
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

Requirements
Engineering 2

Software Engineering for
Dependable Systems

Tomas Bures
bures@d3s.mff.cuni.cz

Recap

2

3

Types of Requirements

User requirements
Statements in natural language plus diagrams of the
services the system provides and its operational
constraints. Written for customers.

System requirements
A structured document setting out detailed
descriptions of the system’s functions, services and
operational constraints. Defines what should be
implemented so may be part of a contract between
client and contractor.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

4

User and Systems Requirements

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

5

Types of non-functional requirements

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

6

Examples of nonfunctional requirements

Product requirement
The Mentcare system shall be available to all clinics during normal
working hours (Mon–Fri, 0830–17.30). Downtime within normal
working hours shall not exceed five seconds in any one day.

Organizational requirement
Users of the Mentcare system shall authenticate themselves using
their health authority identity card.

External requirement
The system shall implement patient privacy provisions as set out
in HStan-03-2006-priv.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

7

Requirements engineering processes

Requirements elicitation & analysis
Requirements discovery
Requirements classification and organization
Requirements prioritization and negotiation
Requirements specification

Requirements validation
Ensures

Validity – does the system provide the functions which best support the
customer’s needs?
Consistency – are there any requirements conflicts?
Completeness – are all functions required by the customer included?
Realism – can the requirements be implemented given available budget and
technology
Verifiability – can the requirements be checked?

By requirement reviews, prototyping, test-case generation

Requirements management
Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

Requirements Elicitation

8

9

Requirements Elicitation

Software engineers work with a range of system
stakeholders to find out about the application
domain, the services that the system should
provide, the required system performance,
hardware constraints, other systems, etc.
Stages include:

Requirements discovery,
Requirements classification and organization,
Requirements prioritization and negotiation,
Requirements specification.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

10

Problems of requirements elicitation

Stakeholders don’t know what they really want.
Stakeholders express requirements in their own
terms.
Different stakeholders may have conflicting
requirements.
Organisational and political factors may influence
the system requirements.
The requirements change during the analysis
process. New stakeholders may emerge and the
business environment may change.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

11

Requirements elicitation and analysis process

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

12

Requirements Elicitation

Requirements discovery
Interacting with stakeholders to discover their
requirements. Domain requirements are also discovered at
this stage.

Requirements classification and organisation
Groups related requirements and organises them into
coherent clusters.

Prioritisation and negotiation
Prioritising requirements and resolving requirements
conflicts.

Requirements specification
Requirements are documented and input into the next
round of the spiral.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

13

Requirements Discovery

The process of gathering information about the
required and existing systems and distilling the
user and system requirements from this
information.
Interaction is with system stakeholders from
managers to external regulators.
Systems normally have a range of stakeholders.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

14

Interviewing

Formal or informal interviews with stakeholders are
part of most RE processes.
Types of interview

Closed interviews based on pre-determined list of
questions
Open interviews where various issues are explored with
stakeholders.

Effective interviewing
Be open-minded, avoid pre-conceived ideas about the
requirements and are willing to listen to stakeholders.
Prompt the interviewee to get discussions going using a
springboard question, a requirements proposal, or by
working together on a prototype system.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

15

Interviews in Practice

Normally a mix of closed and open-ended
interviewing.
Interviews are good for getting an overall
understanding of what stakeholders do and how
they might interact with the system.
Interviewers need to be open-minded without
pre-conceived ideas of what the system should do
You need to prompt the user to talk about the
system by suggesting requirements rather than
simply asking them what they want.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

16

Stories and Scenarios

Scenarios and user stories are real-life examples
of how a system can be used.
Stories and scenarios are a description of how a
system may be used for a particular task.
Because they are based on a practical situation,
stakeholders can relate to them and can
comment on their situation with respect to the
story.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

17

Photo sharing in the classroom (iLearn)
Jack is a primary school teacher in Ullapool (a village in northern Scotland). He has
decided that a class project should be focused around the fishing industry in the
area, looking at the history, development and economic impact of fishing. As part
of this, pupils are asked to gather and share reminiscences from relatives, use
newspaper archives and collect old photographs related to fishing and fishing
communities in the area. Pupils use an iLearn wiki to gather together fishing stories
and SCRAN (a history resources site) to access newspaper archives and
photographs. However, Jack also needs a photo sharing site as he wants pupils to
take and comment on each others’ photos and to upload scans of old photographs
that they may have in their families.

