
CHARLES UNIVERSITY IN PRAGUE

http://d3s.mff.cuni.cz

faculty of mathematics and physics

Testing & Test-cases

Software Engineering for
Dependable Systems

Tomas Bures
bures@d3s.mff.cuni.cz

Testing

2

Validation and Verification (V&V)

3

Validation: Building the right product.
Does the software meet the expectations of the customer?

Verification: Building the product right.
Does the software conform to its specification?

When to check quality:
In some software development processes, V&V is done as
early as possible (e.g., prototyping, agile).

It is understood that problems discovered early are
easier and less expensive to fix.
However, there are parts of the specification that can
be checked only when the system is ready to be
deployed.

Functional and Nonfunctional Properties

4

Functional properties are related to what a
system (or a part of it) is supposed to do.

Use cases, use-case diagrams (UML)

Nonfunctional (or extrafunctional) properties are
related to how the system carries out an
operation.

Performance; e.g., response time or throughput.
Security.
Availability; e.g., uptime 99.999%.
Some nonfunctional properties are more difficult to
check during early stages of the development process.

Product Qualities

5

Internal qualities
Maintainability, extensibility, portability, testability, ...

External qualities
usefulness qualities:

usability, performance, security, interoperability

dependability
correctness, reliability, safety, robustness

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Dependability Qualities

6

Correctness:
A program is correct if it is consistent with its specification

seldom practical for non-trivial systems

Reliability:
likelihood of correct function for some “unit” of behavior

relative to a specification and usage profile
statistical approximation to correctness (100% reliable = correct)

Safety:
preventing hazards

Robustness
acceptable (degraded) behavior under extreme conditions

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Example of Dependability Qualities

Correctness, reliability: let
traffic pass according to
correct pattern and central
scheduling

Robustness, safety: Provide
degraded function when
possible; never signal
conflicting greens.

Blinking red / blinking yellow is
better than no lights; no lights is
better than conflicting greens

7

7 56

1211
10

8 4

2
1

9 3

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Tools for Validation and Verification

8

Software inspection analyses requirement documents,
designs, and source code (the latter, often automatically)

It is a static method: It does not require an executable artefact,
hence it can be applied throughout all the stages of software
development.

Software testing uses an executable representation of the
system

It is a dynamic method: The product is exercised with test input
data
The resulting output is checked against the specification.
If there is no agreement, an error is found which must be fixed.
Different forms according to the knowledge assumed for the
system under study: black-box or white-box.

V&V and the Development Process

9Figure taken from http://www.cs.st-andrews.ac.uk/ifs/Books/SE7/Presentations/index.html

Important Point

10

Software inspections can only check the agreement
between a program and its specification.
They cannot show that the software is operationally
useful.
Nor can they check nonfunctional properties (but
may give hints).
Software testing can only detect errors, not prove
their absence.
Testing all possible execution paths for nontrivial
programs is impossible.
They are not competing techniques, rather they are
complementary.

Related Activity: Debugging

11

Defect testing and debugging are distinct
processes.
Verification and validation is concerned with
establishing the existence of defects in a program.
Debugging is concerned with locating and
repairing these errors.
Debugging involves formulating a hypothesis
about program behaviour then testing these
hypotheses to find the system error.

The Debugging Process

12

Key activity: regression testing
Re-run the tests (or a subset of them) after a problem is fixed.
It is not uncommon that a fix introduces errors elsewhere!

Figure taken from http://www.cs.st-andrews.ac.uk/ifs/Books/SE7/Presentations/index.html

Software Qualities and Process

13

Qualities cannot be added after development
Quality results from a set of inter-dependent activities
Analysis and testing are crucial but far from sufficient.

