Course Requirements

http://d3s.mff.cuni.cz

Distributed and Software Engineering for
Dependable Systems

Dependable

Tomas Bures
bures@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

Organisation

®* Seminar — every other week

= 4 teaching hours each

® Tomas Bures

" hures@d3s.mff.cuni.cz

* Course website
" https://d3s.mff.cuni.cz/teaching/nswi054/

mailto:bures@d3s.mff.cuni.cz
https://d3s.mff.cuni.cz/teaching/nswi054/

Requirements for passing the course

® Students have to subscribe to the course and the
group in the Student Information System

* |f you cannot attend, let me know (by email) in
advance

Requirements for passing the course

* 80% attendance

* Completed homework/report
= To be prepared by the next meeting

* These will cover the topics covered during the
course:

= Requirement modeling and specification
= Test specification

= Various design models

Resources

° |lan Sommerville: Software Engineering (10th
edition)
= http://iansommerville.com/software-engineering-

book/

® Online resources indicated in each lecture

http://iansommerville.com/software-engineering-book/

Introduction

http://d3s.mff.cuni.cz

Department of
Distributed and
Dependable

Software Engineering for
Dependable Systems

Tomas Bures
bures@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

Dependability

“The ability to provide services that can defensibly
be trusted within a time-period”

Dependability

Availability Reliability Safety Security Resilience

| | | | |

The ability of the system The ability of the system The ability of the system The ability of the system The ability of the system

to deliver services when to deliver services as to operate without to protect itself against to resist and recover
requested specified catastrophic failure deliberate or accidental ~ from damaging events
intrusion

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 7

Principal properties

* Availability

= The probability that the system will be up and running and able to
deliver useful services to users.

* Reliability

= The probability that the system will correctly deliver services as
expected by users.

* Safety

= A judgment of how likely it is that the system will cause damage to
people or its environment.

® Security

= A judgment of how likely it is that the system can resist accidental or
deliberate intrusions.

® Resilience

5 A judgment of how well a system can maintain the continuity of its
critical services in the presence of disruptive events such as
equipment failure and cyberattacks.

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 8

Related system properties

* Repairability

= Reflects the extent to which the system can be
repaired in the event of a failure

°* Maintainability

= Reflects the extent to which the system can be adapted
to new requirements;

® Error tolerance

= Reflects the extent to which user input errors can be
avoided and tolerated.

Causes of failure

® Hardware failure

= Hardware fails because of design and manufacturing
errors or because components have reached the end
of their natural life.

* Software failure

= Software fails due to errors in its specification, design
or implementation.

* Operational failure

= Human operators make mistakes. Now perhaps the
largest single cause of system failures in socio-technical
systems.

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 10

Cost/dependability curve

A
2
O
>
Low Medium High Very Ultra-
high high

Dependability

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 11

Sociotechnical systems stack

® Systems perspective is essential for dependability
®* Necessary to understand how the layers influence the software
® ...and how faults and failures propagate and multiply

Society
Organization
A

. Business processes A
= =
o — o
@ Application system =
i o0
e 5
2 Communications and data management v
©
-y Operating system \ A

vV Equipment

Adopted from slides by lan Sommerville for Software Engineering (10" edition) 12

Layers in the STS stack

°* Equipment
= Hardware devices, some of which may be computers. Most devices will
include an embedded system of some kind.

® (Operating system
= Provides a set of common facilities for higher levels in the system.
®* Communications and data management
= Middleware that provides access to remote systems and databases.
* Application systems
= Specific functionality to meet some organization requirements.
® Business processes

= A set of processes involving people and computer systems that support the
activities of the business.

® QOrganizations

= Higher level strategic business activities that affect the operation of the
system.

®* Society
= Laws, regulation and culture that affect the operation of the system.

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 13

Dependable processes

* Software process to produce dependable software

* Explicitly defined process

= Data are collected during the process to show that the development team has
followed the process

®* Repeatable process

= Does not rely on individual interpretation and judgement. Can be repeated across
projects with different team members. Particularly important for critical systems
which are developed over long period of time and team may change a lot.

Auditable

Diverse

Documentable

Robust

Standardized

The process should be understandable by people apart from process participants, who can

check that process standards are being followed and make suggestions for process
improvement.

