appendix F

F-4 MIPS R4000 Microprocessor User's Manual

β Only one instruction is needed to separate Index Load Tag and
MFC0 Tag, even though table timing indicates otherwise.

γ An MTC0 of a CPR must not be immediately followed by MFC0 of
the same CPR.

δ With an MTC0 to Status that modifies KSU and sets EXL or ERL, it
is possible for the five instructions following the MTC0 to be
executed incorrectly in the new mode, and not correctly in the
kernel mode. This can be avoided by setting EXL first, and only
later changing the value of KSU.

ε There must be two non-load, non-CACHE instructions between a
store and a CACHE instruction directed to the same primary cache
line as the store.

Table F-2 lists some hazard conditions, and the number of instructions that
must come between the writer and the user. The table shows the data item
that creates the hazard, and the calculation for the required number of
intervening instructions.

Table F-2 CP0 Hazards and Calculated Delay Times.

†. You cannot depend on a delay in effect if the instruction execution order is changed by exceptions.
In this case, for example, the minimum delay for IE to be effective is the maximum delay before a
pending, enabled interrupt can occur.

Writer → User Hazard On
Instructions

Between
Calculation

TLBWR/
TLBWI

→ TLBP TLB entry 3 8-(4+1)

TLBWR/
TLBWI

→ load/store using new TLB
entry

TLB entry 3 8-(4+1)

TLBWR/
TLBWI

→ I-fetch using new TLB
entry

TLB entry 5 8-(2+1)

MTCO
Status[CU]

→ Coprocessor instruction
needs CU set

Status[CU] 4 7-(2+1)

TLBR → MFC0 EntryHi EntryHi 3 8-(4+1)

MTC0 EntryLo0 → TLBWR/TLBWI EntryLo0 1 7-(5+1)

TLBP → MFC0 Index Index 2 7-(4+1)

MTC0 EntryHi → TLBP EntryHi 1 7-(5+1)

MTC0 EPC → ERET EPC 2 7-(4+1)

MTC0 Status → ERET Status 3 7-(3+1)

MTC0
Status[IE]

→ instruction interrupted† Status[IE] 3 7-(3+1)

MIPS R4000 Microprocessor User's Manual G-1

R4000 Pinouts

G

This Appendix shows the pinouts for the three microprocessor
configurations: R4000PC, R4000SC, and R4000MC.

NOTE: This entire Appendix, Appendix G, is new for the
second edition.

Appendix G

G-2 MIPS R4000 Microprocessor User's Manual

G.1 Pinout of R4000PC
Figure G-1 shows the physical pinout of the R4000PC. Table G-1 lists
the signal-to-pin correspondence.

Figure G-1 R4000PC Physical Pinout

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • •

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

V

U

T

R

P

N

M

L

K

J

H

G

F

E

D

C

B

A

V

U

T

R

P

N

M

L

K

J

H

G

F

E

D

C

B

A

R4000 PC Pinout

x

Bottom

MIPS R4000 Microprocessor User's Manual G-3

R4000 Pinouts

Table G-1 Signal-to-Pin Correspondences for the R4000PC

†. This node has capacitors for the PLL premounted to the package.

R4000 PC Pkg
Function Pin

R4000 PC Pkg
Function Pin

R4000 PC Pkg
Function Pin

ColdReset* T14 ExtRqst* U2 Fault* B16
NC U10 Vcc T9 IOIn T13
IOOut U12 Int*0 N2 Int*1 L3
Int*2 K3 Int*3 J3 Int*4 H3
Int*5 F2 JTCK H17 JTDI G16
JTDO F16 JTMS E16 MasterClock J17
MasterOut P17 ModeClock B4 ModeIn U4
NMI* U7 PLLCap0 ****† PLLCap1 **** †

RClock0 T17 RClock1 R16 RdRdy* T5
Release* V5 Reset* U16 SyncIn J16
SyncOut P16 SysAD0 J2 SysAD1 G2
SysAD2 E1 SysAD3 E3 SysAD4 C2
SysAD5 C4 SysAD6 B5 SysAD7 B6
SysAD8 B9 SysAD9 B11 SysAD10 C12
SysAD11 B14 SysAD12 B15 SysAD13 C16
SysAD14 D17 SysAD15 E18 SysAD16 K2
SysAD17 M2 SysAD18 P1 SysAD19 P3
SysAD20 T2 SysAD21 T4 SysAD22 U5
SysAD23 U6 SysAD24 U9 SysAD25 U11
SysAD26 T12 SysAD27 U14 SysAD28 U15
SysAD29 T16 SysAD30 R17 SysAD31 M16
SysAD32 H2 SysAD33 G3 SysAD34 F3
SysAD35 D2 SysAD36 C3 SysAD37 B3
SysAD38 C6 SysAD39 C7 SysAD40 C10
SysAD41 C11 SysAD42 B13 SysAD43 A15
SysAD44 C15 SysAD45 B17 SysAD46 E17
SysAD47 F17 SysAD48 L2 SysAD49 M3
SysAD50 N3 SysAD51 R2 SysAD52 T3
SysAD53 U3 SysAD54 T6 SysAD55 T7
SysAD56 T10 SysAD57 T11 SysAD58 U13
SysAD59 V15 SysAD60 T15 SysAD61 U17
SysAD62 N16 SysAD63 N17 SysADC0 C8