Testing is not a phase, but a lifestyle
Testing and analysis activities occur from early in
requirements engineering through delivery and
subsequent evolution.
Quality depends on every part of the software process

An essential feature of software processes is that
software test and analysis is thoroughly
integrated and not an afterthought

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

14

Requirements
Elicitation

Requirements
Specification

Architectural
Design

Detailed
Design Unit Coding Integration &

Delivery Maintenance

Pl
an

ni
ng

 &
 m

on
ito

rin
g

Ve
rif

ica
tio

n
of

 sp
ec

s
te

st
ca

se
 e

xe
cu

tio
n

an
d

sw
 va

lid
at

io
n

Identify qualites

Plan acceptance test

Validate specifications

Plan system test

Plan unit & integration test

Ge
ne

ra
tio

n
of

 te
sts

Inspect architectural design

Analyze architectural design

Inspect detailed design

Monitor the A&T process

Generate system test

Generate integration test

Generate unit test

Generate regression test

Update regression test

Code inspection

Design scaffolding

Design oracles

Execute unit test

Execute integration test

Analyze coverage

Generate structural test

Execute system test

Execute acceptance test

Execute regression test

Collect data on faults

analyze faults and improve the processPr
oc

es
s

im
pr

ov
em

en
t

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

The V-Model of Development

15

For instance, in an object-oriented design:
classes → components → overall system

Figure taken from http://www.cs.st-andrews.ac.uk/ifs/Books/SE7/Presentations/index.html

Structure of a Software Test Plan

16

Testing process
Requirements traceability

Tests should cover at least all the requirements provided by the users.

Tested items
Complete coverage of all artefacts is in general very difficult (too
expensive). Items to be tested should be listed here.

Testing schedule
Test recording procedures

Results must be recorded to give the possibility of checking later
whether tests have been done correctly.

Hardware and software requirements
Constraints

For example, staff shortages, deadlines, . . .

Software Inspections

17

Empirical studies have shown that they are effective
in detecting large amounts of errors in software.

Many errors may be detected in a single inspection.
Recall, it is a static methods which does not require a
running system.
With software testing, usually only one defect at a time
may be discovered: the system usually crashes when an
error occurs.

They reuse domain and programming language
knowledge: reviewers are likely to have seen the
types of error that commonly arise.

Program Inspection

18

It is a formal methodology for reviewing documents.
It looks for defects such as logical errors, anomalies
in the code, or non-compliance with standards.
The process may have different variants according to
the organisation in which it is performed.

Typical pre-conditions
Availability of a precise specification.
Availability of syntactically correct code (or design).
An error check-list.

This is dependent on the programming language.
The weaker the typing, the longer the list.

Composition of the Reviewing Team

19

Author
Responsible for fixing defects discovered during the review.

Inspector

Reader
Paraphrases the code during an inspection meeting.

Scribe
Records the outcome of the inspection meeting.

Moderator
Manages the process. Responsible for scheduling possible
follow-up meetings.

The Program Inspection Process

20

Planning is the responsibility of the moderator: choose a team, fix dates, ...
At the overview the author presents the program under inspection.
At the inspection meeting errors are reported. Meetings should be kept relatively
short (e.g., under 2 h).
Rework is the author's responsibility.
Follow-up may be needed to assess the code in case of major changes required.

Figure taken from http://www.cs.st-andrews.ac.uk/ifs/Books/SE7/Presentations/index.html

Typical Checks

21

Data faults
Base indices for arrays? Possibility of buffer overflows?

Control faults
For each conditional statement, is the condition correct?
Are loops guaranteed to terminate? Are compound
statements correctly bracketed?

Input/output faults
Are all input variables used? Are output variables used?
Can unexpected inputs cause corruption (e.g., null
pointers)?

Exception management
Have all possible error conditions been taken into account?

Automated Static Analysis (for code)

22

Performed by software tools which process the source
code in search of potentially dangerous situations.

E.g. FindBugs

Does not replace program inspection by humans, as it
checks for more mechanical errors:

Variables used before initialisations, variables declared but
never used, variables never used between two successive
assignments.
Unreachable code.
Return values of functions/methods that are not used.

Static analysers are typically available in Integrated
Development Environments.
Much more useful for weakly typed languages.

Software Testing

23

Component (or unit) testing
Testing of individual program components. The notion of
component depends on the programming language under
consideration.
Usually under the responsibility of the authors.
Tests are based on the developers' experience.