The process should include redundant and diverse verification and validation activities.

The process should have a defined process model that sets out the activities in the process
and the documentation that is to be produced during these activities.

The process should be able to recover from failures of individual process activities.

A comprehensive set of software development standards covering software production and
documentation should be available.

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 14

Dependable processes

* Activites
= Requirements review
= Requirements management
= Formal specification
= System modeling
= Desigh and program inspections
= Static analysis

= Test planning and management

15

Formal methods and dependability

®* Formal methods — mathematical approaches to verification of
software

* Typically based on formal models of software behavior

* Effective for discovering or avoiding:
= Specification and design errors and omissions
" |nconsistencies between a specification and a program

®* More at:

= NSWI132 (Program Analysis and Code Verification)
e Summer term — 2/2 Zk+Z
® Lecture: Wed 10:40 S1
® Lab: Wed 12:20 SU1

= NTINO43 (Formal Foundations of Software Engineering)
* Winter term — 2/2 Zk+Z

= NSWI101 (System Behavior Models and Verification)
* Winter term — 2/2 Zk+Z

16

Dependability in timing

®* Dependable systems are often real-time and
embedded

®* Requires special design and reasoning to give
guarantees about timing

°* More at NSWEOO1 (Embedded and Real-time
Systems)

17

Why Dependability?

Arianne 5

®* Exploded on June 4, 1996
= only 39 seconds after launch
= |oss of about USS 370 million

* A 64-bit float was truncated to 16-bit
integer in a “non-critical software
component”

® This caused unhandled hardware
exception

® The erroneous component
(a method) was inherited/reused
from Ariane 4 and had no practical
use in Ariane 5

19

Patriot — Failure at Dhahran

®* February 25, 1991, an Iraqi Scud hit the barracks
in Dhahran killing 28 soldiers

®* The area was protected by Patriot aerial
interceptor missiles

® Due to drift of system's internal

= by one third of a second in 100
hours

= amounted to miss distance of
600 meters

= The system detected the missile
but due to the time skew,
it disregarded it as spurious

20

Therac-25

* Computer controller radiation therapy
machine

® 6 accidents 1985-1987

= three people died as the direct consequence
of radiation burns

®* Race condition as the primary cause
* QOther causes included

= Poor design, no review of the software

= Bad man-machine interface Electron Wode XRay Mode
= Qverconfidence in the PATIENT NAWE : JOHN DOE
TREATMENT MODE : FIX BEAM TYPE: X ENERGY (MeV): 25
software ACTUAL PRESCRIBED
. UNIT RATE/MINUTE 8 200
= Not understanding safety i T S6_50 200
o :
The software was in use COLLIMATOR ROTATION. (DEG) 39.2 350 VERIFIED
previously, but different COLLIMATOR X (CM) 13.2 14.3 VERIFIED
A COLLIMATOR Y (CM) 21.2 27.3 VERIFIED
hardware design covered WEDGE NUMBER 1 1 VERIFIED
) ACCESSORY NUMBER 8 0 VERIFIED
its flaws
DATE : 84-DEC-27 SYSTEM : BEAM READY OP. MODE : TREAT AUTO
TIME : 12:55: 8 TREAT : TREAT PAUSE X-RAY 173777

OPR ID : T25VO2-R83 REASON : OPERATOR COMMAND :

Total Blackout in 2003

2003 blackout in 8 states of USA and in Ontario (in total 55 mil. people affected),

primary culprit was a SW problem (race condition) which delayed notifications
22

F22 Raptor Software Bug

2007 F22 Raptor software bug

navigation, communication and fuel systems crashed after crossing the
international date line 23

Jeep Cherokee Hack

2014 Jeep Cherokee wirelessly hacked

security flaw in the infotainment system which allowed an attacker to control
almost everything (including throttle, brakes and steering) over internet -

Systems Engineering

Professional disciplines involved

Electrical Electronic
engineering engineering

\ /)
Civil Systems \ Software
engineering engineering/ engineering
/ \ ’

Mechanical £ . User interface
engineering rgonomics design

Architecture

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 26

Systems development

Requirements System
engineering deployment
N Archite_ctural
design
Requirements System
—>_ partitioning integration
Subsystem
engineering