Jack sends an email to a primary school teachers group, which he is a member of to
see if anyone can recommend an appropriate system. Two teachers reply and both
suggest that he uses KidsTakePics, a photo sharing site that allows teachers to
check and moderate content. As KidsTakePics is not integrated with the iLearn
authentication service, he sets up a teacher and a class account. He uses the iLearn
setup service to add KidsTakePics to the services seen by the pupils in his class so
that when they log in, they can immediately use the system to upload photos from
their mobile devices and class computers.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

18

Scenarios

A structured form of user story
Scenarios should include

A description of the starting situation;
A description of the normal flow of events;
A description of what can go wrong;
Information about other concurrent activities;
A description of the state when the scenario finishes.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

19

Example: iLearn

Initial assumption: A user or a group of users have one or more
digital photographs to be uploaded to the picture sharing site.
These are saved on either a tablet or laptop computer. They
have successfully logged on to KidsTakePics.
Normal: The user chooses upload photos and they are
prompted to select the photos to be uploaded on their
computer and to select the project name under which the
photos will be stored. They should also be given the option of
inputting keywords that should be associated with each
uploaded photo. Uploaded photos are named by creating a
conjunction of the user name with the filename of the photo on
the local computer.
On completion of the upload, the system automatically sends
an email to the project moderator asking them to check new
content and generates an on-screen message to the user that
this has been done.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

20

Example: iLearn

What can go wrong:
No moderator is associated with the selected project. An email is
automatically generated to the school administrator asking them to
nominate a project moderator. Users should be informed that there
could be a delay in making their photos visible.
Photos with the same name have already been uploaded by the same
user. The user should be asked if they wish to re-upload the photos with
the same name, rename the photos or cancel the upload. If they chose
to re-upload the photos, the originals are overwritten. If they chose to
rename the photos, a new name is automatically generated by adding a
number to the existing file name.

Other activities: The moderator may be logged on to the system and
may approve photos as they are uploaded.

System state on completion: User is logged on. The selected photos
have been uploaded and assigned a status ‘awaiting moderation’.
Photos are visible to the moderator and to the user who uploaded them.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

Requirements Specification

21

22

Ways of writing a system req. specification

Notation Description
Natural language The requirements are written using numbered sentences in natural

language. Each sentence should express one requirement.

Structured natural
language

The requirements are written in natural language on a standard form or
template. Each field provides information about an aspect of the
requirement.

Design description
languages

This approach uses a language like a programming language, but with
more abstract features to specify the requirements by defining an
operational model of the system. This approach is now rarely used
although it can be useful for interface specifications.

Graphical notations Graphical models, supplemented by text annotations, are used to define
the functional requirements for the system; UML use case and sequence
diagrams are commonly used.

Mathematical
specifications

These notations are based on mathematical concepts such as finite-state
machines or sets. Although these unambiguous specifications can reduce
the ambiguity in a requirements document, most customers don’t
understand a formal specification. They cannot check that it represents
what they want and are reluctant to accept it as a system contract

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

23

Requirements and design

In principle, requirements should state what the
system should do and the design should describe
how it does this.
In practice, requirements and design are inseparable

A system architecture may be designed to structure the
requirements;
The system may inter-operate with other systems that
generate design requirements;
The use of a specific architecture to satisfy non-functional
requirements may be a domain requirement.
This may be the consequence of a regulatory requirement.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

24

Natural language specification

Requirements are written as natural language
sentences supplemented by diagrams and tables.
Used for writing requirements because it is
expressive, intuitive and universal. This means
that the requirements can be understood by
users and customers.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

25

Guidelines for writing requirements

Invent a standard format and use it for all
requirements.
Use language in a consistent way. Use shall for
mandatory requirements, should for desirable
requirements.
Use text highlighting to identify key parts of the
requirement.
Avoid the use of computer jargon.
Include an explanation (rationale) of why a
requirement is necessary.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

26

Problems with natural language

Lack of clarity
Precision is difficult without making the document
difficult to read.

Requirements confusion
Functional and non-functional requirements tend to be
mixed-up.

Requirements amalgamation
Several different requirements may be expressed
together.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

27

Example – Insulin pump (natural lang.)

3.2 The system shall measure the blood sugar and deliver
insulin, if required, every 10 minutes. (Changes in blood sugar
are relatively slow so more frequent measurement is
unnecessary; less frequent measurement could lead to
unnecessarily high sugar levels.)

3.6 The system shall run a self-test routine every minute with
the conditions to be tested and the associated actions defined
in Table 1. (A self-test routine can discover hardware and
software problems and alert the user to the fact the normal
operation may be impossible.)

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

28

Structured specifications

An approach to writing requirements where the
freedom of the requirements writer is limited and
requirements are written in a standard way.
This works well for some types of requirements
e.g. requirements for embedded control system
but is sometimes too rigid for writing business
system requirements.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

29

Form-based specifications

Definition of the function or entity.
Description of inputs and where they come from.
Description of outputs and where they go to.
Information about the information needed for
the computation and other entities used.
Description of the action to be taken.
Pre and post conditions (if appropriate).
The side effects (if any) of the function.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

30

Example – Insulin pump (structured)
Insulin Pump/Control Software/SRS/3.3.2
Function Compute insulin dose: safe sugar level.
Description
Computes the dose of insulin to be delivered when the current measured sugar level is in the safe
zone between 3 and 7 units.
Inputs Current sugar reading (r2); the previous two readings (r0 and r1).
Source Current sugar reading from sensor. Other readings from memory.
Outputs CompDose—the dose in insulin to be delivered.
Destination Main control loop.