Appendix G

G-4 MIPS R4000 Microprocessor User's Manual

Table G-1 (cont.) Signal-to-Pin Correspondences for the R4000PC

R4000 PC Pkg
Function Pin

R4000 PC Pkg
Function Pin

R4000 PC Pkg
Function Pin

SysADC1 G17 SysADC2 T8 SysADC3 L16
SysADC4 B8 SysADC5 H16 SysADC6 U8
SysADC7 L17 SysCmd0 E2 SysCmd1 D3
SysCmd2 B2 SysCmd3 A5 SysCmd4 B7
SysCmd5 C9 SysCmd6 B10 SysCmd7 B12
SysCmd8 C13 SysCmdP C14 TClock0 C17
TClock1 D16 VCCOk M17 ValidIn* P2
ValidOut* R3 WrRdy* C5 VccP K17
VssP K16 Vcc A2 Vcc A4
Vcc A7 Vcc A9 Vcc A11
Vcc A13 Vcc A16 Vcc B18
Vcc C1 Vcc D18 Vcc F1
Vcc G18 Vcc H1 Vcc J18
Vcc K1 Vcc L18 Vcc M1
Vcc N18 Vcc R1 Vcc T18
Vcc U1 Vcc V3 Vcc V6
Vcc V8 Vcc V10 Vcc V12
Vcc V14 Vcc V17 Vss A3
Vss A6 Vss A8 Vss A10
Vss A12 Vss A14 Vss A17
Vss A18 Vss B1 Vss C18
Vss D1 Vss F18 Vss G1
Vss H18 Vss J1 Vss K18
Vss L1 Vss M18 Vss N1
Vss P18 Vss R18 Vss T1
Vss U18 Vss V1 Vss V2
Vss V4 Vss V7 Vss V9
Vss V11 Vss V13 Vss V16
Vss V18

MIPS R4000 Microprocessor User's Manual G-5

R4000 Pinouts

G.2 Pinout of R4000MC/SC Package Pinout
Figure G-2 shows the physical pinout of the R4000MC and SC. Table
G-2 lists the signal-to-pin correspondence.

Figure G-2 R4000MC/SC Physical Pinout

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •

39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

AW AU AR AN AL AJ AG AE AC AA W U R N L J G E C A
AV AT AP AM AK AH AF AD AB Y V T P M K H F D B

AW AU AR AN AL AJ AG AE AC AA W U R N L J G E C A
AV AT AP AM AK AH AF AD AB Y V T P M K H F D B

R4000 MC/SC 447 Pinout
(bottom)

Appendix G

G-6 MIPS R4000 Microprocessor User's Manual

Table G-2 Signal-to-Pin Correspondences for the R4000MC/SC

†. Used only in the MC part. Must be tied to Vcc for the SC part.
‡. This node has capacitors for the PLL premounted to the package.

R4000 PC Pkg
Function Pin

R4000 PC Pkg
Function Pin

R4000 PC Pkg
Function Pin

ColdReset* AW37 ExtRqst* AV2 Fault* C39
NC AV24 Vcc AV20 IOIn AV32
IOOut AV28 Int*0 AL1 IvdAck*† AA35
IvdErr*† AA39 JTCK U39 JTDI N39
JTDO J39 JTMS G37 MasterClock AA37
MasterOut AJ39 ModeClock B8 ModeIn AV8
NMI* AV16 PLLCap0 ****‡ PLLCap1 ****‡

RClock0 AM34 RClock1 AL33 RdRdy* AW7
Release* AV12 Reset* AU39 SC64Addr Y2
SCAPar0 U5 SCAPar1 U1 SCAPar2 P4
SCAdd1 AL5 SCAdd2 AG1 SCAdd3 AE7
SCAdd4 AC1 SCAdd5 AC5 SCAdd6 AC3
SCAdd7 AA1 SCAdd8 AB4 SCAdd9 AA5
SCAddr10 AA7 SCAddr11 AA3 SCAddr12 W3
SCAddr13 Y6 SCAddr14 W5 SCAddr15 W7
SCAddr16 W1 SCAddr17 U3 SCAddr0W AN7
SCAddr0X AN5 SCAddr0Y AM6 SCAddr0Z AL7
SCDCS* M6 SCDChk0 G19 SCDChk1 T34
SCDChk2 AP20 SCDChk3 AD34 SCDChk4 C19
SCDChk5 R37 SCDChk6 AU19 SCDChk7 AE37
SCDChk8 C17 SCDChk9 N37 SCDChk10 AU17
SCDChk11 AG37 SCDChk12 E19 SCDChk13 R35
SCDChk14 AR19 SCDChk15 AE35 SCData0 R3
SCData1 R7 SCData2 L5 SCData3 F8
SCData4 C9 SCData5 F12 SCData6 G15
SCData7 E17 SCData8 G21 SCData9 C25
SCData10 G25 SCData11 E29 SCData12 G31
SCData13 C35 SCData14 K36 SCData15 N35
SCData16 AE3 SCData17 AG5 SCData18 AK4
SCData19 AN9 SCData20 AU9 SCData21 AN13
SCData22 AT14 SCData23 AR17 SCData24 AT22