System
testing

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 27

The system development process

—m

®* Requirements engineering

= The process of refining, analysing and documenting the
high-level and business requirements identified in the
conceptual design

* Architectural design

= Establishing the overall architecture of the system,
identifying components and their relationships

®* Requirements partitioning

= Deciding which subsystems (identified in the system
architecture) are responsible for implementing the
system requirements

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 28

The system development process

—m

® Subsystem engineering

= Developing the software components of the system,
configuring off-the-shelf hardware and software, defining
the operational processes for the system and re-designing
business processes

® System integration

= Putting together system elements to create a new system
® System testing

= The whole system is tested to discover problems
* System deployment

= the process of making the system available to its users,
transferring data from existing systems and establishing
communications with other systems in the environment

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 29

Software engineering

Software process

* A structured set of activities required to develop
a software system.

°* Many different software processes but all involve:
= Specification — defining what the system should do;

= Design and implementation — defining the organization
of the system and implementing the system;

= Validation — checking that it does what the customer
wants;

= Evolution — changing the system in response to
changing customer needs.

Adopted from slides by lan Sommerville for Software Engineering (10™ edition) 31

The waterfall model

Requirements
definition

A

System and
software design

A

Implementation
and unit testing

A

Integration and
system testing
T fOperation and)

\ maintenance

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 32

Requirements engineering process

Requirements
elicitation and |-

analysis
Requirements
- I
specification
Requirements
— .
Y validation
System
descriptions Y

User and system
requirements

Y
—>»| Requirements
- document

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 33

Software design process

Design inputs

Platform Requirements Data
information specification description
¢ Design activities

Architectural Interface Com ponen
design design de5|gn
(Database design

i Design outputs
System Database Interface Component
architecture specification specification specification

Ad\lr’t\-d fl v J:;d_-’ by :ull SUIIIIII\-I V;::\- f\ll Svftvvulu Engineering (loth edition) 34

System implementation

°* The software is implemented
either by developing a program or
programs or by configuring an application system.

®* Design and implementation are interleaved
activities for most types of software system.

®* Programming is an individual activity with no
standard process.

°* Debugging is the activity of finding program faults
and correcting these faults.

Adopted from slides by lan Sommerville for Software Engineering (10™ edition) 35

Software validation

* Verification and validation (V & V)
is intended to show that a system conforms to its
specification and meets the requirements of the
system customer.

* Involves checking and review processes and
system testing.

* System testing involves executing the system with
test cases that are derived from the specification
of the real data to be processed by the system.

* Testing is the most commonly used V & V activity.

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 36

Stages of testing

Component) Acceptance
< testlng >_><Sy5tem testlng < testlng)

* Component testing
= Individual components are tested independently;

= Components may be functions or objects or coherent groupings
of these entities.

* System testing

= Testing of the system as a whole. Testing of emergent properties
is particularly important.

®* Customer testing

= Testing with customer data to check that the system meets the
customer’s needs.

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 37

Testing phases in a V-model

V-model — a plan driven development process

Requirements System System Detailed
specification specification design design

Y

Acceptance System Sub-system Module and
testp [integration integration unit code
P test plan test plan and test

| /
Acceptance System Sub-system
test integration test integration test

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 38

Requirements
Engineering 1

http://d3s.mff.cuni.cz

Distributed and Software Engineering for
Dependable Systems

Dependable

Tomas Bures
bures@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

Requirements Engineering

m

°* The process of establishing the services that a
customer requires from a system and the
constraints under which it operates and is
developed.

* The system requirements are the descriptions of
the system services and constraints that are
generated during the requirements engineering
process.

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 40

Types of Requirements

m

°* User requirements

= Statements in natural language plus diagrams of the
services the system provides and its operational
constraints. Written for customers.

* System requirements

= A structured document setting out detailed
descriptions of the system’s functions, services and
operational constraints. Defines what should be
implemented so may be part of a contract between
client and contractor.

Adopted from slides by lan Sommerville for Software Engineering (10™ edition) 41

User and Systems Requirements

User requirements definition

1. The Mentcare system shall generate monthly management reports
showing the cost of drugs prescribed by each clinic during that month.

System requirements specification

1.1 On the last working day of each month, a summary of the drugs
prescribed, their cost and the prescribing clinics shall be generated.

