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MOTIVATION

In some cases absolute absence of errors is infeasible

failures of particular parts of system

non-deterministic behaviour of users

…

It might be useful to determine level of reliability in terms of probability

frequency of errors

time to recovery

throughput

mean waiting time

…
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TODAY

Stochastic Model Checking

Lecture based on M. Kwiatkowska et al.: Stochastic Model Checking

http://www.prismmodelchecker.org/papers/sfm07.pdf
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STOCHASTIC MODEL CHECKING

Not only validity of certain properties

but also probability of reaching states/paths

→ Need for special language

PCTL = Probabilistic Computational Tree Logic

CSL = Continuous Stochastic Logic

Discrete-time Markov Chains (DTMC) are used as models for discrete time 

analysis

Continuous-time Markov Chains (CTMC) are used for continuous time analysis
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DISCRETE-TIME MARKOV CHAINS
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DISCRETE-TIME MARKOV CHAINS

Definition: A labelled DTMC 𝐷 is a tuple 𝑆, ҧ𝑠, 𝐏, 𝐿  where:

𝑆 is finite set of states

ҧ𝑠 ∈ 𝑆 is initial state

𝐏: 𝑆 × 𝑆 → [0,1] is transition probability matrix where σ𝑠′∈𝑆 𝐏 𝑠, 𝑠′ = 1 for all 

𝑠 ∈ 𝑆

𝐿: 𝑆 → 2𝐴𝑃 is labelling function assigning to each state set 𝐿 𝑠  of atomic 

propositions
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DISCRETE-TIME MARKOV CHAINS

Sum of probabilities of transitions originating in each state must be 1!

Terminating states can be modelled by self-loop with probability 1
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EXAMPLE
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𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



NOTIONS

Path is non-empty sequence 𝑠0𝑠1𝑠2 … where 𝑠𝑖 ∈ 𝑆 and ∀𝑖 ≥ 0: 𝑃 𝑠𝑖 , 𝑠𝑖+1 > 0

Path can be finite or infinite

𝑃𝑎𝑡ℎ𝐷 𝑠  – set of infinite paths in 𝐷 starting at 𝑠

this is default meaning of paths

𝑃𝑎𝑡ℎ𝑓𝑖𝑛
𝐷 𝑠  – set of finite paths in 𝐷 starting at 𝑠
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PATH PROBABILITY

Probability for finite path 𝜔𝑓𝑖𝑛 ∈ 𝑃𝑓𝑖𝑛
𝐷 𝑠 :

𝑃𝑠 𝜔𝑓𝑖𝑛 = ൞

 1 𝑖𝑓 𝑛 = 0 

ෑ
𝑖=0

𝑛−1

𝑃 𝜔 𝑖 , 𝜔 𝑖 + 1  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑛 is length of 𝜔𝑓𝑖𝑛

Cylinder set 𝐶 𝜔𝑓𝑖𝑛 ⊆ 𝑃𝑎𝑡ℎ𝐷 𝑠 :

𝐶 𝜔𝑓𝑖𝑛 ≝ 𝜔 ∈ 𝑃𝑎𝑡ℎ𝐷 𝑠  𝜔𝑓𝑖𝑛 is a prefix of 𝜔}
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PROBABILITY MEASURE

Probability measure 𝑃𝑟𝑠 is function defined as:

𝑃𝑟𝑠 𝐶 𝜔𝑓𝑖𝑛 = 𝑃𝑠 𝜔𝑓𝑖𝑛  for all 𝜔𝑓𝑖𝑛 ∈ 𝑃𝑎𝑡ℎ𝑓𝑖𝑛
𝐷 (𝑠)
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PROBABILITY MEASURE – EXAMPLE

In our example:

𝑃𝑟𝑠0
𝐶 𝑠0𝑠1𝑠1𝑠1 = 1.00 ⋅ 0.01 ⋅ 0.01 = 0.0001

𝑃𝑟𝑠0
𝐶 𝑠0𝑠1𝑠1𝑠2 = 1.00 ⋅ 0.01 ⋅ 0.01 = 0.0001

𝑃𝑟𝑠0
𝐶 𝑠0𝑠1𝑠1𝑠3 = 1.00 ⋅ 0.01 ⋅ 0.98 = 0.0098

𝑃𝑟𝑠0
𝐶 𝑠0𝑠1𝑠2𝑠0 = 1.00 ⋅ 0.01 ⋅ 1.00 = 0.01

𝑃𝑟𝑠0
𝐶 𝑠0𝑠1𝑠3𝑠3 = 1.00 ⋅ 0.98 ⋅ 1.00 = 0.98
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𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



