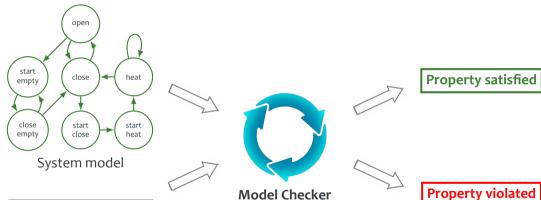
NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION 6. SYMBOLIC CTL MODEL CHECKING

Jan Kofroň

TODAY

- Symbolic CTL model checking using
 - OBDD
 - lattices
 - fixpoints

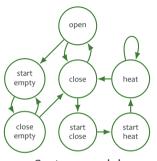
MODEL CHECKING



AG (start \rightarrow AF heat)

Property specification

MODEL CHECKING



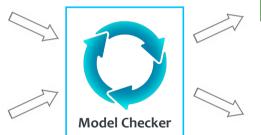
System model

CTL

AG (start \rightarrow AF heat)

Property specification

Symbolic Model Checking



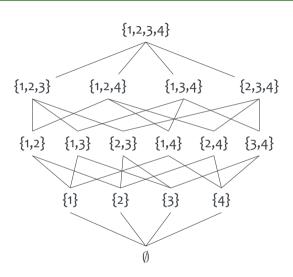
Property satisfied

Property violated

RECALL: LATTICE

- Lattice L is structure consisting of partially ordered set S of elements where every two elements have
 - unique supremum (least upper bound or join) and
 - unique infimum (greatest lower bound or meet)
- Set P(S) of all subsets of S forms complete lattice
- Each element $E \in L$ can also be thought as predicate on S
- Greatest element of L is S (\top , true)
- Least element of L is \emptyset (\bot , false)
- $\tau: P(S) \mapsto P(S)$ is called predicate transformer

EXAMPLE: SUBSET LATTICE OF {1, 2, 3, 4}



FIXPOINTS

Let $\tau: P(S) \mapsto P(S)$ be predicate transformer

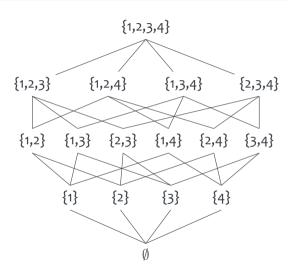
- τ is monotonic $\equiv Q \subseteq R \implies \tau(Q) \subseteq \tau(R)$
- Q is fixpoint of $\tau \equiv \tau(Q) = Q$

FIXPOINT COMPUTATION

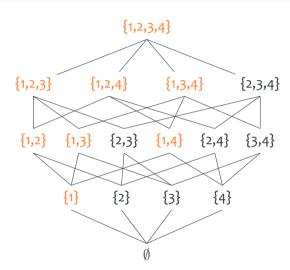

```
function LFP(	au: PredicateTransformer): Predicate Q:=false Q':=	au(Q) while Q\neq Q' do Q:=Q' Q':=	au(Q) end while Q return(Q) end function
```

Function Gfp differs just in initialization Q := true

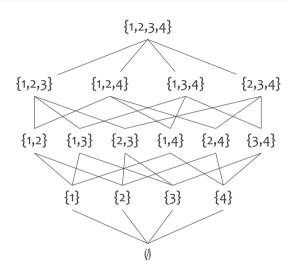
Let
$$\tau(Q) = Q \cup \{1\}$$
.
What are fixpoints of τ ?



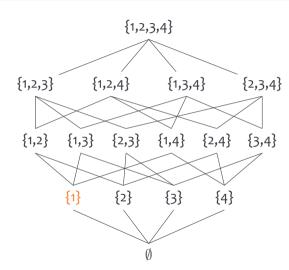
Let $\tau(Q) = Q \cup \{1\}$. What are fixpoints of τ ?



Let $\tau(Q) = Q \cup \{1\}$. What is the least fixpoint of τ ?



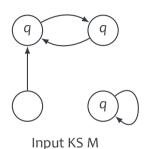
Let $\tau(Q) = Q \cup \{1\}$. What is the least fixpoint of τ ?

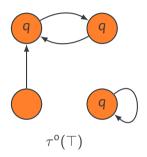


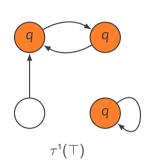
CTL OPERATORS AS FIXPOINTS

- We identify CTL formula f with set/predicate $\{s|M, s \models f\}$ in P(S)
- EG and EU may be characterized as least or greatest fixpoints of an appropriate predicate transformer:
 - EG $q = \nu Z.(q \wedge EXZ)$
 - $E[p \cup q] = \mu Z.(q \vee (p \wedge EXZ))$
- The same holds for EF, AG, AF, AU, however, those operators can be expressed using EG, EU
- Intuitively:
 - least fixpoints correspond to eventualities
 - greatest fixpoints correspond to properties that should hold forever