System testing
Testing of integrated components that form a (sub-)system.
Usually under the responsibility of an independent team.
Tests are based on a system specification.

Goals of Software Testing

24

Validation testing
Demonstrates that the software meets the requirements.
It is successful when the system operates as intended.
The system is exercised using typical input data.
Does not reveal the absence of faults though!

Defect testing
Discover faults that may lead to unintended behaviour or
failure.
It is successful when the test makes the system perform
incorrectly.
Reveals the presence, not the absence of faults!
Guidelines on what to test

Functionality accessed from menus.
Combinations of functions accessed through the same menu (e.g., text
formatting).
User input forms with correct and incorrect input.

Sources of Test Obligations

25

Functional (black box, specification-based): from
software specifications

Example: If spec requires robust recovery from power failure, test
obligations should include simulated power failure

Structural (white or glass box): from code
Example: Traverse each program loop one or more times.

Model-based: from model of system
Models used in specification or design, or derived from code
Example: Exercise all transitions in communication protocol model

Fault-based: from hypothesized faults (common
bugs)

Example: Check for buffer overflow handling (common vulnerability)
by testing on very large inputs

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Functional testing

26

Functional testing: Deriving test cases from
program specifications

Functional refers to the source of information used in test case
design, not to what is tested

Also known as:
specification-based testing (from specifications)
black-box testing (no view of the code)

Functional specification = description of intended
program behavior

either formal or informal

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Black-Box Testing

The system (or component)
is treated as a black box.

Behaviour understood by
relating inputs to outputs.

It is only concerned with
the functionality, not its
actual implementation.

27Figure taken from http://www.cs.st-andrews.ac.uk/ifs/Books/SE7/Presentations/index.html

Why functional testing?

28

The base-line technique for designing test cases
Timely

Often useful in refining specifications and assessing testability
before code is written

Effective
finds some classes of fault (e.g., missing logic) that can elude
other approaches

Widely applicable
to any description of program behavior serving as spec
at any level of granularity from module to system testing.

Economical
typically less expensive to design and execute than structural
(code-based) test cases

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Early functional test design

29

Program code is not necessary
Only a description of intended behavior is needed
Even incomplete and informal specifications can be
used

Although precise, complete specifications lead to better test
suites

Early functional test design has side benefits
Often reveals ambiguities and inconsistency in spec
Useful for assessing testability

And improving test schedule and budget by improving spec
Useful explanation of specification

or in the extreme case (as in XP), test cases are the spec
Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Functional vs. structural: Classes of faults

30

Different testing strategies (functional, structural,
fault-based, model-based) are most effective for
different classes of faults
Functional testing is best for missing logic faults

A common problem: Some program logic was simply
forgotten
Structural (code-based) testing will never focus on
code that isn’t there!

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Functional vs. structural: Granularity levels

31

Functional test applies at all granularity levels:
Unit (from module interface spec)
Integration (from API or subsystem spec)
System (from system requirements spec)
Regression (from system requirements + bug
history)

Structural (code-based) test design applies to
relatively small parts of a system:

Unit
Integration

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Steps: From specification to test cases

32

1. Decompose the specification
If the specification is large, break it into independently
testable features to be considered in testing

2. Select representatives
Representative values of each input, or
Representative behaviors of a model

Often simple input/output transformations don’t describe a system.
We use models in program specification, in program design, and in
test design

3. Form test specifications
Typically: combinations of input values, or model behaviors

4. Produce and execute actual tests

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Systematic vs. Random Testing

33

Random (uniform):
Pick possible inputs uniformly
Avoids designer bias

A real problem: The test designer can make the same logical
mistakes and bad assumptions as the program designer
(especially if they are the same person)

But treats all inputs as equally valuable

Systematic (non-uniform):
Try to select inputs that are especially valuable
Usually by choosing representatives of classes that are
apt to fail often or not at all

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Why Not Random?

