
NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

8. BOUNDED, INFINITE-STATE MC, COMPOSITIONAL REASONING

Jan Kofroň

TODAY

Bounded model checking

Infinite-state model checking

Compositional reasoning

Jan Kofroň: Behaviour Models and Verification 2

Part I: Bounded Model Checking

Jan Kofroň: Behaviour Models and Verification 3

BOUNDED MODEL CHECKING

open

start

empty close heat

close

empty
start

close

start

heat

Systemmodel

AG (start→ AF heat)

Property specification

Model Checker

Property satisfied

Property violated

Jan Kofroň: Behaviour Models and Verification 4

BOUNDED MODEL CHECKING

open

start

empty close heat

close

empty
start

close

start

heat

Systemmodel

AG (start→ AF heat)

Property specification

Model Checker

Property satisfied

Property violated

Jan Kofroň: Behaviour Models and Verification 5

BOUNDED MODEL CHECKING

LetM = {S, I, R, L} be Kripke structure
Define predicate Reach(s, s′) ≡ R(s, s′)

[[M]]k =
k−1∧
i=0

Reach(si, si+1)

[[M]]k contains states reachable in exactly k steps

Then search for counterexamples formed by k states

Jan Kofroň: Behaviour Models and Verification 6

BOUNDED MODEL CHECKING – PROCEDURE

Input:M,¬ϕ
1. k = 0

2. Is ¬ϕ satisfiable in [[M]]k?

YES:M |= ¬ϕ, terminate

3. Is k < threshold?

NO:M 6|=k ¬ϕ, terminate

4. Increment k

5. Go to 2.

Jan Kofroň: Behaviour Models and Verification 7

BOUNDED MODEL CHECKING FOR PROGRAMS

Realized by constructing formula capturing transitions in program

trying to reach assertion violation, i.e., violation of formula AG (p)

checking for its satisfiability using SAT/SMT solver

SAT/SMT solvers – tools for deciding satisfiability of logical formulae

satisfying assignment of formulae containing negated property corresponds to

counter-example

NP-complete problem – the hard part of verification

Jan Kofroň: Behaviour Models and Verification 8

BMC – EXAMPLE

First unwind loops up to bound (k).

1 : i n t i =4 ;

2 : i n t s =0 ;

3 : while (1) {

4 : s += i ;

5 : i f (i >0)

6 : i − − ;

7 : a s s e r t (s < 1 0) ;

8 : }

1 : i n t i =4 ;

2 : i n t s =0 ;

3 :

4 : s += i ;

5 : i f (i >0)

6 : i − − ;

7 : a s s e r t (s < 1 0) ;

8 : s += i ;

9 : i f (i >0)

1 0 : i − − ;

1 1 : a s s e r t (s < 1 0) ;

. . .

Jan Kofroň: Behaviour Models and Verification 9

BMC – EXAMPLE

First unwind loops up to bound (k).

1 : i n t i =4 ;

2 : i n t s =0 ;

3 : while (1) {

4 : s += i ;

5 : i f (i >0)

6 : i − − ;

7 : a s s e r t (s < 1 0) ;

8 : }

1 : i n t i =4 ;

2 : i n t s =0 ;

3 :

4 : s += i ;

5 : i f (i >0)

6 : i − − ;

7 : a s s e r t (s < 1 0) ;

8 : s += i ;

9 : i f (i >0)

1 0 : i − − ;

1 1 : a s s e r t (s < 1 0) ;

. . .

Jan Kofroň: Behaviour Models and Verification 10

BMC – EXAMPLE

Transform each line of code into (CNF) formula.

1 : i n t i =4 ;

2 : i n t s =0 ;

3 :

4 : s += i ;

5 : i f (i >0)

6 : i − − ;

7 : a s s e r t (s < 1 0) ;

8 : s += i ;

9 : i f (i >0)

1 0 : i − − ;

1 1 : a s s e r t (s < 1 0) ;

f1 : (pc1 = 1) ∧ (i2 = 4) ∧ (pc2 = 2)

f2 : (pc2 = 2) ∧ (i3 = i2) ∧ (s3 = 0) ∧ (pc3 = 3)

f3 : (pc3 = 3) ∧ (i4 = i3) ∧ (s4 = s3) ∧ (pc4 = 4)

f4 : (pc4 = 4) ∧ (i5 = i4) ∧ (s5 = s4 + i4) ∧ (pc5 = 5)

f5 : (pc5 = 5) ∧ (i6 = i5) ∧ (s6 = s5) ∧ (pc6 = 6)