MIPS R4000 Microprocessor User's Manual G-7

R4000 Pinouts

Table G-2 (cont.) Signal-to-Pin Correspondences for the R4000MC/SC

R4000 PC Pkg
Function Pin

R4000 PC Pkg
Function Pin

R4000 PC Pkg
Function Pin

SCData25 AU25 SCData26 AN27 SCData27 AR29
SCData28 AN31 SCData29 AR35 SCData30 AK36
SCData31 AG35 SCData32 T6 SCData33 L3
SCData34 L7 SCData35 E7 SCData36 G11
SCData37 E13 SCData38 E15 SCData39 G17
SCData40 C23 SCData41 F24 SCData42 E27
SCData43 D30 SCData44 C33 SCData45 E35
SCData46 L35 SCData47 R33 SCData48 AF4
SCData49 AJ3 SCData50 AJ7 SCData51 AP8
SCData52 AT10 SCData53 AR13 SCData54 AR15
SCData55 AT18 SCData56 AU23 SCData57 AT26
SCData58 AR27 SCData59 AN29 SCData60 AP32
SCData61 AN35 SCData62 AJ35 SCData63 AE33
SCData64 V4 SCData65 R5 SCData66 N5
SCData67 E5 SCData68 G9 SCData69 E11
SCData70 G13 SCData71 D14 SCData72 C21
SCData73 D22 SCData74 E25 SCData75 G27
SCData76 C31 SCData77 F32 SCData78 J35
SCData79 M34 SCData80 AC7 SCData81 AE5
SCData82 AG7 SCData83 AR5 SCData84 AR9
SCData85 AR11 SCData86 AN15 SCData87 AP16
SCData88 AU21 SCData89 AN23 SCData90 AR25
SCData91 AP28 SCData92 AU31 SCData93 AR33
SCData94 AL35 SCData95 AH34 SCData96 U7
SCData97 N3 SCData98 N7 SCData99 C5
SCData100 E9 SCData101 C11 SCData102 C13
SCData103 F16 SCData104 E21 SCData105 G23
SCData106 C27 SCData107 F28 SCData108 E31
SCData109 G33 SCData110 J37 SCData111 N33
SCData112 AD6 SCData113 AG3 SCData114 AJ5
SCData115 AU5 SCData116 AN11 SCData117 AU11
SCData118 AU13 SCData119 AN17 SCData120 AR21

Appendix G

G-8 MIPS R4000 Microprocessor User's Manual

Table G-2 (cont.) Signal-to-Pin Correspondences for the R4000MC/SC

R4000 PC Pkg
Function Pin

R4000 PC Pkg
Function Pin

R4000 PC Pkg
Function Pin

SCData121 AP24 SCData122 AU27 SCData123 AT30
SCData124 AU33 SCData125 AN33 SCData126 AL37
SCData127 AG33 SCOE* N1 SCTCS* J1
SCTChk0 AN21 SCTChk1 AN19 SCTChk2 AU15
SCTChk3 AP12 SCTChk4 AU7 SCTChk5 AR7
SCTChk6 AH6 SCTag0 K4 SCTag1 G7
SCTag2 C7 SCTag3 D10 SCTag4 C15
SCTag5 D18 SCTag6 F20 SCTag7 E23
SCTag8 D26 SCTag9 C29 SCTag10 G29
SCTag11 E33 SCTag12 G35 SCTag13 L33
SCTag14 L37 SCTag150 P36 SCTag16 AF36
SCTag17 AJ37 SCTag18 AJ33 SCTag19 AN37
SCTag20 AU35 SCTag21 AR31 SCTag22 AU29
SCTag23 AN25 SCTag24 AR23 SCWrW* J5
SCWrX* J7 SCWrY* H6 SCWrZ* G5
Status0 U33 Status1 U35 Status2 V36
Status3 W35 Status4 W37 Status5 AC37
Status6 AC35 Status7 AC33 SyncIn W39
SyncOut AN39 SysAD0 T2 SysAD1 M2
SysAD2 J3 SysAD3 G3 SysAD4 C1
SysAD5 A3 SysAD6 A9 SysAD7 A13
SysAD8 A21 SysAD9 A25 SysAD10 A29
SysAD11 A33 SysAD12 B38 SysAD13 E37
SysAD14 G39 SysAD15 L39 SysAD16 AD2
SysAD17 AH2 SysAD18 AL3 SysAD19 AN3
SysAD20 AU1 SysAD21 AW3 SysAD22 AW9
SysAD23 AW13 SysAD24 AW21 SysAD25 AW25
SysAD26 AW29 SysAD27 AW33 SysAD28 AV38
SysAD29 AR37 SysAD30 AM38 SysAD31 AH38
SysAD32 R1 SysAD33 L1 SysAD34 H2
SysAD35 E1 SysAD36 C3 SysAD37 A5
SysAD38 A11 SysAD39 A15 SysAD40 A23