Non-uniform distribution of faults

Example: Java class “roots” applies quadratic equation

𝑥𝑥 =
−𝑏𝑏 ± 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎

2𝑎𝑎

Incomplete implementation logic: Program does not
properly handle the case in which 𝑏𝑏2 − 4𝑎𝑎𝑎𝑎 = 0 and 𝑎𝑎 = 0
Failing values are sparse in the input space — needles in a
very big haystack. Random sampling is unlikely to choose
𝑎𝑎 = 0 and 𝑏𝑏 = 0

34Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Functional testing: exploiting specification

35

Functional testing is systematic testing
Functional testing uses the specification (formal
or informal) to partition the input space

E.g., specification of “roots” program suggests division
between cases with zero, one, and two real roots

Test each category, and boundaries between
categories

No guarantees, but experience suggests failures often
lie at the boundaries (as in the “roots” program)

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Partitioning

36

Selecting relevant input data for testing.
Based on the assumption that some inputs are somewhat similar: if one
is troublesome, so will be all the others belonging to the same class
Example:
class Account {

public float getBalance() { ... }
public void withdraw(float amount) { ... }

}

Partition the floats into:
Negative values
Zero
Positive values:

< getBalance()
== getBalance()
> getBalance()

Another dimension: more than two decimal digits!

Other General Testing Guidelines

37

Design inputs that cause buffers to overflow
Force invalid outputs to be generated
Force computation results to be too large or too
small

Structural Testing

38

Also called white-box testing.
Test cases are inferred from the program structure, which is required to be
known.
Can be done incrementally, knowledge of the program can be used to add further
test cases.
The objective is to test all program statements (not all path combinations).

Figure taken from http://www.cs.st-andrews.ac.uk/ifs/Books/SE7/Presentations/index.html

Why structural (code-based) testing?

39

One way of answering the question “What is
missing in our test suite?”

If part of a program is not executed by any test case in
the suite, faults in that part cannot be exposed
But what’s a “part”?

Typically, a control flow element or combination:
Statements (or CFG nodes), Branches (or CFG edges)
Fragments and combinations: Conditions, paths

Complements functional testing: Another way to
recognize cases that are treated differently

Recall fundamental rationale: Prefer test cases that are
treated differently over cases treated the same

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

No guarantees

40

Executing all control flow elements does not
guarantee finding all faults

Execution of a faulty statement may not always result
in a failure

The state may not be corrupted when the statement is
executed with some data values
Corrupt state may not propagate through execution to
eventually lead to failure

What is the value of structural coverage?
Increases confidence in thoroughness of testing

Removes some obvious inadequacies

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Structural testing complements functional

41

Control flow testing includes cases that may not
be identified from specifications alone

Typical case: implementation of a single item of the
specification by multiple parts of the program
Example: hash table collision (invisible in interface
spec)

Test suites that satisfy control flow adequacy
criteria could fail in revealing faults that can be
caught with functional criteria

Typical case: missing path faults

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Structural testing in practice

42

Create functional test suite first, then measure structural
coverage to identify see what is missing
Interpret unexecuted elements

may be due to natural differences between specification and
implementation
or may reveal flaws of the software or its development process

inadequacy of specifications that do not include cases present in the
implementation
coding practice that radically diverges from the specification
inadequate functional test suites

Attractive because automated
coverage measurements are convenient progress indicators
sometimes used as a criterion of completion

use with caution: does not ensure effective test suites

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Statement testing

Adequacy criterion: each statement (or node in
the CFG) must be executed at least once

Coverage:
#𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

#𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

Rationale: a fault in a statement can only be
revealed by executing the faulty statement

43Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

String decode(String encoded) {

int encIdx = 0;
int encLen = encoded.length();
StringBuilder decoded = new StringBuilder();

while (encIdx < encLen) {

char c = encoded.charAt(encIdx++);
if (c == '+') {

decoded.append(' ');
} else {
if (c == '%') {

int digitHigh = charTable.getValueOfHex(encoded, encIdx++);
int digitLow = charTable.getValueOfHex(encoded, encIdx++);

if (digitHigh == -1 || digitLow == -1) {

return null;} else {
decoded.append((char)(16 * digitHigh + digitLow));
}

} else {
decoded.append(c);
}

return decoded.toString();
}

false

true

true false

truefalse

truefalse

}
44

Example
T0 = {“”,“test”,“test+case%1Dadequacy”}
14/15 = 93% statement coverage

T1 = {“adequate+test%0Dexecution%7U”}
15/15 = 100% statement coverage

T2 = {“%3D”,“%A”, “a+b”,“test”}
15/15 = 100% statement coverage

Statements or blocks?