1.2 The system shall generate the report for printing after 17.30 on the
last working day of the month.

1.3 A report shall be created for each clinic and shall list the individual
drug names, the total number of prescriptions, the number of doses
prescribed and the total cost of the prescribed drugs.

1.4 If drugs are available in different dose units (e.g. 10mg, 20mg, etc)
separate reports shall be created for each dose unit.

1.5 Access to drug cost reports shall be restricted to authorized users as
listed on a management access control list.

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 42

User and Systems Requirements

Client managers
System end-users
> Client engineers
Contractor managers
System architects

User
requirements

System end-users
System Client engineers

requirements System architects

Software developers

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 43

Functional and non-functional requirements

m

® Functional requirements

Statements of services the system should provide, how the
system should react to particular inputs and how the
system should behave in particular situations.

May state what the system should not do.

®* Non-functional requirements

Constraints on the services or functions offered by the
system such as timing constraints, constraints on the
development process, standards, etc.

Often apply to the system as a whole rather than individual
features or services.

® Domain requirements
Constraints on the system from the domain of operation

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 44

Types of non-functional requirements

Non-functional
requirements

External
requirements

Product
requirements

Organizational
requirements

Ethical

Efficiency
requirements

Dependability
requirements

Security
requirements

Regulatory
requirements

requirements

Usability
requirements

Environmental
requirements

Operational
requirements

Development
requirements

Performance
requirements

Space
requirements

Legislative
requirements

Accounting
requirements

Safety/security
requirements

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 45

Examples of nonfunctional requirements

Product requirement

The Mentcare system shall be available to all clinics during normal
working hours (Mon—Fri, 0830-17.30). Downtime within normal
working hours shall not exceed five seconds in any one day.

Organizational requirement
Users of the Mentcare system shall authenticate themselves using
their health authority identity card.

External requirement
The system shall implement patient privacy provisions as set out
in HStan-03-2006-priv.

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 46

Requirements engineering processes

® Requirements elicitation & analysis
= Requirements discovery
= Requirements classification and organization
= Requirements prioritization and negotiation
5 Requirements specification

® Requirements validation

= Ensures

* Validity — does the system provide the functions which best support the
customer’s needs?

* Consistency — are there any requirements conflicts?
* Completeness — are all functions required by the customer included?

* Realism — can the requirements be implemented given available budget and
technology

* Verifiability — can the requirements be checked?
= By requirement reviews, prototyping, test-case generation

®* Requirements management

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 47

Spiral view of the RE process

Requirements
specification

System requirements
specification and
modeling

User requirements
specification

Business requirements
specification

Start i
Svst Feasibility
stem
Requirements yreq_ study Requirements
elicitation elicitation User validation
requirements)
elicitation Prototyping

Reviews

System requirements
document

Adopted from slides by lan Sommerville for Software Engineering (10t edition) 48

Goal-based elicitation and analysis of
requirements

Goals

®* Goal — a stakeholder objective for the system

* Model of goals hierarchy and their relation
= Answers the question “Why?”

®* Guides requirement elaboration

® Results into concrete requirements which can be
turned to Requirements Specification document

B —— B ——
Early RE Late RE Design
C— —
\ J \ J (

Y Y |
Why? What? How?

50

KAOS

* A methodology for goal-based requirements
engineering

® http://www.objectiver.com/fileadmin/download/
documents/KaosTutorial.pdf

* Models:
= Goal model
= Object model
= Agent responsibility model
= Operation model

51

http://www.objectiver.com/fileadmin/download/documents/KaosTutorial.pdf

KAOS - Goal model

Transportation requests
satisfied in a safe, efficient,
usable, and cheap way

AND - decomposition

/ Cheap elevator system /

/ Transportation requests satisfied /

/ Safe elevator system

/ Efficient elevator system /

52

KAOS - Goal model

/Efﬁcientelevamrsystem /

/Transportatmn duration /
minimized
mized /

FPassengers informed of
elevator direction

/Waitingtime minimized / /Elevatormﬂves mn//
}\Stopsatmermedate floars if /

/

Closest elevator sent on pendlng requests
passenger calls
Passengers do not enter
elevators heading in the
Numberufdlredmn changes opposite direction
mlmmlzed
g Elevator direction updated few
= EXpeCtatlon / seconds before nexﬁ stop
Requirement