Action
CompDose is zero if the sugar level is stable or falling or if the level is increasing but the rate of
increase is decreasing. If the level is increasing and the rate of increase is increasing, then
CompDose is computed by dividing the difference between the current sugar level and the
previous level by 4 and rounding the result. If the result, is rounded to zero then CompDose is set
to the minimum dose that can be delivered.
Requirements
Two previous readings so that the rate of change of sugar level can be computed.
Pre-condition
The insulin reservoir contains at least the maximum allowed single dose of insulin.
Post-condition r0 is replaced by r1 then r1 is replaced by r2.
Side effects None.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

Insulin Pump/Control Software/SRS/3.3.2

Function	Compute insulin dose: safe sugar level.

Description	

Computes the dose of insulin to be delivered when the current measured sugar level is in the safe zone between 3 and 7 units.

Inputs	Current sugar reading (r2); the previous two readings (r0 and r1).

Source	Current sugar reading from sensor. Other readings from memory.

Outputs	CompDose—the dose in insulin to be delivered.

Destination 	 Main control loop.

Action	

CompDose is zero if the sugar level is stable or falling or if the level is increasing but the rate of increase is decreasing. If the level is increasing and the rate of increase is increasing, then CompDose is computed by dividing the difference between the current sugar level and the previous level by 4 and rounding the result. If the result, is rounded to zero then CompDose is set to the minimum dose that can be delivered.

Requirements	

Two previous readings so that the rate of change of sugar level can be computed.

Pre-condition 	

The insulin reservoir contains at least the maximum allowed single dose of insulin.

Post-condition 	r0 is replaced by r1 then r1 is replaced by r2.

Side effects	 None.

31

Tabular specification

Used to supplement natural language.
Particularly useful when you have to define a
number of possible alternative courses of action.
For example, the insulin pump systems bases its
computations on the rate of change of blood
sugar level and the tabular specification explains
how to calculate the insulin requirement for
different scenarios.

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

32

Example – Insulin pump (tabular)

Adopted from slides by Ian Sommerville for Software Engineering (10th edition)

Condition Action

Sugar level falling (r2 < r1) CompDose = 0

Sugar level stable (r2 = r1) CompDose = 0

Sugar level increasing and rate of increase
decreasing
((r2 – r1) < (r1 – r0))

CompDose = 0

Sugar level increasing and rate of increase
stable or increasing
((r2 – r1) ≥ (r1 – r0))

CompDose =
round ((r2 – r1)/4)

If rounded result = 0 then
CompDose = MinimumDose

33

Use-cases

Requirements that capture interaction with a user can be
described by use-cases
A use case is a collection of related success and failure scenarios
that describe actors using a system to support a goal
A scenario is a specific sequence of actions and interactions
between actors and the system under discussion

also called a use case instance.
a particular story of using a system, or one path through the use case
Examples:

successfully purchasing items with cash
failing to purchase items because of a credit card transaction denial

A use-case describes interaction of actors (e.g. a person –
identified by role, computer system, or organization) and is
supposed to yield an observable result of value to a particular
actor
Different level of detail – brief, casual, fully-dressed

34

Use-case Diagrams
NextGen POS

Cashier

Customer

Handle Cash
Payment

Process Rental

Process Sale

Handle Check
Payment

Handle Returns

«include» «include»

«include»

«include» «include»
«include»

«actor»
Accounting

System

«actor»
Credit

Authorization
Service

Manage Users

...

UML notation:
the base use
case points to
the included use
case

Handle Credit
Payment

Figure taken from C. Larman: Applying UML and Patterns (Second Edition), Prentice Hall

Example of a Brief Format Use Case

35

Process Sale:
A customer arrives at a checkout with items to
purchase. The cashier uses the POS system to
record each purchased item. The system presents a
running total and line-item details. The customer
enters payment information, which the system
validates and records. The system updates
inventory. The customer receives a receipt from the
system and then leaves with the items.

36

Example of Casual Format Use-Case

Handle Returns
Main Success Scenario: A customer arrives at a
checkout with items to return. The cashier uses the
POS system to record each returned item ...
Alternate Scenarios:
If the credit authorization is reject, inform the customer
and ask for an alternate payment method.
If the item identifier is not found in the system, notify
the Cashier and suggest manual entry of the identifier
code (perhaps it is corrupted).
If the system detects failure to communicate with the
external tax calculator system, ...