45

Nodes in a control flow graph often represent
basic blocks of multiple statements

Some standards refer to basic block coverage or node
coverage
Difference in granularity, not in concept

No essential difference
100% node coverage ⟺ 100% statement coverage

but levels will differ below 100%

A test case that improves one will improve the other
though not by the same amount, in general

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Coverage is not size

46

Coverage does not depend on the number of test
cases
𝑇𝑇0,𝑇𝑇1:𝑇𝑇1 >𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑇𝑇0 𝑇𝑇1 <cardinality T0
𝑇𝑇1,𝑇𝑇2: 𝑇𝑇2 =𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑇𝑇1 𝑇𝑇2 > 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑇𝑇1

Minimizing test suite size is seldom the goal
small test cases make failure diagnosis easier
a failing test case in 𝑇𝑇2 gives more information for fault
localization than a failing test case in 𝑇𝑇1

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

String decode(String encoded) {

int encIdx = 0;
int encLen = encoded.length();
StringBuilder decoded = new StringBuilder();

while (encIdx < encLen) {

char c = encoded.charAt(encIdx++);
if (c == '+') {

decoded.append(' ');
} else {
if (c == '%') {

int digitHigh = charTable.getValueOfHex(encoded, encIdx++);
int digitLow = charTable.getValueOfHex(encoded, encIdx++);

if (digitHigh == -1 || digitLow == -1) {

return null;} else {
decoded.append((char)(16 * digitHigh + digitLow));
}

} else {
decoded.append(c);
}

return decoded.toString();
}

false

true

true false

truefalse

truefalse

}
47

“All statements” can miss some cases
Complete statement coverage may not
imply executing all branches in a program
Example:
– Suppose block C were missing
– Statement adequacy would not require true

branch from B to A

T3 = {“”, “a%0D%4J”}
100% statement coverage
But no true branch from B

A

B

C

Branch testing

48

Adequacy criterion: each branch (edge in the
CFG) must be executed at least once
Coverage:

#𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
#𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

T3 = {“”, “a%0D%4J”}
100% Stmt Cov. 88% Branch Cov. (7/8 branches)

T2 = {“%3D”, “%A”, “a+b”, “test”}
100% Stmt Cov. 100% Branch Cov. (8/8 branches)

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Statements vs. branches

49

Traversing all edges of a graph causes all nodes to
be visited

So test suites that satisfy the branch adequacy
criterion for a program P also satisfy the statement
adequacy criterion for the same program

The converse is not true (see 𝑇𝑇3)
A statement-adequate (or node-adequate) test suite
may not be branch-adequate (edge-adequate)

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

“All branches” can still miss conditions

50

Sample fault: missing operator (negation)
digit_high == 1 || digit_low == -1

Branch adequacy criterion can be satisfied by
varying only digit_low

The faulty sub-expression might never determine the
result
We might never really test the faulty condition, even
though we tested both outcomes of the branch

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Condition testing

51

Branch coverage exposes faults in how a
computation has been decomposed into cases

intuitively attractive: check the programmer’s case
analysis
but only roughly: groups cases with the same outcome

Condition coverage considers case analysis in
more detail

also individual conditions in a compound Boolean
expression

e.g., both parts of digit_high == 1 || digit_low == -1

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Basic condition testing

Adequacy criterion: each basic condition must be
executed at least once

Coverage:
#𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏 𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2 ∗ # 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

52Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Basic conditions vs branches

53

Basic condition adequacy criterion can be
satisfied without satisfying branch coverage

𝑇𝑇4 = {“first+test%9Ktest%K9”}
satisfies basic condition adequacy
does not satisfy branch condition adequacy

Branch and basic condition are not comparable
neither implies the other

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Covering branches and conditions

Ch
12,

slide

Branch and condition adequacy:
cover all conditions and all decisions

Compound condition adequacy:
Cover all possible evaluations
of compound conditions
Cover all branches of
a decision tree

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Compound conds.: exponential complexity

55

Short-circuit evaluation often reduces this to a more manageable number, but not always.