MIPS R4000 Microprocessor User's Manual G-9

R4000 Pinouts

Table G-2 (cont.) Signal-to-Pin Correspondences for the R4000MC/SC

R4000 PC Pkg
Function Pin

R4000 PC Pkg
Function Pin

R4000 PC Pkg
Function Pin

SysAD41 A27 SysAD42 A31 SysAD43 A35
SysAD44 C37 SysAD45 B39 SysAD46 H38
SysAD47 M38 SysAD48 AE1 SysAD49 AJ1
SysAD50 AM2 SysAD51 AR1 SysAD52 AU3
SysAD53 AW5 SysAD54 AW11 SysAD55 AW15
SysAD56 AW23 SysAD57 AW27 SysAD58 AW31
SysAD59 AW35 SysAD60 AU37 SysAD61 AR39
SysAD62 AL39 SysAD63 AG39 SysADC0 A17
SysADC1 R39 SysADC2 AW17 SysADC3 AD38
SysADC4 A19 SysADC5 T38 SysADC6 AW19
SysADC7 AC39 SysCmd0 G1 SysCmd1 E3
SysCmd2 B2 SysCmd3 B12 SysCmd4 B20
SysCmd5 B24 SysCmd6 B28 SysCmd7 B32
SysCmd8 A37 SysCmdP H34 TClock0 H34
TClock1 J33 VCCOk AE39 ValidIn* AN1
ValidOut* AR3 WrRdy* A7 VccSense W33
VssSense U37 VccP AA33 VssP Y34
Vcc A39 Vcc B6 Vcc B10
Vcc B18 Vcc B26 Vcc B34
Vcc D4 Vcc D8 Vcc D16
Vcc D24 Vcc D32 Vcc D36
Vcc F2 Vcc F14 Vcc F22
Vcc F30 Vcc F38 Vcc H4
Vcc H36 Vcc K6 Vcc K38
Vcc Y38 Vcc AB2 Vcc AB34
Vcc AD4 Vcc AD36 Vcc AF6
Vcc AF38 Vcc AK2 Vcc AK34
Vcc AM4 Vcc AM36 Vcc AP2
Vcc AP10 Vcc AP18 Vcc AP26
Vcc AP38 Vcc AT4 Vcc AT8
Vcc AT16 Vcc AT24 Vcc AT32
Vcc AT36 Vcc AV6 Vcc AV14

Appendix G

G-10 MIPS R4000 Microprocessor User's Manual

Table G-2 (cont.) Signal-to-Pin Correspondences for the R4000MC/SC

R4000 PC Pkg
Function Pin

R4000 PC Pkg
Function Pin

R4000 PC Pkg
Function Pin

Vcc AV22 Vcc AV30 Vcc AV34
Vcc AW1 Vcc AW39 Vss B4
Vss B14 Vss B22 Vss B30
Vss B36 Vss D2 Vss D6
Vss D12 Vss D20 Vss D28
Vss D34 Vss D38 Vss F4
Vss F6 Vss F10 Vss F18
Vss F26 Vss F34 Vss F36
Vss K2 Vss K34 Vss M4
Vss M36 Vss P6 Vss P38
Vss V2 Vss Y4 Vss Y36
Vss AB6 Vss AB36 Vss AB38
Vss AF2 Vss AF34 Vss AH4
Vss AH36 Vss AK6 Vss AK38
Vss AP4 Vss AP6 Vss AP14
Vss AP22 Vss AP30 Vss AP34
Vss AP36 Vss AT2 Vss AT6
Vss AT12 Vss AT20 Vss AT28
Vss AT34 Vss AT38 Vss AV4
Vss AV10 Vss AV18 Vss AV26
Vss AV36

MIPS R4000 Microprocessor User's Manual I-1

Index

Numerics
32-bit

addressing 109
applications 9
data format 24
instructions 36
operands, in 64-bit mode 39
operations 6, 67
single-precision FP format 164
virtual-to-physical-address

translation 65
32-bit mode

address space 31
address translation 65, 95
addresses 63
FPU operations 153
TLB entry format 81

4th Floor
B-dorm. See Alco Hall

64-bit
addressing 109
ALU 9
bus, address and data 201
data format 24
double-precision FP format 164
floating-point registers 156
FPU 9
internal data path widths 381
operations 6, 39, 67
System interface 11
virtual-to-physical-address

translation 66

64-bit mode
32-bit operands, handling of 39
address space 31
address translation 66, 95
addresses 63
FPU operations 153
TLB entry format 81

A
address acceleration 58
Address Error exception 127
address prediction 58
address space identifier (ASID) 64
address spaces

32-bit translation of 65
64-bit translation of 66
address space identifier (ASID) 64
physical 64
virtual 63
virtual-to-physical translation of 64

addressing
and data formats 24
big-endian 24
Kernel mode 73
little-endian 24
misaligned data 26
Supervisor mode 69
User mode 67
virtual address translation 95
See also address spaces

Alco Hall vs. Acid. See game, softball
application software, compatibility with

MIPS R2000, R3000, and R6000
processors 6

architecture
64-bit 9
superpipeline 11

array, page table entry (PTE) 102
ASID. See address space identifier

Index

I-2 MIPS R4000 Microprocessor User's Manual

B
Bad Virtual Address register (BadVAddr)