f6 : (pc6 = 6) ∧ (((i6 > 0) ∧ (i7 = i6 − 1))∨
((i6 ≤ 0) ∧ (i7 = i6))) ∧ (s7 = s6) ∧ (pc7 = 7)

f7 : (pc7 = 7) ∧ (s7 ≥ 10) ∧ (pc8 = 8)

f8 : (pc8 = 8) ∧ (i9 = i8) ∧ (s9 = s8 + i8) ∧ (pc9 = 9)

f9 : (pc9 = 9) ∧ (i10 = i9) ∧ (s10 = s9) ∧ (pc10 = 10)

f10 : (pc10 = 10) ∧ (((i10 > 0) ∧ (i11 = i10 − 1))∨
((i10 ≤ 0) ∧ (i11 = i10))) ∧ (s11 = s10) ∧ (pc11 = 11)

f11 : (pc11 = 11) ∧ (s11 ≥ 10) ∧ (pc12 = 12)

Jan Kofroň: Behaviour Models and Verification 11

BMC – EXAMPLE

Transform each line of code into (CNF) formula.

1 : i n t i =4 ;

2 : i n t s =0 ;

3 :

4 : s += i ;

5 : i f (i >0)

6 : i − − ;

7 : a s s e r t (s < 1 0) ;

8 : s += i ;

9 : i f (i >0)

1 0 : i − − ;

1 1 : a s s e r t (s < 1 0) ;

f1 : (pc1 = 1) ∧ (i2 = 4) ∧ (pc2 = 2)

f2 : (pc2 = 2) ∧ (i3 = i2) ∧ (s3 = 0) ∧ (pc3 = 3)

f3 : (pc3 = 3) ∧ (i4 = i3) ∧ (s4 = s3) ∧ (pc4 = 4)

f4 : (pc4 = 4) ∧ (i5 = i4) ∧ (s5 = s4 + i4) ∧ (pc5 = 5)

f5 : (pc5 = 5) ∧ (i6 = i5) ∧ (s6 = s5) ∧ (pc6 = 6)

f6 : (pc6 = 6) ∧ (((i6 > 0) ∧ (i7 = i6 − 1))∨
((i6 ≤ 0) ∧ (i7 = i6))) ∧ (s7 = s6) ∧ (pc7 = 7)

f7 : (pc7 = 7) ∧ (s7 ≥ 10) ∧ (pc8 = 8)

f8 : (pc8 = 8) ∧ (i9 = i8) ∧ (s9 = s8 + i8) ∧ (pc9 = 9)

f9 : (pc9 = 9) ∧ (i10 = i9) ∧ (s10 = s9) ∧ (pc10 = 10)

f10 : (pc10 = 10) ∧ (((i10 > 0) ∧ (i11 = i10 − 1))∨
((i10 ≤ 0) ∧ (i11 = i10))) ∧ (s11 = s10) ∧ (pc11 = 11)

f11 : (pc11 = 11) ∧ (s11 ≥ 10) ∧ (pc12 = 12)

Jan Kofroň: Behaviour Models and Verification 12

BMC – EXAMPLE

Transform each line of code into (CNF) formula.

1 : i n t i =4 ;

2 : i n t s =0 ;

3 :

4 : s += i ;

5 : i f (i >0)

6 : i − − ;

7 : a s s e r t (s < 1 0) ;

8 : s += i ;

9 : i f (i >0)

1 0 : i − − ;

1 1 : a s s e r t (s < 1 0) ;

f1 : (pc1 = 1) ∧ (i2 = 4) ∧ (pc2 = 2)

f2 : (pc2 = 2) ∧ (i3 = i2) ∧ (s3 = 0) ∧ (pc3 = 3)

f3 : (pc3 = 3) ∧ (i4 = i3) ∧ (s4 = s3) ∧ (pc4 = 4)

f4 : (pc4 = 4) ∧ (i5 = i4) ∧ (s5 = s4 + i4) ∧ (pc5 = 5)

f5 : (pc5 = 5) ∧ (i6 = i5) ∧ (s6 = s5) ∧ (pc6 = 6)

f6 : (pc6 = 6) ∧ (((i6 > 0) ∧ (i7 = i6 − 1))∨
((i6 ≤ 0) ∧ (i7 = i6))) ∧ (s7 = s6) ∧ (pc7 = 7)

f7 : (pc7 = 7) ∧ (s7 ≥ 10) ∧ (pc8 = 8)

f8 : (pc8 = 8) ∧ (i9 = i8) ∧ (s9 = s8 + i8) ∧ (pc9 = 9)

f9 : (pc9 = 9) ∧ (i10 = i9) ∧ (s10 = s9) ∧ (pc10 = 10)

f10 : (pc10 = 10) ∧ (((i10 > 0) ∧ (i11 = i10 − 1))∨
((i10 ≤ 0) ∧ (i11 = i10))) ∧ (s11 = s10) ∧ (pc11 = 11)

f11 : (pc11 = 11) ∧ (s11 ≥ 10) ∧ (pc12 = 12)

