
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

Course Requirements

Software Engineering for 
Dependable Systems

Tomas Bures
bures@d3s.mff.cuni.cz



2

Organisation

Seminar – every other week
4 teaching hours each

Tomáš Bureš
bures@d3s.mff.cuni.cz

Course website
https://d3s.mff.cuni.cz/teaching/nswi054/

mailto:bures@d3s.mff.cuni.cz
https://d3s.mff.cuni.cz/teaching/nswi054/


3

Requirements for passing the course

Students have to subscribe to the course and the 
group in the Student Information System

If you cannot attend, let me know (by email) in 
advance



4

Requirements for passing the course

80% attendance 

Completed homework/report
To be prepared by the next meeting

These will cover the topics covered during the 
course:

Requirement modeling and specification
Test specification
Various design models



5

Resources

Ian Sommerville: Software Engineering (10th

edition)
http://iansommerville.com/software-engineering-
book/

Online resources indicated in each lecture

http://iansommerville.com/software-engineering-book/


CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

Introduction

Software Engineering for 
Dependable Systems

Tomas Bures
bures@d3s.mff.cuni.cz



7

Dependability

“The ability to provide services that can defensibly 
be trusted within a time-period”

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



8

Principal properties

Availability
The probability that the system will be up and running and able to 
deliver useful services to users.

Reliability
The probability that the system will correctly deliver services as 
expected by users.

Safety
A judgment of how likely it is that the system will cause damage to 
people or its environment.

Security
A judgment of how likely it is that the system can resist accidental or 
deliberate intrusions.

Resilience
A judgment of how well a system can maintain the continuity of its 
critical services in the presence of disruptive events such as 
equipment failure and cyberattacks.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



9

Related system properties

Repairability
Reflects the extent to which the system can be 
repaired in the event of a failure

Maintainability
Reflects the extent to which the system can be adapted 
to new requirements;

Error tolerance
Reflects the extent to which user input errors can be 
avoided and tolerated.



10

Causes of failure

Hardware failure
Hardware fails because of design and manufacturing 
errors or because components have reached the end 
of their natural life.

Software failure
Software fails due to errors in its specification, design 
or implementation.

Operational failure
Human operators make mistakes. Now perhaps the 
largest single cause of system failures in socio-technical 
systems.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



11

Cost/dependability curve

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



12

Sociotechnical systems stack

Systems perspective is essential for dependability
Necessary to understand how the layers influence the software
… and how faults and failures propagate and multiply

So
ft

w
ar

e 
en

gi
ne

er
in

g

Sy
st

em
s e

ng
in

ee
rin

g

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



13

Layers in the STS stack

Equipment
Hardware devices, some of which may be computers. Most devices will 
include an embedded system of some kind.

Operating system
Provides a set of common facilities for higher levels in the system.

Communications and data management
Middleware that provides access to remote systems and databases.

Application systems
Specific functionality to meet some organization requirements.

Business processes
A set of processes involving people and computer systems that support the 
activities of the business.

Organizations
Higher level strategic business activities that affect the operation of the 
system.

Society
Laws, regulation and culture that affect the operation of the system.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



14

Dependable processes

Software process to produce dependable software
Explicitly defined process 

Data are collected during the process to show that the development team has 
followed the process

Repeatable process
Does not rely on individual interpretation and judgement. Can be repeated across 
projects with different team members. Particularly important for critical systems 
which are developed over long period of time and team may change a lot.

Process 
characteristic Description

Auditable
The process should be understandable by people apart from process participants, who can
check that process standards are being followed and make suggestions for process
improvement.

Diverse The process should include redundant and diverse verification and validation activities.

Documentable The process should have a defined process model that sets out the activities in the process
and the documentation that is to be produced during these activities.

Robust The process should be able to recover from failures of individual process activities.

Standardized A comprehensive set of software development standards covering software production and
documentation should be available.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



15

Dependable processes

Activites
Requirements review
Requirements management
Formal specification
System modeling
Design and program inspections
Static analysis
Test planning and management



16

Formal methods and dependability

Formal methods – mathematical approaches to verification of 
software
Typically based on formal models of software behavior
Effective for discovering or avoiding:

Specification and design errors and omissions
Inconsistencies between a specification and a program

More at:
NSWI132 (Program Analysis and Code Verification)

Summer term – 2/2 Zk+Z
Lecture: Wed 10:40 S1
Lab: Wed 12:20 SU1

NTIN043 (Formal Foundations of Software Engineering)
Winter term – 2/2 Zk+Z

NSWI101 (System Behavior Models and Verification)
Winter term – 2/2 Zk+Z



17

Dependability in timing

Dependable systems are often real-time and 
embedded
Requires special design and reasoning to give 
guarantees about timing

More at NSWE001 (Embedded and Real-time 
Systems)



Why Dependability?

