
NSWI101: SYSTEM BEHAVIOUR MODELS AND VERIFICATION

10. STOCHASTIC MODEL CHECKING

Jan Kofroň

MOTIVATION

In some cases absolute absence of errors is infeasible

failures of particular parts of system

non-deterministic behaviour of users

…

It might be useful to determine level of reliability in terms of probability

frequency of errors

time to recovery

throughput

mean waiting time

…

Jan Kofroň: Behaviour Models and Verification 2

TODAY

Stochastic Model Checking

Lecture based on M. Kwiatkowska et al.: Stochastic Model Checking

http://www.prismmodelchecker.org/papers/sfm07.pdf

Jan Kofroň: Behaviour Models and Verification 3

http://www.prismmodelchecker.org/papers/sfm07.pdf

STOCHASTIC MODEL CHECKING

Not only validity of certain properties

but also probability of reaching states/paths

→ Need for special language

PCTL = Probabilistic Computational Tree Logic

CSL = Continuous Stochastic Logic

Discrete-time Markov Chains (DTMC) are used as models for discrete time

analysis

Continuous-time Markov Chains (CTMC) are used for continuous time analysis

Jan Kofroň: Behaviour Models and Verification 4

DISCRETE-TIME MARKOV CHAINS

Jan Kofroň: Behaviour Models and Verification 5

DISCRETE-TIME MARKOV CHAINS

Definition: A labelled DTMC 𝐷 is a tuple 𝑆, ҧ𝑠, 𝐏, 𝐿 where:

𝑆 is finite set of states

ҧ𝑠 ∈ 𝑆 is initial state

𝐏: 𝑆 × 𝑆 → [0,1] is transition probability matrix where σ𝑠′∈𝑆 𝐏 𝑠, 𝑠′ = 1 for all

𝑠 ∈ 𝑆

𝐿: 𝑆 → 2𝐴𝑃 is labelling function assigning to each state set 𝐿 𝑠 of atomic

propositions

Jan Kofroň: Behaviour Models and Verification 6

DISCRETE-TIME MARKOV CHAINS

Sum of probabilities of transitions originating in each state must be 1!

Terminating states can be modelled by self-loop with probability 1

Jan Kofroň: Behaviour Models and Verification 7

EXAMPLE

Jan Kofroň: Behaviour Models and Verification 8

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

NOTIONS

Path is non-empty sequence 𝑠0𝑠1𝑠2 … where 𝑠𝑖 ∈ 𝑆 and ∀𝑖 ≥ 0: 𝑃 𝑠𝑖 , 𝑠𝑖+1 > 0

Path can be finite or infinite

𝑃𝑎𝑡ℎ𝐷 𝑠 – set of infinite paths in 𝐷 starting at 𝑠

this is default meaning of paths

𝑃𝑎𝑡ℎ𝑓𝑖𝑛
𝐷 𝑠 – set of finite paths in 𝐷 starting at 𝑠

Jan Kofroň: Behaviour Models and Verification 9

PATH PROBABILITY

Probability for finite path 𝜔𝑓𝑖𝑛 ∈ 𝑃𝑓𝑖𝑛
𝐷 𝑠 :

𝑃𝑠 𝜔𝑓𝑖𝑛 = ൞

 1 𝑖𝑓 𝑛 = 0

ෑ
𝑖=0

𝑛−1

𝑃 𝜔 𝑖 , 𝜔 𝑖 + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 𝑛 is length of 𝜔𝑓𝑖𝑛

Cylinder set 𝐶 𝜔𝑓𝑖𝑛 ⊆ 𝑃𝑎𝑡ℎ𝐷 𝑠 :

𝐶 𝜔𝑓𝑖𝑛 ≝ 𝜔 ∈ 𝑃𝑎𝑡ℎ𝐷 𝑠 𝜔𝑓𝑖𝑛 is a prefix of 𝜔}

Jan Kofroň: Behaviour Models and Verification 10

PROBABILITY MEASURE

Probability measure 𝑃𝑟𝑠 is function defined as:

𝑃𝑟𝑠 𝐶 𝜔𝑓𝑖𝑛 = 𝑃𝑠 𝜔𝑓𝑖𝑛 for all 𝜔𝑓𝑖𝑛 ∈ 𝑃𝑎𝑡ℎ𝑓𝑖𝑛
𝐷 (𝑠)

Jan Kofroň: Behaviour Models and Verification 11

PROBABILITY MEASURE – EXAMPLE

In our example:

𝑃𝑟𝑠0
𝐶 𝑠0𝑠1𝑠1𝑠1 = 1.00 ⋅ 0.01 ⋅ 0.01 = 0.0001

𝑃𝑟𝑠0
𝐶 𝑠0𝑠1𝑠1𝑠2 = 1.00 ⋅ 0.01 ⋅ 0.01 = 0.0001

𝑃𝑟𝑠0
𝐶 𝑠0𝑠1𝑠1𝑠3 = 1.00 ⋅ 0.01 ⋅ 0.98 = 0.0098

𝑃𝑟𝑠0
𝐶 𝑠0𝑠1𝑠2𝑠0 = 1.00 ⋅ 0.01 ⋅ 1.00 = 0.01

𝑃𝑟𝑠0
𝐶 𝑠0𝑠1𝑠3𝑠3 = 1.00 ⋅ 0.98 ⋅ 1.00 = 0.98

Jan Kofroň: Behaviour Models and Verification 12

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

PROBABILISTIC COMPUTATIONAL TREE LOGIC (PCTL)

Jan Kofroň: Behaviour Models and Verification 13

PROBABILISTIC COMPUTATIONAL TREE LOGIC (PCTL)

Extension of CTL

Syntax:

 Φ ∷= 𝑡𝑟𝑢𝑒 𝑎 ¬Φ Φ ∧ Φ 𝑃~𝑝 𝜙 (state formula)

 𝜙 ∷= 𝑋Φ | Φ 𝑈≤𝑘 Φ , where (path formula)

 𝑎 is atomic proposition
 ~ ∈ <, ≤, ≥, >

 𝑝 ∈ 0,1

 𝑘 ∈ ℕ ∪ ∞

… plus common (derived) facts:

 𝑓𝑎𝑙𝑠𝑒 ≡ ¬𝑡𝑟𝑢𝑒

Φ ∨ Ψ ≡ ¬ ¬Φ ∧ ¬Ψ

Jan Kofroň: Behaviour Models and Verification 14

SEMANTICS OF PCTL

Jan Kofroň: Behaviour Models and Verification 15

𝑠 ⊨ 𝑡𝑟𝑢𝑒 for all 𝑠 ∈ 𝑆

𝑠 ⊨ 𝑎 ⇔ 𝑎 ∈ 𝐿 𝑠

𝑠 ⊨ ¬Φ ⇔ 𝑠 ⊭ Φ

𝑠 ⊨ Φ ∧ Ψ ⇔ 𝑠 ⊨ Φ ∧ 𝑠 ⊨ Ψ

𝑠 ⊨ 𝑃~𝑝[𝜙] ⇔ 𝑃𝑟𝑜𝑏𝐷 𝑠, 𝜙 ~𝑝

𝜔 ⊨ 𝑋Φ ⇔ 𝜔 1 ⊨ Φ

𝜔 ⊨ 𝜙 𝑈≤𝑘 𝜓 ⇔ ∃𝑖 ∈ ℕ: 𝑖 ≤ 𝑘 ∧ 𝜔 𝑖 ⊨ 𝜓 ∧ ∀𝑗 < 𝑖: 𝜔 𝑗 ⊨ 𝜙

where 𝑃𝑟𝑜𝑏𝐷 𝑠, 𝜙 ≝ 𝑃𝑟𝑠 𝜔 ∈ 𝑃𝑎𝑡ℎ𝐷 𝑠 𝜔 ⊨ 𝜙}

COMMON CTL OPERATORS

CTL 𝐹 and 𝐺 operators:

 𝑃~𝑝 𝐹 Φ ≡ 𝑃~𝑝 𝑡𝑟𝑢𝑒 𝑈≤∞Φ

 𝑃~𝑝 𝐹≤𝑘 Φ ≡ 𝑃~𝑝 𝑡𝑟𝑢𝑒 𝑈≤𝑘 Φ

 𝐺 Φ ≡ ¬𝐹¬Φ

 𝐺≤𝑘 Φ ≡ ¬𝐹≤𝑘¬Φ

Jan Kofroň: Behaviour Models and Verification 16

NEGATION

Syntax does not allow for negation of path formulae

However, it holds:

𝑃~𝑝 𝐺 Φ ≡ 𝑃ഥ~1−𝑝 𝐹 ¬Φ

𝑃~𝑝 𝐺≤𝑘 Φ ≡ 𝑃ഥ~1−𝑝 𝐹≤𝑘 ¬Φ

where ഥ< ≡ >, ≤ ≡ ≥, ഥ≥ ≡ ≤, > ≡ <

Jan Kofroň: Behaviour Models and Verification 17

QUANTIFIERS

𝑃~𝑝[∙] is probabilistic analogue to path quantifiers:

𝐸𝐹Φ ≡ 𝑃>0 𝐹 Φ

But: 𝐴𝐹Φ is NOT the same as 𝑃≥1[𝐹 Φ]