Fully Dressed Example 1/9

37

Primary Actor: Cashier
Stakeholders and Interests:

Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer
shortages are deducted from his/her salary.
Salesperson: Wants sales commissions updated.
Customer: Wants purchase and fast service with minimal effort. Wants proof of
purchase to support returns.
Company: Wants to accurately record transactions and satisfy customer
interests. Wants to ensure that Payment Authorization Service payment
receivables are recorded. Wants some fault tolerance to allow sales capture
even if server components (e.g., remote credit validation) are unavailable.
Wants automatic and fast update of accounting and inventory.
Government Tax Agencies: Want to collect tax from every sale. May be multiple
agencies, such as national, state, and county.
Payment Authorization Service: Wants to receive digital authorization requests
in the correct format and protocol. Wants to accurately account for their
payables to the store.

www.usecases.org format

Fully Dressed Example 1/9

38

Primary Actor: Cashier
Stakeholders and Interests:

Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer
shortages are deducted from his/her salary.
Salesperson: Wants sales commissions updated.
Customer: Wants purchase and fast service with minimal effort. Wants proof of
purchase to support returns.
Company: Wants to accurately record transactions and satisfy customer
interests. Wants to ensure that Payment Authorization Service payment
receivables are recorded. Wants some fault tolerance to allow sales capture
even if server components (e.g., remote credit validation) are unavailable.
Wants automatic and fast update of accounting and inventory.
Government Tax Agencies: Want to collect tax from every sale. May be multiple
agencies, such as national, state, and county.
Payment Authorization Service: Wants to receive digital authorization requests
in the correct format and protocol. Wants to accurately account for their
payables to the store.

www.usecases.org format

Primary Actor
The principal actor that calls upon system
services to fulfill a goal

Fully Dressed Example 1/9

39

Primary Actor: Cashier
Stakeholders and Interests:

Cashier: Wants accurate, fast entry, and no payment errors, as cash drawer
shortages are deducted from his/her salary.
Salesperson: Wants sales commissions updated.
Customer: Wants purchase and fast service with minimal effort. Wants proof of
purchase to support returns.
Company: Wants to accurately record transactions and satisfy customer
interests. Wants to ensure that Payment Authorization Service payment
receivables are recorded. Wants some fault tolerance to allow sales capture
even if server components (e.g., remote credit validation) are unavailable.
Wants automatic and fast update of accounting and inventory.
Government Tax Agencies: Want to collect tax from every sale. May be multiple
agencies, such as national, state, and county.
Payment Authorization Service: Wants to receive digital authorization requests
in the correct format and protocol. Wants to accurately account for their
payables to the store.

www.usecases.org format

Stakeholders and Interests
Suggests and bounds what the system must do
The [system] operates a contract between stakeholders, with
the use cases detailing the behavioral parts of that contract...
The use case, as the contract for behavior, captures all and
only the behaviors related to satisfying the stakeholders’
interests [Cockburn0l]

Fully Dressed Example 2/9

40

Preconditions: Cashier is identified and authenticated.
Success Guarantee (Postconditions): Sale is saved. Tax is correctly calculated.
Accounting and Inventory are updated. Commissions recorded. Receipt is
generated.
Payment authorization approvals are recorded.

Main Success Scenario (or Basic Flow):
1. Customer arrives at POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and presents item description, price, and running

total. Price calculated from a set of price rules.
Cashier repeats steps 3-4 until indicates done.
5. System presents total with taxes calculated.
6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment.

www.usecases.org format

Fully Dressed Example 2/9

41

Preconditions: Cashier is identified and authenticated.
Success Guarantee (Postconditions): Sale is saved. Tax is correctly calculated.
Accounting and Inventory are updated. Commissions recorded. Receipt is
generated.
Payment authorization approvals are recorded.

Main Success Scenario (or Basic Flow):
1. Customer arrives at POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and presents item description, price, and running

total. Price calculated from a set of price rules.
Cashier repeats steps 3-4 until indicates done.
5. System presents total with taxes calculated.
6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment.

www.usecases.org format

Preconditions
State what must always be true before beginning a scenario in
the use case.
Not tested in the use-case, rather assumed to be true.
Typically, a precondition implies a scenario of another use
case that has successfully completed, such as logging in, or the
more general "cashier is identified and authenticated.“
Note that there are conditions that must be true, but are not
of practical value to write, such as "the system has power."
Preconditions communicate noteworthy assumptions that the
use case writer thinks readers should be alerted to.

Fully Dressed Example 2/9

42

Preconditions: Cashier is identified and authenticated.
Success Guarantee (Postconditions): Sale is saved. Tax is correctly calculated.
Accounting and Inventory are updated. Commissions recorded. Receipt is
generated.
Payment authorization approvals are recorded.

Main Success Scenario (or Basic Flow):
1. Customer arrives at POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and presents item description, price, and running

total. Price calculated from a set of price rules.
Cashier repeats steps 3-4 until indicates done.
5. System presents total with taxes calculated.
6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment.

www.usecases.org format

Success guarantees (Postconditions)
State what must be true on successful completion of the use
case – either the main success scenario or some alternate
path.

Fully Dressed Example 2/9

43

Preconditions: Cashier is identified and authenticated.
Success Guarantee (Postconditions): Sale is saved. Tax is correctly calculated.
Accounting and Inventory are updated. Commissions recorded. Receipt is
generated.
Payment authorization approvals are recorded.