EG AS FIXPOINT





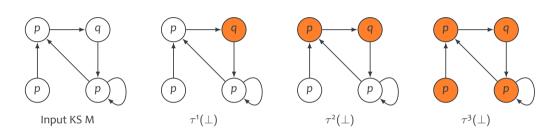


$$M, s_0 \models EG q$$

$$EG q = \nu Z.(q \land EX Z)$$

$$\tau(Z) = \{s : s \models q \land (\exists t : s \rightarrow t \land t \in Z)\}$$

EU AS FIXPOINT



$$\begin{split} &M, s_o \models E[p \cup q] \\ &E[p \cup q] = \mu Z. \big(q \vee (p \wedge EXZ) \big) \\ &\tau(Z) = \{ s : s \models q \} \cup \{ s : s \models p \wedge (\exists t : s \rightarrow t \wedge t \in Z) \} \end{split}$$

SYMBOLIC CTL MODEL CHECKING

Explicit model checking—e.g., Spin—is linear in size of generated state space

- usually exponential in size of input model
- resulting in state space explosion

Symbolic model checking operates on sets of states in each step of algorithm

can mitigate state-space-explosion impact substantially

QUANTIFIED BOOLEAN FORMULAE

QBFs are useful in symbolic CTL model checking

Quantification does not introduce greater expressive power:

- $\exists x f \equiv f|_{x=\perp} \vee f|_{x=\top}$

SYMBOLIC CTL MODEL CHECKING

General approach identical to explicit model checking

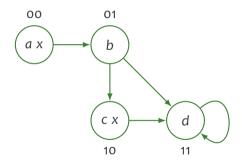
- decomposing formula into sub-formulae
- identifying sets of states satisfying particular sub-formulae

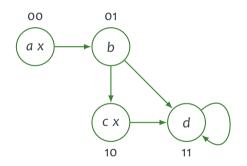
Computing states satisfying particular formula types based on manipulation with OBDDs

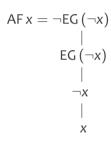
SYMBOLIC CTL MODEL CHECKING

Computing OBDD(f) for formula f depends on top-most operand

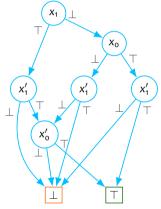
- lacktriangle note that only \neg , \land , \lor , EX, EG, and EU are needed, others can be eliminated
- $f \in AP$: return OBDD defined for f
- $f: \neg g, f \land g$, or $f \lor g$: use logical operation upon OBDD
 - described in previous lecture
- - ullet o($\langle v \rangle$) stands for OBDD representing states satisfying formula g
- $f = E[f \cup g]$: compute least fixpoint $E[f \cup g] = \mu Z.(g \vee (f \wedge EXZ))$
 - using LfP procedure
- f = EGf: compute greatest fixpoint $EGf = \nu Z.(f \land EXZ)$
 - using GfP procedure



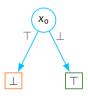




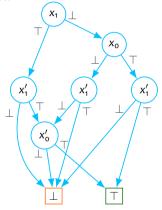
TR:



OBDD for states satisfying *x*:



TR:



OBDD for states satisfying *x*:

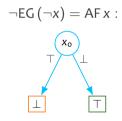
OBDD for states satisfying $\neg x$:

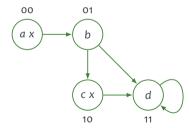
- We have OBDD for states satisfying $\neg x$ and now, we can proceed to EG $(\neg x)$ and compute OBDD for it.
- We compute *greatest fixpoint* of predicate transformer: EG $(\neg x)$: ν Z. $(\neg x \land EXZ)$.
 - computation starts with trivial OBDD for \top (Z).
 - single step: $Z = \neg x \land (\exists x'_0, x'_1 : Z' \land TR)$
 - ullet Z' denotes OBDD Z where all variables get primed (x o x')
 - if Z changes, repeat previous step, otherwise fixpoint reached and computation is over

- We have OBDD for states satisfying $\neg x$ and now, we can proceed to EG $(\neg x)$ and compute OBDD for it.
- We compute greatest fixpoint of predicate transformer: EG $(\neg x)$: $\nu Z.(\neg x \land EXZ)$.
 - computation starts with trivial OBDD for \top (Z).
 - single step: $Z = \neg x \land (\exists x'_0, x'_1 : Z' \land TR)$
 - ullet Z' denotes OBDD Z where all variables get primed (x o x')
 - if Z changes, repeat previous step, otherwise fixpoint reached and computation is over

We have OBDD for states satisfying EG $(\neg x)$ and now, we can trivially compute its negation \neg EG $(\neg x) = AF x$.

This corresponds to states oo and 10 of Kripke structure.





CONCLUSION

- During symbolic CTL model checking, all operation performed just upon OBDDs as application of logical operations and fixpoint computations.
- Usually highly efficient comparing to explicit model checking.