PROBABILISTIC COMPUTATIONAL TREE LOGIC (PCTL)
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PROBABILISTIC COMPUTATIONAL TREE LOGIC (PCTL)

Extension of CTL

Syntax:

             Φ ∷= 𝑡𝑟𝑢𝑒  𝑎 ¬Φ  Φ ∧ Φ 𝑃~𝑝 𝜙            (state formula)

             𝜙 ∷= 𝑋Φ | Φ 𝑈≤𝑘 Φ , where            (path formula)

             𝑎 is atomic proposition
             ~ ∈ <, ≤, ≥, >

             𝑝 ∈ 0,1

             𝑘 ∈ ℕ ∪ ∞

… plus common (derived) facts: 

 𝑓𝑎𝑙𝑠𝑒 ≡ ¬𝑡𝑟𝑢𝑒

Φ ∨ Ψ ≡ ¬ ¬Φ ∧ ¬Ψ
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SEMANTICS OF PCTL
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𝑠 ⊨ 𝑡𝑟𝑢𝑒 for all 𝑠 ∈ 𝑆

𝑠 ⊨ 𝑎 ⇔ 𝑎 ∈ 𝐿 𝑠

𝑠 ⊨ ¬Φ ⇔ 𝑠 ⊭ Φ

𝑠 ⊨ Φ ∧ Ψ ⇔ 𝑠 ⊨ Φ ∧ 𝑠 ⊨ Ψ

𝑠 ⊨ 𝑃~𝑝[𝜙] ⇔ 𝑃𝑟𝑜𝑏𝐷 𝑠, 𝜙 ~𝑝

𝜔 ⊨ 𝑋Φ ⇔ 𝜔 1 ⊨ Φ

𝜔 ⊨ 𝜙 𝑈≤𝑘 𝜓 ⇔ ∃𝑖 ∈ ℕ: 𝑖 ≤ 𝑘 ∧ 𝜔 𝑖 ⊨ 𝜓 ∧ ∀𝑗 < 𝑖: 𝜔 𝑗 ⊨ 𝜙

where 𝑃𝑟𝑜𝑏𝐷 𝑠, 𝜙 ≝ 𝑃𝑟𝑠 𝜔 ∈ 𝑃𝑎𝑡ℎ𝐷 𝑠  𝜔 ⊨ 𝜙} 



COMMON CTL OPERATORS

CTL 𝐹 and 𝐺 operators: 

   𝑃~𝑝 𝐹 Φ ≡ 𝑃~𝑝 𝑡𝑟𝑢𝑒 𝑈≤∞Φ

   𝑃~𝑝 𝐹≤𝑘  Φ ≡ 𝑃~𝑝 𝑡𝑟𝑢𝑒 𝑈≤𝑘  Φ

             𝐺 Φ ≡  ¬𝐹¬Φ

  𝐺≤𝑘  Φ ≡  ¬𝐹≤𝑘¬Φ
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NEGATION

Syntax does not allow for negation of path formulae

However, it holds:

𝑃~𝑝 𝐺 Φ ≡ 𝑃ഥ~1−𝑝 𝐹 ¬Φ

𝑃~𝑝 𝐺≤𝑘  Φ ≡ 𝑃ഥ~1−𝑝 𝐹≤𝑘  ¬Φ

where ഥ< ≡ >, ≤ ≡ ≥, ഥ≥ ≡ ≤, > ≡ <
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QUANTIFIERS

𝑃~𝑝[∙] is probabilistic analogue to path quantifiers:

𝐸𝐹Φ ≡ 𝑃>0 𝐹 Φ

But: 𝐴𝐹Φ is NOT the same as 𝑃≥1[𝐹 Φ]