Jan Kofroň: Behaviour Models and Verification 13

BMC – EXAMPLE

Assertion expressions are negated – we are searching for violations

Formula to be checked for satisfiability: f =
∧

i=0..k

fi

Found satisfying assignment correspond to violation of original formula

If f is unsatisfiable, there is no violation in k steps

Jan Kofroň: Behaviour Models and Verification 14

BMC APPLICATIONS

When applied on software, BMC itself cannot prove general absence of assertion
violations

it is useful to discover them

there are extensions to BMC (unbounded model checking) aiming at proving

absence of violations

When applied on pieces of hardware, it can prove their absence

number of steps (its upper bound) of particular operations is known

Jan Kofroň: Behaviour Models and Verification 15

BMC – REMARKS

Bounds can be useful – finding shortest counter-examples

By including loop invariants (which are difficult to compute, though) into BMC,

infinite paths can be verified

Jan Kofroň: Behaviour Models and Verification 16

Part II: Infinite-State Model Checking

Jan Kofroň: Behaviour Models and Verification 17

MOTIVATION

Finite models are sometimes insufficient

Protocols and circuits specification can be parametrized by size of int type (CPU),

number of processors in multicore environment, of communicating network nodes,

...

Even though model checking of general infinite-state models is impossible, special

cases can be model-checked

Jan Kofroň: Behaviour Models and Verification 18

INFINITE FAMILIES

Infinite family of systems: F = {Mi}∞i=1

Verification task: assume f to be temporal formula, verify: ∀i : Mi |= f

Generally, this is still undecidable – we have to add more assumptions later

Indexed CTL (ICTL) – formula for each system component

i-th formula applied onto i-th component

allows for special expressions: ∧if(i), ∨if(i),
∧
j 6=i

f(j), and
∨
j6=i

f(j)

Jan Kofroň: Behaviour Models and Verification 19

INFINITE FAMILIES – TOKEN RING EXAMPLE

Simple token ring

atomic propositions:

non-critical section, keeping token, critical section, receive token, send token

One process Q originally keeping token (t), several processes Pi originally in state n

n t c

r

s

Jan Kofroň: Behaviour Models and Verification 20

INFINITE FAMILIES – TOKEN RING EXAMPLE

Synchronous composition Q||Pwith natural synchronization of s and r

t, n c, n

n, t n, c

Generally, token ring family: F = {Q||Pi}∞i=1, desired property:
∧
i

AG (ci =⇒
∧
j6=i

¬cj)

Jan Kofroň: Behaviour Models and Verification 21

INFINITE FAMILIES – TOKEN RING EXAMPLE

Synchronous composition Q||Pwith natural synchronization of s and r

t, n c, n

n, t n, c

Generally, token ring family: F = {Q||Pi}∞i=1, desired property:
∧
i

AG (ci =⇒
∧
j6=i

¬cj)

Jan Kofroň: Behaviour Models and Verification 22

INFINITE FAMILIES

How to prove the property when there are infinitely many P processes?

We have to find generalizing structure – invariant:

Let F = {Q||Pi}∞i=1 be family of structures

Let≥ be reflexive, transitive relation on structures

Invariant I is structure such that ∀i : I ≥ Mi

Relation≥ determine properties that can be checked:

≥ is bisimulation =⇒ strong preservation: I |= f ⇔ M |= f

≥ is simulation preorder =⇒ weak preservation: I |= f =⇒ M |= f

Similarly for language-level preorder and equivalence

Token ring example: Token rings of size n and 2 are in simulation preorder =⇒
sufficient to verify just whether (P||Q) |= f

Jan Kofroň: Behaviour Models and Verification 23

INFINITE FAMILIES – TOKEN RING EXAMPLE

t, n c, n

n, t n, c

(t, n) 7→ (t, n, n)
(c, n) 7→ (c, n, n)
(n, t) 7→ (n, t, n)
(n, t) 7→ (n, n, t)
(n, c) 7→ (n, c, n)
(n, c) 7→ (n, n, c)

t, n, n c, n, n

n, t, n n, c, n

n, n, t n, , nc

Jan Kofroň: Behaviour Models and Verification 24

SYSTEMATIC APPROACH TO FINDING INVARIANTS

Definition: Composition || is monotonic w.r.t. relation≥ ⇔
∀P1, P′1, P2, P′2 : P1 ≥ P′1 ∧ P2 ≥ P′2 =⇒ P1||P2 ≥ P′1||P′2

Lemma: Let≥ be a reflexive, transitive relation and let || be a composition operator

that is monotonic w.r.t.≥ If I ≥ P and I ≥ I||P, then ∀i : I ≥ Pi, where F = {Pi}∞i=1.