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Test Case a b c d e
1 T — T — T
2 F T T — T
3 T — F T T
4 F T F T T
5 F F — T T
6 T — T — F
7 F T T — F
8 T — F T F
9 F T F T F

10 F F — T F
11 T — F F —
12 F T F F —
13 F F — F —

(((a || b) && c) || d) && e

Modified condition/decision (MC/DC)

56

Motivation: Effectively test important
combinations of conditions, without exponential
blowup in test suite size

“Important” combinations means: Each basic
condition shown to independently affect the outcome
of each decision

Requires:
For each basic condition C, two test cases,
values of all evaluated conditions except C are the
same
compound condition as a whole evaluates to true for
one and false for the other

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

MC/DC: linear complexity

57

N+1 test cases for N basic conditions
Red values independently affect the output of the decision
Required by the RTCA/DO-178B standard

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Test Case a b c d e outcome

1 T F T F T T

2 F T T F T T

3 T F F T T T

6 T F T F F F

11 T F F F T F

13 F F T F T F

(((a || b) && c) || d) && e

Comments on MC/DC

58

MC/DC is
basic condition coverage
branch coverage
plus one additional condition:
every condition must independently affect the
decision’s output

It is subsumed by compound conditions and
subsumes all other criteria discussed so far

stronger than statement and branch coverage

A good balance of thoroughness and test size
(and therefore widely used)

Taken from http://ix.cs.uoregon.edu/~michal/book/ (© Mauro Pezzè & Michal Young)

Path Testing

59

Ensures that each test input covers a different
path in the control flow of the system
May use a high-level representation with a graph
where nodes represent statements, and arcs
denote the flow of control.
Exhaustive path coverage may be expensive to
guarantee in realistic scenarios.

60

Path Testing

Figure taken from http://www.cs.st-andrews.ac.uk/ifs/Books/SE7/Presentations/index.html

	Testing & Test-cases
	Testing
	Validation and Verification (V&V)
	Functional and Nonfunctional Properties
	Product Qualities
	Dependability Qualities
	Example of Dependability Qualities
	Tools for Validation and Verification
	V&V and the Development Process
	Important Point
	Related Activity: Debugging
	The Debugging Process
	Software Qualities and Process
	Slide Number 14
	The V-Model of Development
	Structure of a Software Test Plan
	Software Inspections
	Program Inspection
	Composition of the Reviewing Team
	The Program Inspection Process
	Typical Checks
	Automated Static Analysis (for code)
	Software Testing
	Goals of Software Testing
	Sources of Test Obligations
	Functional testing
	Black-Box Testing
	Why functional testing?
	Early functional test design
	Functional vs. structural: Classes of faults
	Functional vs. structural: Granularity levels
	Steps: From specification to test cases
	Systematic vs. Random Testing
	Why Not Random?
	Functional testing: exploiting specification
	Partitioning
	Other General Testing Guidelines
	Structural Testing
	Why structural (code-based) testing?
	No guarantees
	Structural testing complements functional
	Structural testing in practice
	Statement testing
	Example
	Statements or blocks?
	Coverage is not size
	“All statements” can miss some cases
	Branch testing
	Statements vs. branches
	“All branches” can still miss conditions
	Condition testing
	Basic condition testing
	Basic conditions vs branches
	Covering branches and conditions
	Compound conds.: exponential complexity
	Modified condition/decision (MC/DC)
	MC/DC: linear complexity
	Comments on MC/DC
	Path Testing
	Path Testing