18



19

Arianne 5

Exploded on June 4, 1996
only 39 seconds after launch
loss of about US$ 370 million

A 64-bit float was truncated to 16-bit 
integer in a “non-critical software 
component”
This caused unhandled hardware 
exception
The erroneous component 
(a method) was inherited/reused 
from Ariane 4 and had no practical 
use in Ariane 5



20

Patriot – Failure at Dhahran

February 25, 1991, an Iraqi Scud hit the barracks 
in Dhahran killing 28 soldiers
The area was protected by Patriot aerial 
interceptor missiles
Due to drift of system's internal

by one third of a second in 100 
hours
amounted to miss distance of 
600 meters
The system detected the missile 
but due to the time skew, 
it disregarded it as spurious



21

Therac-25

Computer controller radiation therapy 
machine
6 accidents 1985-1987

three people died as the direct consequence 
of radiation burns

Race condition as the primary cause
Other causes included

Poor design, no review of the software
Bad man-machine interface
Overconfidence in the 
software
Not understanding safety

The software was in use 
previously, but different 
hardware design covered 
its flaws



Total Blackout in 2003

22

2003 blackout in 8 states of USA and in Ontario (in total 55 mil. people affected),
primary culprit was a SW problem (race condition) which delayed notifications



F22 Raptor Software Bug

23

2007 F22 Raptor software bug
navigation, communication and fuel systems crashed after crossing the 

international date line



Jeep Cherokee Hack

24

2014 Jeep Cherokee wirelessly hacked
security flaw in the infotainment system which allowed an attacker to control 

almost everything (including throttle, brakes and steering) over internet



Systems Engineering

25



26

Professional disciplines involved

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



27

Systems development

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



28

The system development process

Requirements engineering
The process of refining, analysing and documenting the 
high-level and business requirements identified in the 
conceptual design 

Architectural design
Establishing the overall architecture of the system, 
identifying components and their relationships

Requirements partitioning
Deciding which subsystems (identified in the system 
architecture) are responsible for implementing the 
system requirements 

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



29

The system development process

Subsystem engineering
Developing the software components of the system, 
configuring off-the-shelf hardware and software, defining 
the operational processes for the system and re-designing 
business processes

System integration
Putting together system elements to create a new system 

System testing
The whole system is tested to discover problems

System deployment
the process of making the system available to its users, 
transferring data from existing systems and establishing 
communications with other systems in the environment 

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



Software engineering

30



31

Software process

A structured set of activities required to develop 
a software system. 
Many different software processes but all involve:

Specification – defining what the system should do;
Design and implementation – defining the organization 
of the system and implementing the system;
Validation – checking that it does what the customer 
wants;
Evolution – changing the system in response to 
changing customer needs.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



32

The waterfall model

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



33

Requirements engineering process

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



34

Software design process

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



35

System implementation

The software is implemented
either by developing a program or 
programs or by configuring an application system.
Design and implementation are interleaved 
activities for most types of software system.
Programming is an individual activity with no 
standard process.
Debugging is the activity of finding program faults 
and correcting these faults.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



36

Software validation

Verification and validation (V & V) 
is intended to show that a system conforms to its 
specification and meets the requirements of the 
system customer.
Involves checking and review processes and 
system testing.
System testing involves executing the system with 
test cases that are derived from the specification 
of the real data to be processed by the system.
Testing is the most commonly used V & V activity.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



37

Stages of testing

Component testing
Individual components are tested independently; 
Components may be functions or objects or coherent groupings 
of these entities.

System testing
Testing of the system as a whole. Testing of emergent properties 
is particularly important.

Customer testing
Testing with customer data to check that the system meets the 
customer’s needs.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



38

Testing phases in a V-model

V-model – a plan driven development process

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

Requirements 
Engineering 1

Software Engineering for 
Dependable Systems

Tomas Bures
bures@d3s.mff.cuni.cz



40

Requirements Engineering

The process of establishing the services that a 
customer requires from a system and the 
constraints under which it operates and is 
developed.
The system requirements are the descriptions of 
the system services and constraints that are 
generated during the requirements engineering 
process.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



41

Types of Requirements

User requirements
Statements in natural language plus diagrams of the 
services the system provides and its operational 
constraints. Written for customers.

System requirements
A structured document setting out detailed 
descriptions of the system’s functions, services and 
operational constraints. Defines what should be 
implemented so may be part of a contract between 
client and contractor.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



42

User and Systems Requirements

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



43

User and Systems Requirements

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



44

Functional and non-functional requirements

Functional requirements
Statements of services the system should provide, how the 
system should react to particular inputs and how the 
system should behave in particular situations.
May state what the system should not do.

Non-functional requirements
Constraints on the services or functions offered by the 
system such as timing constraints, constraints on the 
development process, standards, etc.
Often apply to the system as a whole rather than individual 
features or services.

Domain requirements
Constraints on the system from the domain of operation

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



45

Types of non-functional requirements

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



46

Examples of nonfunctional requirements

Product requirement
The Mentcare system shall be available to all clinics during normal 
working hours (Mon–Fri, 0830–17.30). Downtime within normal 
working hours shall not exceed five seconds in any one day.

Organizational requirement
Users of the Mentcare system shall authenticate themselves using 
their health authority identity card.