Main Success Scenario (or Basic Flow):
1. Customer arrives at POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and presents item description, price, and running

total. Price calculated from a set of price rules.
Cashier repeats steps 3-4 until indicates done.
5. System presents total with taxes calculated.
6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment.

www.usecases.org format

Main Success Scenario
Basic flow. Typical success path that satisfies the interests of
the stakeholders.
Often does not include any conditions or branching – deferred
to Extensions section.

Fully Dressed Example 2/9

44

Preconditions: Cashier is identified and authenticated.
Success Guarantee (Postconditions): Sale is saved. Tax is correctly calculated.
Accounting and Inventory are updated. Commissions recorded. Receipt is
generated.
Payment authorization approvals are recorded.

Main Success Scenario (or Basic Flow):
1. Customer arrives at POS checkout with goods and/or services to purchase.
2. Cashier starts a new sale.
3. Cashier enters item identifier.
4. System records sale line item and presents item description, price, and running

total. Price calculated from a set of price rules.
Cashier repeats steps 3-4 until indicates done.
5. System presents total with taxes calculated.
6. Cashier tells Customer the total, and asks for payment.
7. Customer pays and System handles payment.

www.usecases.org format

Scenario
The scenario records the steps, of which there are three kinds:
1. An interaction between actors
2. A validation (usually by the system)
3. A state change by the system (for example, recording or

modifying something).
Step one of a use case does not always fall into this
classification, but indicates the trigger event that starts the
scenario.

Fully Dressed Example 3/9

45

8. System logs completed sale and sends sale and payment information to the
external Accounting system (for accounting and commissions) and Inventory
system (to update inventory).

9. System presents receipt.
10. Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):
*a. At any time, System fails:

To support recovery and correct accounting, ensure all transaction sensitive
state and events can be recovered from any step of the scenario.

1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.

2a. System detects anomalies preventing recovery:
1. System signals error to the Cashier, records the error, and enters a

clean state.
2. Cashier starts a new sale.

www.usecases.org format

Fully Dressed Example 3/9

46

8. System logs completed sale and sends sale and payment information to the
external Accounting system (for accounting and commissions) and Inventory
system (to update inventory).

9. System presents receipt.
10. Customer leaves with receipt and goods (if any).

Extensions (or Alternative Flows):
*a. At any time, System fails:

To support recovery and correct accounting, ensure all transaction sensitive
state and events can be recovered from any step of the scenario.

1. Cashier restarts System, logs in, and requests recovery of prior state.
2. System reconstructs prior state.

2a. System detects anomalies preventing recovery:
1. System signals error to the Cashier, records the error, and enters a

clean state.
2. Cashier starts a new sale.

www.usecases.org format

Extensions (Alternate Flows)
Indicate all the other scenarios or branches, both success and
failure.

Fully Dressed Example 4/9

47

3a. Invalid identifier:
1. System signals error and rejects entry.

3b. There are multiple of same item category and tracking unique item identity not
important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.

3-6a. Customer asks Cashier to remove an item from the purchase:
1. Cashier enters item identifier for removal from sale.
2. System displays updated running total.

3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.

3-6c. Cashier suspends the sale:
1. System records sale so that it is available for retrieval on any POS terminal.

4a. The system generated item price is not wanted (e.g., Customer complained
about something and is offered a lower price):
1. Cashier enters override price.
2. System presents new price.

www.usecases.org format

Fully Dressed Example 4/9

48

3a. Invalid identifier:
1. System signals error and rejects entry.

3b. There are multiple of same item category and tracking unique item identity not
important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.

3-6a. Customer asks Cashier to remove an item from the purchase:
1. Cashier enters item identifier for removal from sale.
2. System displays updated running total.

3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.

3-6c. Cashier suspends the sale:
1. System records sale so that it is available for retrieval on any POS terminal.

4a. The system generated item price is not wanted (e.g., Customer complained
about something and is offered a lower price):
1. Cashier enters override price.
2. System presents new price.

www.usecases.org format

Extensions (Alternate Flows)
Extension scenarios are branches from the main success
scenario, and so can be notated with respect to it. For
example, at Step 3 of the main success scenario there may be
an invalid item identifier, either because it was incorrectly
entered or unknown to the system. An extension is labeled
"3a"; it first identifies the condition and then the response.
Alternate extensions at Step 3 are labeled "3b“ and so forth.

Fully Dressed Example 4/9

49

3a. Invalid identifier:
1. System signals error and rejects entry.

3b. There are multiple of same item category and tracking unique item identity not
important (e.g., 5 packages of veggie-burgers):
1. Cashier can enter item category identifier and the quantity.

3-6a. Customer asks Cashier to remove an item from the purchase:
1. Cashier enters item identifier for removal from sale.
2. System displays updated running total.

3-6b. Customer tells Cashier to cancel sale:
1. Cashier cancels sale on System.