This is more like:

“This holds once we have the relation” than “How to find the relation”

Finding suitable relation is hard and not possible in algorithmic way – problem is

undecidable in general.

Jan Kofroň: Behaviour Models and Verification 25

Part III: Compositional Reasoning

Jan Kofroň: Behaviour Models and Verification 26

MOTIVATION

Efficient verification algorithms can extend applicability of formal methods

Many systems can be decomposed into parts

verifying properties of each part separately

if conjunction of parts properties implies overall specification, we are done

the entire system never analysed as whole

Jan Kofroň: Behaviour Models and Verification 27

EXAMPLE – PRODUCER-CONSUMER MODEL

Three communication-protocol actors: sender, network, receiver

Overall specification:

Data correctly transmitted from sender to receiver

Partial specifications:

Data correctly sent from sender to network

Data correctly transmitted via network

Data correctly transmitted from network to receiver

Verification of partial specifications typically much easier

sum of state spaces much smaller than state space of entire system (impact of state

space explosion mitigated)

Jan Kofroň: Behaviour Models and Verification 28

ASSUME-GUARANTEE PRINCIPLE

Verifies each component separately

Based on specification of

Assumptions – requirements on behaviour of environment

Guarantees – provisions offered to environment if assumptions are met

environment = the other components

By combining assumptions and guarantees of particular parts, it is possible to

establish correctness of entire system

Full transition graph never constructed

Jan Kofroň: Behaviour Models and Verification 29

ASSUME-GUARANTEE FORMALLY

Formula capturing assume-guarantee principle is triple 〈g〉M〈f〉where g, f are
temporal formulae andM is program

wheneverM is part of system satisfying g, system also guarantees f

Composition of proofs: (〈g〉M′〈f〉) ∧ (〈true〉M〈g〉) =⇒ 〈true〉M||M′〈f〉
Can be expressed as inference rule:

〈true〉M〈g〉
〈g〉M′〈f〉

〈true〉M||M′〈f〉

Jan Kofroň: Behaviour Models and Verification 30

ASSUME-GUARANTEE FORMALLY

Necessary to avoid circular dependencies making reasoning unsound:

〈f〉M〈g〉
〈g〉M′〈f〉

M||M′ |= f ∧ g

Again: This is not incorrect!

Jan Kofroň: Behaviour Models and Verification 31

ASSUME-GUARANTEE – APPLICATION TO SOFTWARE COMPONENTS

Each component specifies not only provided (implemented) interfaces

similarly as objects do

But also required ones

in addition to objects

Syntactic (type) information may or may not consider interface/type inheritance

Semantic (behaviour) specification – usage protocols, restrictions beyond
language capabilities, ...

can cover various aspects of component functional and extra-functional properties:

allowed sequences of messages/calls, timing, reliability, resource usage, security, ...

composability verification based on the same principle as syntax: each component

should provide at least as much (as good, fast, reliable, ...) as its environment

requires

Jan Kofroň: Behaviour Models and Verification 32

ASSUME-GUARANTEE – APPLICATION TO CODE

Syntax – usually checked by compiler and no additional effort required

Semantics – code annotations (code contracts):

at level of functions/methods

assumptions – preconditions

guarantees – postconditions

usually also invariants – loop invariants

Verification is modular:

each function is verified separately – whether execution of each function really

guarantees its postcondition if precondition is satisfied upon function entry
if function is called from within another function, its contract is used

precondition checked

postcondition is assumed

Jan Kofroň: Behaviour Models and Verification 33

ASSUME-GUARANTEE – REMARKS

It is not easy to specify contracts:

too weak preconditions make it difficult to guarantee postconditions

too strong preconditions are hard to be satisfied by callers

too strong postconditions are hard to be proven

too weak postconditions usually do not “satisfy” callers

One has to know and tune...

There are approaches for real programming languages

Spec#, JML, Code Contracts, Nagini, Dafny...

backed by verification tools – model checkers, SAT/SMT solvers, theorem provers

Jan Kofroň: Behaviour Models and Verification 34

	Bounded model checking
	Infinite state model checking
	Compositional reasoning