103
big-endian, byte addressing 24, 170
binary fixed-point format 166
bit definition of

ERL 68, 69, 73, 109
EXL 68, 69, 73, 109, 112, 119
IE 109
KSU 68, 69, 73
KX 73, 109
SX 69, 109
UX 68, 109

boot-mode settings 222
boundary scanning 390
Boundary-scan register 394
branch delay 48
branch instructions, CPU 15, 41
branch instructions, FPU 170
Breakpoint exception 138
Bus Error exception 134
Bypass register 393
byte addressing

big-endian 24, 170
little-endian 24, 170

byte ordering 24
big-endian 24
in doublewords 25
little-endian 24

C
cache 33
Cache Error (CacheErr) register 116
Cache Error exception 132
Cache Error exception process 120
caches

attributes
clean 255
clean exclusive 256
dirty 255
dirty exclusive 256

dirty shared 255
exclusive 255
invalid 255
shared 255

coherency
attributes 264
conflicts 271–285
maintaining coherency on load

and store operations 269
protocol, overview 264
synchronization 286

description 246
line ownership 258
manipulation by an external agent 270
mapping states between caches 257
memory hierarchy 32, 244
misses

address prediction 58
handling 49
performance considerations 58
pipeline back-up 54

on-chip instruction and data caches 33
on-chip primary caches 33, 246
operation modes 266
optional external secondary cache 32
ordering constraints 267
overview of operations 245
primary cache, states 256
primary data cache

accessing 251
line size 250

primary instruction cache
accessing 251
line size 249

secondary cache
accessing 254
line size 252
organization 252
states 256

MIPS R4000 Microprocessor User's Manual I-3

Index

Secondary Cache interface 33, 379
See also Secondary Cache interface

secondary cache sizes 248
state diagrams 260
strong ordering

example of 267
testing for 267

terminology 243
write-back policy 259

Cause register 110
central processing unit (CPU)

cache memory hierarchy 32
data formats and addressing 24
exception processing 99

See also exception processing, CPU
features 6–33
instruction formats 14, 36
instruction pipeline, basic operation

43
See also pipeline, CPU

instruction set
extensions 16
overview 14, 35
types of instructions 15

instructions. See instructions, CPU
interrupts 401

See also interrupts, CPU
memory management 31

See also memory management
memory organization 244
operating modes 32
registers 12

See also registers, CPU
System Control Coprocessor (CP0)

27, 80
See also System Control

Coprocessor
System interface 293

See also System interface
transfers between FPU and CPU 169

CISC. See complex instruction set
computer

ckseg0 79
ckseg1 79
ckseg3 79
cksseg 79
Class of '73. See 4th Floor

B-dorm
clean exclusive, cache attribute 256
clean, cache attribute 255
Clock interface

connecting clocks
to CMOS logic system 238
to gate-array device 235
to phase-locked system 234
to system without phase locking

235
signals 203, 227
status outputs 241
system timing parameters 233

clocks, system 229
coherency. See caches, coherency
cold reset 214
compare instructions, FPU 171
Compare register 104
compatibility

application software, with MIPS
R2000, R3000, and R6000
processors 6

DEC VAX 24
iAPX x86 24
IBM 370 24
MC68000 24

compilers, MIPS suite of 5
complex instruction set computer (CISC)

compared with RISC, in languages
used 4

historical context 1–2
computational instructions, CPU 15

64-bit operations 39
cycle timing for multiply and divide

instructions 40
formats 39

Index

I-4 MIPS R4000 Microprocessor User's Manual

computational instructions, FPU
floating-point 170

Config register 90
Context register 102
Control/Status register, FPU 157, 159
conversion instructions, FPU 170
coprocessor instructions 15, 42
Coprocessor Unusable exception 140
correctness considerations 58
Count register 103
CP0. See System Control Coprocessor
CPU. See central processing unit
csseg 72
cycle time, interlock and exception

handling 53

D
data alignment 170
Data Fetch, First Half (DF) 46
Data Fetch, Second Half (DS) 46
data formats

and addressing 24
byte ordering 24

data identifiers 364
data transmission errors, ECC

detecting 418
types of

double data bit 422
four data bit 424
single check bit 421
single data bit 420
three data bit 423

DEC VAX, compatibility with 24
delayed load instruction 37
design cycles, RISC vs. CISC 3
dirty exclusive, cache attribute 256
dirty shared, cache attribute 255
dirty, cache attribute 255
divide registers, CPU 13
Division-by-Zero exception 194
doublewords, byte ordering in 25

E
EntryHi register 81, 89
EntryLo register 87
EntryLo0 register 81, 87
EntryLo1 register 81, 87
ERL bit 68, 69, 73, 109
Error Checking and Correcting (ECC)

mechanism
check bit assignments 414
data transmission errors

detecting 418
four data bit 424
parity check matrix 425
single check bit 421
single data bit 420
three data bit 423

operation 408, 412
parity error checking 408
R4400 Fault* signal 414
SECDED

check matrices 414
overview 409

Error Checking and Correcting (ECC)
register 115

Error Exception Program Counter
(ErrorEPC) register 118

exception instructions, CPU 15, 42
exception processing, CPU

conditions 52
effect on pipeline 53
exception handler flowcharts 144
exception types