53

KAOS - Goal model

/ Elevator called /

Passengers informed of their
call's status

/ Button command detected /

/ Button-based interface provided /

Button depressed

Responsibility)
Expectation

assignment

Passenger

Elevator Company Elevator Controller

Selected button’s light on until
requested lift arrives

All button lights off until an

elevator gets called

54

KAOS - Goal model

/Euﬁun—hased interface prwided/

OR - decomposition

/N o selection panel inzide n:age/

/Inﬁ'ared cell on each floor /
hldlrectmnal buttons on each F'anel with all destinations

Destination floor panel inside
prl}‘ﬂdf‘.d on each fioor
cage ﬂnur

/Smgle — mr \><\

Robustand reliable elevator
system Cheap elevator system E ficient elevator system

Qualitative goals to enable selection

of a particular decomposition

55

KAOS - Goal model

Elevator called

/Elutton—basedinterface provided / /Eluttnn depressed/ /EUﬁGﬂ command detected /

Passengers informed of their
call's status

Elaboration of an expectation

Elevator Contraoller

Destination floor button pushed
/Up or down ﬂunrban pushed M ke /

\J
/ Selected button's light on until / All button lights off until an
requested lift arrives elevator gets called

Elevator Company

Destination floor panel inside
cage

bidirectional buttons on each

floor

56

KAOS - Goal model

/ System protected against fire /

Equipment to protect against
fire available inside cage

Elevator disabled in case of fire

Fireproof cage

Maoving elevator stopped next
floor in case of fire signal

Door locked open on floor
level in case of fire signal

Responsibility

Elevator Controller
Agent

Elevator Company

/Emergleruc:‘_g.r stop available /

57

Goal patterns

Achieve — achieve the goal at some point in the
future

Cease — undo a goal at some point in the future
Maintain — maintain a goal for some time
Avoid — prevent a goal from becoming true

Optimize — maximize or minimize some measure
(soft-goal)

58

Tactics for decomposing goals

* Case-driven decomposition

= E.g. The goal of the system is to build a system that
satisfies all stakeholders’ needs: functional and non-
functional ones.

* Milestone driven decomposition

= E.g. System is cheap to build, (then) cheap to run, and
(then) cheap to maintain.

59

Generic goal patterns

~"System satisfying stakeholders’ needs~

/ System satisfying functional needs / / System satisfying non-functional needs /

Safe system / Laws in force respected /

/ Cheap system /

/ Environment preserved /

/ Usable system /

/ Efficient system /

Generic goal patterns

/ Cheap system /

i

/ System cheap to build / / System cheap to run / / System cheap to maintain /

Resource consumption
minimized

/ Robust and reliable system /
/ Evolutive system /

Generic goal patterns

[y

|
/ No casualty / / Robust and reliable system / / Secure system /

/ Privacy preserved / / No intrusion /

62

Generic goal patterns

/ Usable system /

! Fair system / / System easy to use / / Robust and reliable system //‘/ Users informed about request status /

63

Generic goal patterns

/ Service request satisfied /

7
/ Service requested f

Service request maintained
until executed
Service executed
according to request

Domain propety

Infrastructure available

64

Agent responsibility model
I / Elexrat{:ls-t{:-\pp.g.d / z“;':‘:f:;s::iiﬁﬂn&mpaﬂed /

Cage door closed while moving /

Door locked open on floor

level in case of fire signal
Elevator stopped at passenger
destination

Weight conditions checked
before next move

Elevator kept on cument floor,
doors open, until cveraeight
conditions disappear

/ Mo door opening while moving

Emergency conditions reported /

/ Elevator stopped upon power

failure

Passengers informed of their
call’s status

Elevator stopped cn calling
floor
/ Button command detected / M

Maowving elevator stopped nesxt /

Door closed when cage not floor in case of fire signal
stopped on a floor level *-