3-6c. Cashier suspends the sale:
1. System records sale so that it is available for retrieval on any POS terminal.

4a. The system generated item price is not wanted (e.g., Customer complained
about something and is offered a lower price):
1. Cashier enters override price.
2. System presents new price.

www.usecases.org format

Extensions (Alternate Flows)
Extension handling can be summarized in one step, or include
a sequence (see 3-6a) which also illustrates notation to
indicate that a condition can arise within a range of steps.

Fully Dressed Example 5/9

50

5a. System detects failure to communicate with external tax calculation system
service:
1. System restarts the service on the POS node, and continues.
1a. System detects that the service does not restart.

1. System signals error.
2. Cashier may manually calculate and enter the tax, or cancel the sale.

5b. Customer says they are eligible for a discount (e.g., employee, preferred
customer):
1. Cashier signals discount request.
2. Cashier enters Customer identification.
3. System presents discount total, based on discount rules.

5c. Customer says they have credit in their account, to apply to the sale:
1. Cashier signals credit request.
2. Cashier enters Customer identification.
3. Systems applies credit up to price=0, and reduces remaining credit.

www.usecases.org format

Fully Dressed Example 5/9

51

5a. System detects failure to communicate with external tax calculation system
service:
1. System restarts the service on the POS node, and continues.
1a. System detects that the service does not restart.

1. System signals error.
2. Cashier may manually calculate and enter the tax, or cancel the sale.

5b. Customer says they are eligible for a discount (e.g., employee, preferred
customer):
1. Cashier signals discount request.
2. Cashier enters Customer identification.
3. System presents discount total, based on discount rules.

5c. Customer says they have credit in their account, to apply to the sale:
1. Cashier signals credit request.
2. Cashier enters Customer identification.
3. Systems applies credit up to price=0, and reduces remaining credit.

www.usecases.org format

Extensions (Alternate Flows)
An extension has two parts: the condition and the handling.
Guideline: Write the condition as something that can be
detected by the system or an actor. Compare:
5a. System detects failure to communicate with external tax

calculation system service [better – can be detected]
5a. External tax calculation system not working [worse –

needs inference]

Fully Dressed Example 6/9

52

6a. Customer says they intended to pay by cash but don’t have enough cash:
1a. Customer uses an alternate payment method.
1b. Customer tells Cashier to cancel sale. Cashier cancels sale on System.

7a. Paying by cash:
1. Cashier enters the cash amount tendered.
2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.

7b. Paying by credit:
1. Customer enters their credit account information.
2. System sends payment authorization request to an external Payment

Authoriza tion Service System, and requests payment approval.
2a. System detects failure to collaborate with external system:

1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.

www.usecases.org format

Fully Dressed Example 6/9

53

6a. Customer says they intended to pay by cash but don’t have enough cash:
1a. Customer uses an alternate payment method.
1b. Customer tells Cashier to cancel sale. Cashier cancels sale on System.

7a. Paying by cash:
1. Cashier enters the cash amount tendered.
2. System presents the balance due, and releases the cash drawer.
3. Cashier deposits cash tendered and returns balance in cash to Customer.
4. System records the cash payment.

7b. Paying by credit:
1. Customer enters their credit account information.
2. System sends payment authorization request to an external Payment

Authoriza tion Service System, and requests payment approval.
2a. System detects failure to collaborate with external system:

1. System signals error to Cashier.
2. Cashier asks Customer for alternate payment.

www.usecases.org format

Extensions (Alternate Flows)
At the end of extension handling, by default the scenario
merges back with the main success scenario, unless the
extension indicates otherwise (such as by aborting the use-
case – see “Cashier cancels sale on System”).

Fully Dressed Example 7/9

54

3. System receives payment approval and signals approval to Cashier.
3a. System receives payment denial:

1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.

4. System records the credit payment, which includes the payment approval.
5. System presents credit payment signature input mechanism.
6. Cashier asks Customer for a credit payment signature. Customer enters

signature.
7c. Paying by check...
7d. Paying by debit...
7e. Customer presents coupons:

1. Before handling payment, Cashier records each coupon and System
reduces price as appropriate. System records the used coupons for
accounting reasons.
1a. Coupon entered is not for any purchased item:

1. System signals error to Cashier.

www.usecases.org format

Fully Dressed Example 7/9

55

3. System receives payment approval and signals approval to Cashier.
3a. System receives payment denial:

1. System signals denial to Cashier.
2. Cashier asks Customer for alternate payment.

4. System records the credit payment, which includes the payment approval.
5. System presents credit payment signature input mechanism.
6. Cashier asks Customer for a credit payment signature. Customer enters

signature.
7c. Paying by check...
7d. Paying by debit...
7e. Customer presents coupons:

1. Before handling payment, Cashier records each coupon and System
reduces price as appropriate. System records the used coupons for
accounting reasons.
1a. Coupon entered is not for any purchased item:

1. System signals error to Cashier.

www.usecases.org format

Extensions (Alternate Flows)
Sometimes, a particular extension point is quite complex, as in
the "paying by credit" extension. This can be a motivation to
express the extension as a separate use case.