Address Error 127
Breakpoint 138
Bus Error 134
Cache Error 132
Cache Error exception process 120
Coprocessor Unusable 140
Floating-Point 141
general exception process 121
Integer Overflow 135

MIPS R4000 Microprocessor User's Manual I-5

Index

exception types (cont.)
Interrupt 143
Nonmaskable Interrupt (NMI)

exception process 121
overview 119
Reserved Instruction 139
Reset 124
Reset exception process 120
Soft Reset 125
Soft Reset exception process 121
System Call 137
TLB 128
Trap 136
Virtual Coherency 133
Watch 142

exception vector location
Reset 122

Illegal Instruction (II) 49
overview 100
pipelining 56
priority of 123

exception processing, FPU
exception types

Division by Zero 194
Inexact 192
Invalid Operation 193
Overflow 194
overview 188
Underflow 195
Unimplemented Instruction 196

flags 190
saving and restoring state 197
trap handlers 198

Exception Program Counter (EPC) register
100, 112

exclusive, cache attribute 255
Execution (EX) 46
EXL bit 68, 69, 73, 109, 112, 119
extensions, to instruction set architecture

16
external stalls, conditions 53

F
faults, CPU

handling 49
features

central processing unit 6–33
Floating-Point Unit (FPU) 30, 153
R4000 configurations 7

Floating-Point exception 141
Floating-Point General-Purpose registers

(FGRs) 154
Floating-Point registers (FPRs) 156
Floating-Point Unit (FPU)

designated as CP1 30, 152
exception types 188

See also exception processing, FPU,
exception types

features 30, 153
formats

binary fixed-point 166
floating-point 164

instruction execution cycle time 173
instruction pipeline 172

See also pipeline, FPU
instruction set, overview 167
overview 152
programming model 154
transfers between FPU and CPU 169
transfers between FPU and memory

169
FPU. See Floating-Point Unit

G
game, softball. See yellow_slugs
general exception

handler 145
process 121
servicing guidelines 146

Index

I-6 MIPS R4000 Microprocessor User's Manual

H
hardware

interlocks 169
interrupts 402

hazards, System Control Coprocessor F-1

I
iAPX x86, compatibility with 24
IBM 370, compatibility with 24
IDEC. See instruction decoder
IE bit 109
Illegal Instruction (II) exception 49
Implementation/Revision register, FPU

157–158
Index register 85
Initialization interface

boot-mode settings 222
cold reset 214, 217
initialization sequence 218
power-on reset 214, 216
reset signal description 215
signals 208, 213
warm reset 208, 214, 217

initialization sequence, system 218
instruction decoder (IDEC), CPU 45
instruction decoding, CPU 14
Instruction Fetch, First Half (IF) 45
Instruction Fetch, Second Half (IS) 45
instruction formats, CPU

types of 14, 36
See also instructions, CPU

Instruction register 392
instruction set architecture (ISA)

extensions to 16
overview 14

instruction set, CPU
extensions 16
overview 14, 35
types of instructions 15
See also instructions, CPU

instruction set, FPU 167

instruction translation lookaside buffer
(ITLB) 45

instructions, CPU
branch 15, 41
common to MIPS R-Series processors

16–23
computational 15

64-bit operations 39
cycle timing for multiply and

divide instructions 40
formats 39

coprocessor 15, 42
exception 15, 42
extensions to CPU instruction set 16
instruction decoder (IDEC) 45
instruction translation lookaside buffer

(ITLB) 45
joint translation lookaside buffer

(JTLB) 31
jump 15, 41
load

defining access types 37
delayed load instruction 37
overview 15
scheduling a load delay slot 37

No Operation (NOP) 59
register-to-register 47
special 15, 42
store

defining access types 37
overview 15

System Control Coprocessor (CP0) 15
translation lookaside buffer (TLB) 97

instructions, FPU
branch 170
compare 171
computational 170
conversion 170
latency 181
load 169
move 169
pipeline stage sequences 181

MIPS R4000 Microprocessor User's Manual I-7

Index

instructions, FPU (cont.)
repeat rate 181
scheduling 175
scheduling restraints 176
store 169

Integer Overflow exception 135
interfaces. See Clock interface; Initialization

interface; Interrupt interface; JTAG
interface; Secondary Cache
interface; System interface

interlocks, CPU
aborting instructions subsequent to 55
effect on pipeline 53
external stalls 53
handling 49, 56
pipelining 56
types of 49

interlocks, hardware 169
Interrupt exception 143
Interrupt interface, signals 207
Interrupt register 402–405
interrupts, CPU

accessing 402
handling 49
hardware 402
Nonmaskable Interrupt (NMI) 402

Invalid Operation exception 193
invalid, cache attribute 255
ISA. See instruction set architecture
ITLB. See instruction translation lookaside

buffer

J
Joint Test Action Group (JTAG) interface

boundary scanning, explanation of
390

operation 400
registers

Boundary-scan 394
Bypass 393
Instruction 392

signals 207, 391
Test Access Port (TAP) 395

joint translation lookaside buffer (JTLB) 31
JTLB. See joint translation lookaside buffer