Emergency lights on when
needed 65

/Elevat{:r resumed f

Object model

Mo passenger locked in forever
in case of breakdown

Elevator equipped with a /
breakdown alarm

Alarm cleared by guard's
response
/ t Breakdown alarm used f

/Emerqencv power available /
Concerns

Concerns /Emerqencvcunditions reported / _
z Guard appointed ,

/ . .
Alarm bell RelatlonShlp / Alarm answered by guard /
Entity

66

Object model

Alarm device

Floor

e

1

/

2.n

Alarm bell
™,
| \

Elevator System

Year : Date
Model : String

S— | -
@atur Cuntrulle>

/.l Make - String

Power supply

\ Associations as in UML
1.n
|

Cage

| Control room |

1

e

67

Operation model

Schedule

Cancerns

Input

Elevator stopped on calling
floor

Operationalisation
of a requirement

—Perfarmance

Process

{_”__Iqiﬁ@vator Gontmllb

68

Operation mode}

Passenger Command |ssued > Elevator state change >

Event Cause

Update systemn state

Cause

Cutput Input

v
Elewvator system state

Reschedule

Clutput Clutput

Schedule Input Refresh Input

Execute schedule

Cutput

/

Command event >

Operation model

Cage State change

Cage scale measure change >

/7

Elevator state change

Amival on floor

Button light on >

Cage Door Sensor event }

Button light off >

70

Obstacle model

Passengers informed of
elevator direction

/ Elevator direction updated few ﬁ} \\ Elevator direction unreadable \

seconds before next stop

®¥ Obstacle

decomposition

\ Inadequate LED size \ \ ;T:'ET:::" unreadable \ \ Insufficient display contrast \

T A

Obstacle mitigation
/ o / Elevator direction announced
LEDs at least 2in hlgh Py e

71

Completeness Criteria

—m

®* A goal modelis said to be complete with respect to the
refinement relationship ‘if and only if’ every leaf goal is either
an expectation, a domain property or a requirement.

* A goal model is complete with respect to the responsibility
relationship ‘if and only if’ every requirement is placed under
the responsibility of one and only one agent (either explicitly or
implicitly if the requirement refines another one which has
been placed under the responsibility of some agent).

®* To be complete, a process diagram must specify
the agents who perform the operations
the input and output data for each operation.

* To be complete, a process diagram must specify when
operations are to be executed.

* All operations are to be justified by the existence of some
requirements (through the use of operationalization links).

72

KAOS Notation Summary
Iy ey KAOS

Responsibility modeling

OBSTACLE &) EXPECTATION @
12 .'.|‘.' ement Who ?
[(o] [
Bt o Responsibility
Performs
Concerns Operationalization
EVENT
_~ ENTITY
Binary Cause
Association

Input
ENTITY OPERATION
Attr : Type Output
What to do?
When ?

On what?)]
Operation modeling

Object modeling

	Course Requirements
	Organisation
	Requirements for passing the course
	Requirements for passing the course
	Resources
	Introduction
	Dependability
	Principal properties
	Related system properties
	Causes of failure
	Cost/dependability curve
	Sociotechnical systems stack
	Layers in the STS stack
	Dependable processes
	Dependable processes
	Formal methods and dependability
	Dependability in timing
	Why Dependability?
	Arianne 5
	Patriot – Failure at Dhahran
	Therac-25
	Total Blackout in 2003
	F22 Raptor Software Bug
	Jeep Cherokee Hack
	Systems Engineering
	Professional disciplines involved
	Systems development
	The system development process
	The system development process
	Software engineering
	Software process
	The waterfall model
	Requirements engineering process
	Software design process
	System implementation
	Software validation
	Stages of testing
	Testing phases in a V-model
	Requirements Engineering 1
	Requirements Engineering
	Types of Requirements
	User and Systems Requirements
	User and Systems Requirements
	Functional and non-functional requirements
	Types of non-functional requirements
	Examples of nonfunctional requirements
	Requirements engineering processes
	Spiral view of the RE process
	Goal-based elicitation and analysis of requirements
	Goals
	KAOS
	KAOS – Goal model
	KAOS – Goal model
	KAOS – Goal model
	KAOS – Goal model
	KAOS – Goal model
	KAOS – Goal model
	Goal patterns
	Tactics for decomposing goals
	Generic goal patterns
	Generic goal patterns
	Generic goal patterns
	Generic goal patterns
	Generic goal patterns
	Agent responsibility model
	Object model
	Object model
	Operation model
	Operation model
	Operation model
	Obstacle model
	Completeness Criteria
	KAOS Notation Summary