This example demonstrates also the notation to express
failures within extensions.

Fully Dressed Example 8/9

56

9a. There are product rebates:
1. System presents the rebate forms and rebate receipts for each item with a

rebate.
9b. Customer requests gift receipt (no prices visible):

1. Cashier requests gift receipt and System presents it.

Special Requirements:
Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.
Credit authorization response within 30 seconds 90% of the time.
Somehow, we want robust recovery when access to remote services such the
inventory system is failing.
Language internationalization on the text displayed.
Pluggable business rules to be insertable at steps 3 and 7.

www.usecases.org format

Fully Dressed Example 8/9

57

9a. There are product rebates:
1. System presents the rebate forms and rebate receipts for each item with a

rebate.
9b. Customer requests gift receipt (no prices visible):

1. Cashier requests gift receipt and System presents it.

Special Requirements:
Touch screen Ul on a large flat panel monitor. Text must be visible from 1 meter.
Credit authorization response within 30 seconds 90% of the time.
Somehow, we want robust recovery when access to remote services such the
inventory system is failing.
Language internationalization on the text displayed.
Pluggable business rules to be insertable at steps 3 and 7.

www.usecases.org format

Special Requirements
Non-functional requirement, quality attribute, or constraint
related directly to the use-case.
If it applies globally, it can be recorded in a separate document
– Supplementary Specification

Fully Dressed Example 9/9

58

Technology and Data Variations List:
3a. Item identifier entered by bar code laser scanner (if bar code is present) or

keyboard.
3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.
7a. Credit account information entered by card reader or keyboard.
7b. Credit payment signature captured on paper receipt. But within two years, we

predict many customers will want digital signature capture.

Open Issues:
What are the tax law variations?
Explore the remote service recovery issue.
What customization is needed for different businesses?
Must a cashier take their cash drawer when they log out?
Can the customer directly use the card reader, or does the cashier have to do it?

www.usecases.org format

Fully Dressed Example 9/9

59

Technology and Data Variations List:
3a. Item identifier entered by bar code laser scanner (if bar code is present) or

keyboard.
3b. Item identifier may be any UPC, EAN, JAN, or SKU coding scheme.
7a. Credit account information entered by card reader or keyboard.
7b. Credit payment signature captured on paper receipt. But within two years, we

predict many customers will want digital signature capture.

Open Issues:
What are the tax law variations?
Explore the remote service recovery issue.
What customization is needed for different businesses?
Must a cashier take their cash drawer when they log out?
Can the customer directly use the card reader, or does the cashier have to do it?

www.usecases.org format

Technology and Data Variation List
Captures technical variations in how something must be done,
but not what.
Represents early design decisions, which however in some
cases are unavoidable.

IEEE Recommended Practice for Software
Requirements Specifications
(IEEE Std 830-1998)

60

IEEE recommended practice for specifying requirements

61

IEEE 830-1998

Basic issues to be addressed:
Functionality.

What is the software supposed to do?
External interfaces.

How does the software interact with people, the system’s hardware,
other hardware, and other software?

Performance.
What is the speed, availability, response time, recovery time of
various software functions, etc.?

Attributes.
What are the portability, correctness, maintainability, security, etc.
considerations?

Design constraints imposed on an implementation.
Are there any required standards in effect, implementation language,
policies for database integrity, resource limits, operating
environment(s) etc.?

62

SRS should be …

Correct
Every requirement is one that the software shall meet

Unambiguous
Every requirement has only one interpretation
Glossary if terms used can be differently understood

Complete
All significant requirements (functionality, external interfaces, …)
Definition of responses to all realizable classes of input data in
all realizable classes of situations (including invalid inputs if they
are possible)
If something is marked as TBD (to be determined), it should be
accompanied with

A description of the conditions causing the TBD (e.g., why an answer is not
known) so that the situation can be resolved;
A description of what must be done to eliminate the TBD, who is
responsible for its elimination, and by when it must be eliminated.

63

SRS should be …

Consistent
No subset of individual requirements described in it conflict
The specified characteristics of real-world objects may conflict. For
example,

The format of an output report may be described in one requirement as tabular
but in another as textual.
One requirement may state that all lights shall be green while another may
state that all lights shall be blue.

There may be logical or temporal conflict between two specified
actions. For example,

One requirement may specify that the program will add two inputs and
another may specify that the program will multiply them.
One requirement may state that “A” must always follow “B”, while another may
require that “A and B” occur simultaneously.

Two or more requirements may describe the same real-world object
but use different terms for that object.

For example, a program’s request for a user input may be called a “prompt” in
one requirement and a “cue” in another. The use of standard terminology and
definitions promotes consistency.