(JTLB)
jump instructions, CPU 15, 41

K
Kernel mode

and exception processing 100
ckseg0 79
ckseg1 79
ckseg3 79
cksseg 79
kseg0 75
kseg1 76
kseg3 76
ksseg 76
kuseg 75
operations 73
xkphys 78
xkseg 79
xksseg 78
xkuseg 77

kseg0 75
kseg1 76
kseg3 76
ksseg 76
KSU bit 68, 69, 73
kuseg 75
KX bit 73, 109

L
language suite approach, benefits of 5
latency

determining 363
external read response 363
external response 361, 363
fault detection 435
FPU instruction 181
FPU operation 173

Index

I-8 MIPS R4000 Microprocessor User's Manual

latency (cont.)
intervention response 363
release 361, 362
snoop response 363

line ownership, cache 258
line size

primary data cache 250
primary instruction cache 249
secondary cache 252

little-endian, byte addressing 24, 170
load delay 48, 169
load delay slot 37
load instructions, CPU

defining access types 37
delayed load instruction 37
overview 15
scheduling a load delay slot 37

load instructions, FPU 169
Load Linked Address (LLAddr) register

93

M
Master/Checker mode, of R4400 430
MC68000, compatibility with 24
memory management

address spaces 63
addressing 31
memory management unit (MMU) 61
register numbers 84
registers. See registers, CPU, memory

management
System Control Coprocessor (CP0) 80

memory organization, hierarchy 244
MIPS RISCompilers, language suite 5
MIPS R-Series processors, instructions

common to 16–23
move instructions, FPU 169
multiply registers, CPU 13

N
No Operation (NOP) instructions 59
Nonmaskable Interrupt (NMI) 402
Nonmaskable Interrupt (NMI) exception

handling 150
process 121

O
on-chip primary caches 33, 246
operating modes 32

Kernel mode 73
Supervisor mode 69
User mode 67

Overflow exception 194

P
page table entry (PTE) array 102
PageMask register 81, 87
parameters, system timing 233
parity check matrix 425
parity error checking 408
performance

address acceleration 58
address prediction 58
of uncached stores 59

physical address space 64
pipeline, CPU

back-up 54
branch delay 48
correctness considerations 58
decision whether to advance 57
exception conditions 52
external stalls 53
load delay 48
operation 44
overrun 53
performance considerations 58
slip conditions 53

MIPS R4000 Microprocessor User's Manual I-9

Index

pipeline, CPU (cont.)
stages

Data Fetch, First Half (DF) 46
Data Fetch, Second Half (DS) 46
Execution (EX) 46
Instruction Fetch, First Half (IF) 45
Instruction Fetch, Second Half (IS)

45
Register Fetch (RF) 45
Tag Check (TC) 46
Write Back (WB) 47

stall conditions 53
pipeline, FPU

cycle time 173
overlapping 175
overview 172
resource scheduling rules 182
stage sequences 181

Porter, née College 5. See Class of '73
power-on reset 214, 216
primary caches. See caches
Processor Revision Identifier (PRId)

register 89

R
R4400

cache error bit 7
cache sizes 6
clock ratio 91
DC bit, setting primary D-cache size

92
divide-by-6 clock 91, 223
divide-by-8 clock 91, 223
EC bit 91
ECC Fault* signal 414
enhancements over R4000 7
EW bit 117
fault detection latency 435
IC bit, setting primary I-cache size 92
Master/Checker boot-mode bits

223, 225

Master/Checker mode 7, 430
Master/Checker mode configurations

430
Master/Checker mode reset operation

436
primary cache size 33
Status signals 7, 241
system clock ratio, boot-mode bits 223
uncached loads 326
uncached store buffer 7, 59, 326

Random register 86
reduced instruction set computer (RISC)

compared with CISC, in languages
used 4

design, benefits of 2
developments in recent years 2
historical context 1–2
optimizing compilers 4

Register Fetch (RF) 45
registers, CPU

exception processing
Bad Virtual Address (BadVAddr)

103
Cache Error (CacheErr) 116
Cause 110
Compare 104
Config 90
Context 102
Count 103
Error Checking and Correcting

(ECC) 115
Error Exception Program Counter

(ErrorEPC) 118
Exception Program Counter (EPC)

112
Load Linked Address (LLAddr)

93
Processor Revision Identifier

(PRId) 89
register numbers 101
Status 105
TagHi 93

Index

I-10 MIPS R4000 Microprocessor User's Manual

registers, CPU (cont.)
exception processing (cont.)