Jan Kofroň: Behaviour Models and Verification 18

𝑐0 satisfies 𝑃≥1[𝐹 𝑡𝑎𝑖𝑙𝑠]
𝑐0 does NOT satisfy 𝐴𝐹 𝑡𝑎𝑖𝑙𝑠

𝑐1

𝑐0

𝑐2

0.5

0.5

1

1

{heads}

{tails}



EXAMPLES OF PCTL PROPERTIES

𝑃≥0.4[𝑋 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑]

probability that message gets delivered in next step is at least 0.4

𝑖𝑛𝑖𝑡 → 𝑃≤0 𝐹 𝑒𝑟𝑟𝑜𝑟

error state is not reachable from any init state

𝑃≥0.9 ¬𝑑𝑜𝑤𝑛 𝑈 𝑠𝑒𝑟𝑣𝑒𝑑

probability that server does not go down before request gets served is at 

least 0.9

𝑃<0.1 ¬𝑑𝑜𝑛𝑒 𝑈≤10 𝑓𝑎𝑢𝑙𝑡

probability that error occurs before protocol is done and within 10 steps 

is less than 0.1
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MODEL CHECKING PCTL

Based on CTL model checking algorithm

1. decomposing formula into sub-formulae

2. in bottom-up manner finding set of states satisfying particular sub-formulae

3. the set of states for the input formula at root

Special handling of the 𝑃 formulae
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𝐗𝚽

For 𝑃~𝑝[𝑋 Φ] we need to compute 

𝑃𝑟𝑜𝑏𝐷(𝑠, 𝑋 Φ) for each state 𝑠:

𝑃𝑟𝑜𝑏𝐷 𝑠, 𝑋Φ = ෍
𝑠′∈𝑆𝑎𝑡(Φ)

𝐏(𝑠, 𝑠′)

    where 𝑆𝑎𝑡(Φ) is set of states satisfying Φ

Let Φ 𝑠 =  ቊ
1 𝑖𝑓 𝑠 ∈ Sat(Φ)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑃𝑟𝑜𝑏𝐷 𝑋Φ = 𝐏 ⋅ Φ

Vector with probabilities for particular states
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𝐗𝚽 – EXAMPLE
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𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑃≥0.9 𝑋 ¬𝑡𝑟𝑦 ∨ 𝑠𝑢𝑐𝑐

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



𝐗𝚽 – EXAMPLE
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𝑆𝑎𝑡 ¬𝑡𝑟𝑦 ∨ 𝑠𝑢𝑐𝑐 = 𝑠0, 𝑠2, 𝑠3  →

1
0
1
1

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



𝐗𝚽 – EXAMPLE
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0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

⋅

1
0
1
1

=

0
0.99

1
1

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 ≠ ∞

For 𝑃~𝑝[Φ 𝑈≤𝑘 Ψ] we need to compute 𝑃𝑟𝑜𝑏𝐷(𝑠, Φ 𝑈≤𝑘 Ψ) 

for each state 𝑠:

𝑃𝑟𝑜𝑏𝐷 𝑠, Φ 𝑈≤𝑘  Ψ =

      = ൞

1 𝑖𝑓 𝑠 ∈ 𝑆𝑎𝑡 Ψ  
0 𝑖𝑓 𝑘 = 0 𝑜𝑟 𝑠 ∈ 𝑆𝑎𝑡(¬Φ ∧ ¬Ψ)

σ𝑠′∈𝑆 𝐏 𝑠, 𝑠′ ⋅ 𝑃𝑟𝑜𝑏𝐷 𝑠′, Φ 𝑈≤𝑘−1 Ψ  otherwise

    

  where 𝑆𝑎𝑡(Φ) is set of states satisfying Φ

Jan Kofroň: Behaviour Models and Verification 25



𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 ≠ ∞

Definition: For any 𝐷𝑇𝑀𝐶 𝐷 = (𝑆, ҧ𝑠, 𝐏, 𝐿) and PCTL formula Φ, let 𝐷 Φ =

(𝑆, ҧ𝑠, 𝐏 Φ , 𝐿) where, if 𝑠 ⊭ Φ, then 𝐏 Φ 𝑠, 𝑠′ = 𝐏(𝑠, 𝑠′) for all 𝑠′ ∈ 𝑆, and if 𝑠 ⊨ Φ, 

then 𝐏 Φ 𝑠, 𝑠 = 1 and 𝐏 Φ 𝑠, 𝑠′ = 0 for all 𝑠′ ≠ 𝑠.