External requirement
The system shall implement patient privacy provisions as set out 
in HStan-03-2006-priv. 

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



47

Requirements engineering processes

Requirements elicitation & analysis
Requirements discovery
Requirements classification and organization
Requirements prioritization and negotiation
Requirements specification

Requirements validation
Ensures

Validity – does the system provide the functions which best support the 
customer’s needs?
Consistency – are there any requirements conflicts?
Completeness – are all functions required by the customer included?
Realism – can the requirements be implemented given available budget and 
technology
Verifiability – can the requirements be checked?

By requirement reviews, prototyping, test-case generation

Requirements management
Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



48

Spiral view of the RE process

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)



Goal-based elicitation and analysis of 
requirements

49



50

Goals

Goal – a stakeholder objective for the system
Model of goals hierarchy and their relation

Answers the question “Why?”

Guides requirement elaboration
Results into concrete requirements which can be 
turned to Requirements Specification document

Early RE Late RE Design Code Test

Why? What? How?



51

KAOS

A methodology for goal-based requirements 
engineering
http://www.objectiver.com/fileadmin/download/
documents/KaosTutorial.pdf

Models:
Goal model
Object model
Agent responsibility model
Operation model

http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf


52

KAOS – Goal model

AND - decomposition

Goal



53

KAOS – Goal model

Conflict

Expectation
Requirement



54

KAOS – Goal model

Agent

Responsibility
Expectation
assignment



55

KAOS – Goal model

OR - decomposition

Qualitative goals to enable selection
of a particular decomposition



56

KAOS – Goal model

Elaboration of an expectation



57

KAOS – Goal model

Responsibility

Agent



58

Goal patterns

Achieve – achieve the goal at some point in the 
future
Cease – undo a goal at some point in the future
Maintain – maintain a goal for some time 
Avoid – prevent a goal from becoming true
Optimize – maximize or minimize some measure 
(soft-goal)



59

Tactics for decomposing goals

Case-driven decomposition
E.g. The goal of the system is to build a system that 
satisfies all stakeholders’ needs: functional and non-
functional ones.

Milestone driven decomposition
E.g. System is cheap to build, (then) cheap to run, and 
(then) cheap to maintain.



60

Generic goal patterns



61

Generic goal patterns



62

Generic goal patterns



63

Generic goal patterns



64

Generic goal patterns

Domain propety



65

Agent responsibility model



66

Object model

Entity

Relationship



67

Object model

Associations as in UML



68

Operation model

Process

Operationalisation
of a requirement



69

Event

Operation model



70

Operation model



71

Obstacle model

Obstacle

Obstacle
decomposition

Obstacle mitigation



72

Completeness Criteria

A goal model is said to be complete with respect to the 
refinement relationship ‘if and only if’ every leaf goal is either 
an expectation, a domain property or a requirement.
A goal model is complete with respect to the responsibility 
relationship ‘if and only if’ every requirement is placed under 
the responsibility of one and only one agent (either explicitly or 
implicitly if the requirement refines another one which has 
been placed under the responsibility of some agent).
To be complete, a process diagram must specify

the agents who perform the operations
the input and output data for each operation.

To be complete, a process diagram must specify when 
operations are to be executed.
All operations are to be justified by the existence of some 
requirements (through the use of operationalization links).



73

KAOS Notation Summary


	Course Requirements
	Organisation
	Requirements for passing the course
	Requirements for passing the course
	Resources
	Introduction
	Dependability
	Principal properties
	Related system properties
	Causes of failure
	Cost/dependability curve
	Sociotechnical systems stack
	Layers in the STS stack
	Dependable processes
	Dependable processes
	Formal methods and dependability
	Dependability in timing
	Why Dependability?
	Arianne 5
	Patriot – Failure at Dhahran
	Therac-25
	Total Blackout in 2003
	F22 Raptor Software Bug
	Jeep Cherokee Hack
	Systems Engineering
	Professional disciplines involved
	Systems development
	The system development process
	The system development process
	Software engineering
	Software process
	The waterfall model
	Requirements engineering process
	Software design process
	System implementation
	Software validation
	Stages of testing
	Testing phases in a V-model
	Requirements Engineering 1
	Requirements Engineering
	Types of Requirements
	User and Systems Requirements
	User and Systems Requirements
	Functional and non-functional requirements
	Types of non-functional requirements
	Examples of nonfunctional requirements
	Requirements engineering processes
	Spiral view of the RE process 
	Goal-based elicitation and analysis of requirements
	Goals
	KAOS
	KAOS – Goal model
	KAOS – Goal model
	KAOS – Goal model
	KAOS – Goal model
	KAOS – Goal model
	KAOS – Goal model
	Goal patterns
	Tactics for decomposing goals
	Generic goal patterns
	Generic goal patterns
	Generic goal patterns
	Generic goal patterns
	Generic goal patterns
	Agent responsibility model
	Object model
	Object model
	Operation model
	Operation model
	Operation model
	Obstacle model
	Completeness Criteria
	KAOS Notation Summary