TagLo 93
WatchHi 113
WatchLo 113
XContext 114

Exception Program Counter (EPC) 100
Interrupt 402–405
memory management

EntryHi 81, 89
EntryLo 87
EntryLo0 81, 87
EntryLo1 81, 87
Index 85
PageMask 81, 87
Random 86
register numbers (CP0) 80
Wired 86, 88

overview 12
register-to-register instructions 47
System Control Coprocessor (CP0)

80–97
registers, FPU

Control/Status 157, 159
Floating-Point (FPRs) 156
Floating-Point General-Purpose

(FGRs) 154
Implementation/Revision 157–158

registers, JTAG interface
Boundary-scan 394
Bypass 393
Instruction 392

Request 336
requests. See System interface
Reserved Instruction exception 139
Reset exception

handling 150
overview 124
process 120

resets
cold 214, 217
power-on 214, 216
warm 208, 214, 217

S
SCDChk bus 381
SCTAG bus 381
SECDED

check matrices 414
overview 409

Secondary Cache interface
accessing a split secondary cache 381
data transfer rates 380
duplicating signals 380
operation of 382
overview 33
read cycles 383
SCDChk bus fields 381
SCTAG bus fields 381
signals 205
write cycles 385

secondary caches. See caches
sequential ordering 378
shared, cache attribute 255
signals

Clock interface 203, 227
descriptions 199
Initialization interface 208, 213
Interrupt interface 207
JTAG interface 207, 391
request cycle control signals 298
Secondary Cache interface 205
summary 209
system clocks 229
System interface 201

slips, conditions 53
slugs, banana. See UCSC

MIPS R4000 Microprocessor User's Manual I-11

Index

Soft Reset exception
handling 150
overview 125
process 121

special instructions, CPU 15, 42
sseg 71
stalls

conditions 53
external 53

status outputs, processor 241
Status register

access states 109
format 105
operating modes 109

store instructions, CPU
defining access types 37
overview 15

store instructions, FPU 169
strong ordering

example of 267
testing for 267

subblock ordering 378
superpipeline architecture

execution rate 6
Supervisor mode

csseg 72
operations 69
sseg 71
suseg 71
xsseg 72
xsuseg 72

suseg 71
SX bit 69, 109
System Call exception 137
System Control Coprocessor (CP0)

hazards F-1
instructions 15
register numbers 80

registers
overview 27
used in exception processing 101
used in memory management

80–97
System interface

addressing conventions 377
buses 295
commands

external validate requests 370
intervention requests 372
null requests 369
overview 364
read requests 366
snoop requests 372
syntax 364
update requests 370
write requests 367

cycle time
cluster request spacing 361
external response latency 363
release latency 362

data identifiers
overview 364

data identifiers, syntax 364, 374
data rate control

data transfer patterns 356
independent transmissions on

SysAD bus 359
secondary cache transfers 357
secondary cache write cycle time

358
description 293–294
endianness 360

Index

I-12 MIPS R4000 Microprocessor User's Manual

System interface (cont.)
external request protocols

arbitration request 342
intervention request 349
invalidate request 348
null request 344
overview 329, 341
read request 343
snoop request 352
update request 348
write request 347

external requests
intervention request 317
invalidate request 316
null request 344
overview 313–315
read request 316
read response request 317
snoop request 317
update request 316
write request 316

handling requests
CACHE operations 327
Load Linked Store Conditional

operation 327
load miss 318–320
store hit 326
store miss 321–325
uncached loads or stores 326

issue cycles 296
master state 299
overview 11
processor internal address map 378
processor request protocols

cluster 337
cluster flow control 338
invalidate request 335
null write request 336
overview 329
read request 330
update request 335
write request 333

processor requests
cluster 311
invalidate request 308
null write request 336
overview 304–305
read request 306
update request 310
write request 307

protocols 299
request

control signals 298
overview 302
rules 303

sequential ordering 378
signals 201
slave state 299
subblock ordering 378
timing requirements 60

T
Tag Check (TC) 46
TagHi register 93
TagLo register 93
Test Access Port (TAP)

controller 396
controller reset 396
controller states 396
overview 395

timing requirements, pipeline 60
TLB invalid exception 130
TLB modified exception 131
TLB refill exception 129
TLB. See translation lookaside buffer
TLB/XTLB miss exception handler 147
TLB/XTLB refill exception servicing

guidelines 148
translation lookaside buffer (TLB)

and memory management 61
and virtual memory 62
coherency attributes 78
entry formats 81

MIPS R4000 Microprocessor User's Manual I-13

Index

translation lookaside buffer (TLB) (cont.)
exceptions 128
instructions 97
misses 97, 102, 144
page attributes 78
pipeline stages 46
virtual memory mapping 31

translation, virtual to physical
32-bit 65
64-bit 66

Trap exception 136

U
UCSC. See Porter, née College 5
uncached store buffer 59
Underflow exception 195
Unimplemented Instruction exception 196
useg 67, 69
User mode

operations 67
useg 69
xuseg 69

UX bit 68, 109

V
virtual address space 63
Virtual Coherency exception 133
virtual memory

and the TLB 62
hits and misses 62
mapping 31
multiple matches 62
virtual address translation 95

W
warm reset 208, 214, 217
Watch exception 142
WatchHi register 113
WatchLo register 113
Wired register 86, 88
Write Back (WB) 47

X
XContext register 114
xkphys 78
xkseg 79
xksseg 78
xkuseg 77
xsseg 72
xsuseg 72
xuseg 67, 69

Y
yellow_slugs. See slugs, banana

Index

I-14 MIPS R4000 Microprocessor User's Manual