Then it holds:

𝑃𝑟𝑜𝑏𝐷 𝑠, Φ 𝑈≤𝑘 Ψ = ෍
𝑠′⊨Ψ

𝜋𝑠,𝑘
𝐷 ¬Φ∨Ψ

𝑠′
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𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 ≠ ∞

Vector of probabilities 𝑃𝑟𝑜𝑏𝐷(Φ 𝑈≤𝑘 Ψ) can be computed as:

𝑃𝑟𝑜𝑏𝐷 Φ 𝑈≤𝑘 Ψ = 𝐏 ¬Φ ∨ Ψ 𝑘 ⋅ Ψ

Usually computed in iterative way

but can be pre-computed for particular 𝑘
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𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 ≠ ∞ – EXAMPLE
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𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝐏>0.98 𝐹≤2𝑠𝑢𝑐𝑐 = 𝐏>0.98[𝑡𝑟𝑢𝑒 𝑈≤2𝑠𝑢𝑐𝑐]

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 ≠ ∞ – EXAMPLE
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𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑆𝑎𝑡 𝑡𝑟𝑢𝑒 = 𝑠0, 𝑠1, 𝑠2, 𝑠3 , 𝑆𝑎𝑡 𝑠𝑢𝑐𝑐 = 𝑠3

𝐏 ¬𝑡𝑟𝑢𝑒 ∨ 𝑠𝑢𝑐𝑐 = 𝐏

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 ≠ ∞ – EXAMPLE
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𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑃𝑟𝑜𝑏𝐷 Φ 𝑈≤0Ψ = 𝑠𝑢𝑐𝑐 = 0,0,0,1

𝑃𝑟𝑜𝑏𝐷 Φ 𝑈≤1Ψ = 𝐏 ¬𝑡𝑟𝑢𝑒 ∨ 𝑠𝑢𝑐𝑐 ⋅ 𝑃𝑟𝑜𝑏𝐷(Φ 𝑈≤0 Ψ) = 0,0.98,0,1

𝑃𝑟𝑜𝑏𝐷 Φ 𝑈≤2Ψ = 𝐏 ¬𝑡𝑟𝑢𝑒 ∨ 𝑠𝑢𝑐𝑐 ⋅ 𝑃𝑟𝑜𝑏𝐷(Φ 𝑈≤1 Ψ) = 𝟎. 𝟗𝟖, 𝟎. 𝟗𝟖𝟗𝟖, 𝟎, 𝟏

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 ≠ ∞ – EXAMPLE
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𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑃𝑟𝑜𝑏𝐷 Φ 𝑈≤2 Ψ = 𝟎. 𝟗𝟖, 𝟎. 𝟗𝟖𝟗𝟖, 𝟎, 𝟏

Hence 𝑆𝑎𝑡 𝑃>0.98 𝐹≤2𝑠𝑢𝑐𝑐 = {𝑠1, 𝑠3}

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞

For brevity, instead of 𝑈≤∞ we just write 𝑈

We need to compute 𝑃𝑟𝑜𝑏𝐷(𝑠, Φ 𝑈 Ψ) for each state 𝑠:

𝑃𝑟𝑜𝑏𝐷 𝑠, Φ 𝑈 Ψ ==

1 𝑖𝑓 𝑠 ∈ 𝑆𝑎𝑡 Ψ  

0 𝑖𝑓 𝑠 ∈ 𝑆𝑎𝑡 ¬Φ ∧ ¬Ψ  

෍
𝑠′∈𝑆

𝐏 𝑠, 𝑠′ ⋅ 𝑃𝑟𝑜𝑏𝐷 𝑠′, Φ 𝑈 Ψ  otherwise
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𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞

This system of equations can have many solutions – we convert it to one with just 

one solution

The following sets are computed using fixpoint algorithm (similar to CTL case, using 

complement on sets):

𝑆𝑎𝑡 𝑃≤0 Φ 𝑈 Ψ = 𝑠 ∈ 𝑆 𝑃𝑟𝑜𝑏𝐷 𝑠, Φ 𝑈 Ψ = 0}

𝑆𝑎𝑡 𝑃≥1 Φ 𝑈 Ψ = 𝑠 ∈ 𝑆 𝑃𝑟𝑜𝑏𝐷 𝑠, Φ 𝑈 Ψ = 1}
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𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞

Resulting system of equation then reads:

𝑃𝑟𝑜𝑏𝐷 𝑠, Φ 𝑈 Ψ = 

=

1 𝑖𝑓 𝑠 ∈ 𝑆𝑎𝑡 P≥1 Φ 𝑈 Ψ  

0 𝑖𝑓 𝑠 ∈ 𝑆𝑎𝑡 𝑃≤0 Φ 𝑈 Ψ  

෍
𝑠′∈𝑆

𝐏 𝑠, 𝑠′ ⋅ 𝑃𝑟𝑜𝑏𝐷 𝑠′, Φ 𝑈 Ψ  otherwise

Having computed sets for probabilities 0 and 1, we can restrict computation to rest of 

states

Optimization
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𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞ – EXAMPLE
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𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑃>0.99[𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐]

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞ – EXAMPLE
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𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑆𝑎𝑡 𝑡𝑟𝑦 = 𝑠1 , 𝑆𝑎𝑡 𝑠𝑢𝑐𝑐 = {𝑠3}

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞ – EXAMPLE
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𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑆𝑎𝑡 𝑃≤0 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 = 𝑠0, 𝑠2 , 𝑆𝑎𝑡 𝑃≥1[𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐] = {𝑠3}

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞ – EXAMPLE
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𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑃𝑟𝑜𝑏𝐷 𝑠0, 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 = 0
𝑃𝑟𝑜𝑏𝐷 𝑠1, 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 = 0.01 ⋅ 𝑃𝑟𝑜𝑏𝐷 𝑠1, 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 +
          0.01 ⋅ 𝑃𝑟𝑜𝑏𝐷 𝑠2, 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 +
          0.98 ⋅ 𝑃𝑟𝑜𝑏𝐷 𝑠3, 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐
𝑃𝑟𝑜𝑏𝐷 𝑠2, 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 = 0
𝑃𝑟𝑜𝑏𝐷 𝑠3, 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 = 1

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞ – EXAMPLE
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𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑃𝑟𝑜𝑏𝐷 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 = (0,
98

99
, 0, 1)

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞ – EXAMPLE
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𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑃>0.99[𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐] is satisfied in 𝑠3

𝑃𝑟𝑜𝑏𝐷 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 = (0,
98

99
, 0, 1)

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}



EXTENDING DTMC AND PCTL WITH REWARDS

DTMC and PCTL can be extended by rewards (or costs)

specification of cost for transition

reasoning about cost of particular computation, e.g., satisfying PCTL property, restricting to 

computations with cost less than 𝑘, …
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CONTINUOUS-TIME MARKOV CHAINS
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CONTINUOUS-TIME MARKOV CHAINS

Transitions are supposed to occur at real time

contrary to DTMC where they occur at discrete time steps

CTMC allow to reason about different properties

Continuous Stochastic Logic (CSL) is used instead of PCTL

very close to PCTL including time specifications

support for specification of time intervals
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CONTINUOUS-TIME MARKOV CHAINS

Instead of probability matrix of DTMC, we have transition rate matrix (of real numbers)

assigns rates to each pair of states

rates determine the probability of the transition

exponential distribution – probability of transition (𝑠, 𝑠′) within 𝑡 time units, if 𝐑 𝑠, 𝑠′ > 0 equals 

1 − 𝑒−𝐑 𝑠,𝑠′  ⋅ 𝑡

Exit rate 𝐸 𝑠  of state 𝑠 is given by:

𝐸 𝑠 ≝ ෍
𝑠′∈𝑆

𝐑(𝑠, 𝑠′)
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CTMC – EXAMPLE
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𝐑 =

0
3

2
0 0

3 0
3

2
0

0 3 0
3

2
0 0 3 0

𝑠2𝑠1𝑠0 𝑠3

3

2

3

{full}{empty}
3

2

3

2

33

𝐏𝐞𝐦𝐛 =

0 1 0 0
2

3
0

1

3
0

0
2

3
0

1

3
0 0 1 0



PRISM – PROBABILISTIC MODEL CHECKER

Allows for checking DTMC, CTMC and other types of models

Uses simple dedicated input language

http://www.prismmodelchecker.org
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