64

SRS should be …
Ranked for importance and/or stability

Each requirement has an identifier to indicate either its importance or stability
Verifiable

There exists some finite cost-effective process with which a person or machine can
check that the software meets the requirements
Verifiable statement: “Output of the program shall be produced within 20 s of event
60% of the time; and shall be produced within 30 s of event 100% of the time.”

Modifiable
Any changes to the requirements can be made easily, completely, and consistently
while retaining the structure and style
Generally this requires:

Have a coherent and easy-to-use organization with a table of contents, an index, and explicit
crossreferencing;
Not be redundant (i.e., the same requirement should not appear in more than one place in the SRS);
Express each requirement separately, rather than intermixed with other requirements.

Traceable
The origin of each requirement is clear and can be easily referenced from the future
development or enhancement documentation
Backward traceability (i.e., to previous stages of development)

Each requirement explicitly references the source
Forward traceability (i.e., to all documents spawned by the SRS)

Each requirement has a unique name and reference number

65

Parts of SRS

Introduction
Purpose
Scope
Definitions, acronyms, and
abbreviations
References
Overview

Overall description
Product perspective
Product functions
User characteristics
Constraints
Assumptions and
dependencies
Apportioning of requirements

Specific requirements
Sources of requirements

External interfaces
Functions
Performance requirements
Logical database requirements
Design constraints
Standards compliance
Software systems attributes –
Reliability, availability, security,
maintainability, portability

Organization of requirements
By system mode
By user class
By objects
By feature
By stimulus
By response
By functional hierarchy

Supporting information
Table of contents, appendices

66

Derivation from KAOS

Definitions, acronyms, and abbreviations
Derived from the KAOS object model

Assumptions and dependencies
Assumptions used in the KAOS goal model
Obstacles that the system is not expected to deal with

Product functions
Replaced by “User requirements”
Contains the goal models (traversed from top-down) with
description

Apportioning of requirements
provides a table containing the list of all the requirements
presented in the User requirements section sorted by
priority level

67

Derivation from KAOS

Specific requirements
Replaced by “System requirements”
System architecture

Decomposition of the system by KAOS agents. For each agent,
the list of the requirements he/she/it is responsible for is listed

Object model.
Each diagram of the KAOS object model with explanation

Operation model
Each diagram of the KAOS operation model with explanation
At the end of the section, a table showings the operations
performed by each agent and the requirements these
operations contribute to satisfy

68

SRS_001: Robot stops when the emergency switch
is pressed
Description: The robot has an emergency switch.
When this switch is pressed, the robot must
immediately stop any of its movement. To resume
the operation, the emergency switch has to be
released and the robot has to be switched on (from
the power off state) by the power switch on its side.
Rationale: This is a rule of the Line Follower
Challenge (sect. 2, ln. 4)
Dependencies: SRS_xxx (Periodic reading of sensors)

	Requirements Engineering 2
	Recap
	Types of Requirements
	User and Systems Requirements
	Types of non-functional requirements
	Examples of nonfunctional requirements
	Requirements engineering processes
	Requirements Elicitation
	Requirements Elicitation
	Problems of requirements elicitation
	Requirements elicitation and analysis process
	Requirements Elicitation
	Requirements Discovery
	Interviewing
	Interviews in Practice
	Stories and Scenarios
	Photo sharing in the classroom (iLearn)
	Scenarios
	Example: iLearn
	Example: iLearn
	Requirements Specification
	Ways of writing a system req. specification
	Requirements and design
	Natural language specification
	Guidelines for writing requirements
	Problems with natural language
	Example – Insulin pump (natural lang.)
	Structured specifications
	Form-based specifications
	Example – Insulin pump (structured)
	Tabular specification
	Example – Insulin pump (tabular)
	Use-cases
	Use-case Diagrams
	Example of a Brief Format Use Case
	Example of Casual Format Use-Case
	Fully Dressed Example 1/9
	Fully Dressed Example 1/9
	Fully Dressed Example 1/9
	Fully Dressed Example 2/9
	Fully Dressed Example 2/9
	Fully Dressed Example 2/9
	Fully Dressed Example 2/9
	Fully Dressed Example 2/9
	Fully Dressed Example 3/9
	Fully Dressed Example 3/9
	Fully Dressed Example 4/9
	Fully Dressed Example 4/9
	Fully Dressed Example 4/9
	Fully Dressed Example 5/9
	Fully Dressed Example 5/9
	Fully Dressed Example 6/9
	Fully Dressed Example 6/9
	Fully Dressed Example 7/9
	Fully Dressed Example 7/9
	Fully Dressed Example 8/9
	Fully Dressed Example 8/9
	Fully Dressed Example 9/9
	Fully Dressed Example 9/9
	IEEE Recommended Practice for Software Requirements Specifications �(IEEE Std 830-1998)
	IEEE 830-1998
	SRS should be …
	SRS should be …
	SRS should be …
	Parts of SRS
	Derivation from KAOS
	Derivation from KAOS
	Slide Number 68