Jan Kofroň: Behaviour Models and Verification 18

𝑐0 satisfies 𝑃≥1[𝐹 𝑡𝑎𝑖𝑙𝑠]
𝑐0 does NOT satisfy 𝐴𝐹 𝑡𝑎𝑖𝑙𝑠

𝑐1

𝑐0

𝑐2

0.5

0.5

1

1

{heads}

{tails}

EXAMPLES OF PCTL PROPERTIES

𝑃≥0.4[𝑋 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑]

probability that message gets delivered in next step is at least 0.4

𝑖𝑛𝑖𝑡 → 𝑃≤0 𝐹 𝑒𝑟𝑟𝑜𝑟

error state is not reachable from any init state

𝑃≥0.9 ¬𝑑𝑜𝑤𝑛 𝑈 𝑠𝑒𝑟𝑣𝑒𝑑

probability that server does not go down before request gets served is at

least 0.9

𝑃<0.1 ¬𝑑𝑜𝑛𝑒 𝑈≤10 𝑓𝑎𝑢𝑙𝑡

probability that error occurs before protocol is done and within 10 steps

is less than 0.1

Jan Kofroň: Behaviour Models and Verification 19

MODEL CHECKING PCTL

Based on CTL model checking algorithm

1. decomposing formula into sub-formulae

2. in bottom-up manner finding set of states satisfying particular sub-formulae

3. the set of states for the input formula at root

Special handling of the 𝑃 formulae

Jan Kofroň: Behaviour Models and Verification 20

𝐗𝚽

For 𝑃~𝑝[𝑋 Φ] we need to compute

𝑃𝑟𝑜𝑏𝐷(𝑠, 𝑋 Φ) for each state 𝑠:

𝑃𝑟𝑜𝑏𝐷 𝑠, 𝑋Φ = ෍
𝑠′∈𝑆𝑎𝑡(Φ)

𝐏(𝑠, 𝑠′)

 where 𝑆𝑎𝑡(Φ) is set of states satisfying Φ

Let Φ 𝑠 = ቊ
1 𝑖𝑓 𝑠 ∈ Sat(Φ)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑃𝑟𝑜𝑏𝐷 𝑋Φ = 𝐏 ⋅ Φ

Vector with probabilities for particular states

Jan Kofroň: Behaviour Models and Verification 21

𝐗𝚽 – EXAMPLE

Jan Kofroň: Behaviour Models and Verification 22

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑃≥0.9 𝑋 ¬𝑡𝑟𝑦 ∨ 𝑠𝑢𝑐𝑐

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

𝐗𝚽 – EXAMPLE

Jan Kofroň: Behaviour Models and Verification 23

𝑆𝑎𝑡 ¬𝑡𝑟𝑦 ∨ 𝑠𝑢𝑐𝑐 = 𝑠0, 𝑠2, 𝑠3 →

1
0
1
1

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

𝐗𝚽 – EXAMPLE

Jan Kofroň: Behaviour Models and Verification 24

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

⋅

1
0
1
1

=

0
0.99

1
1

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 ≠ ∞

For 𝑃~𝑝[Φ 𝑈≤𝑘 Ψ] we need to compute 𝑃𝑟𝑜𝑏𝐷(𝑠, Φ 𝑈≤𝑘 Ψ)

for each state 𝑠:

𝑃𝑟𝑜𝑏𝐷 𝑠, Φ 𝑈≤𝑘 Ψ =

 = ൞

1 𝑖𝑓 𝑠 ∈ 𝑆𝑎𝑡 Ψ
0 𝑖𝑓 𝑘 = 0 𝑜𝑟 𝑠 ∈ 𝑆𝑎𝑡(¬Φ ∧ ¬Ψ)

σ𝑠′∈𝑆 𝐏 𝑠, 𝑠′ ⋅ 𝑃𝑟𝑜𝑏𝐷 𝑠′, Φ 𝑈≤𝑘−1 Ψ otherwise

 where 𝑆𝑎𝑡(Φ) is set of states satisfying Φ

Jan Kofroň: Behaviour Models and Verification 25

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 ≠ ∞

Definition: For any 𝐷𝑇𝑀𝐶 𝐷 = (𝑆, ҧ𝑠, 𝐏, 𝐿) and PCTL formula Φ, let 𝐷 Φ =

(𝑆, ҧ𝑠, 𝐏 Φ , 𝐿) where, if 𝑠 ⊭ Φ, then 𝐏 Φ 𝑠, 𝑠′ = 𝐏(𝑠, 𝑠′) for all 𝑠′ ∈ 𝑆, and if 𝑠 ⊨ Φ,

then 𝐏 Φ 𝑠, 𝑠 = 1 and 𝐏 Φ 𝑠, 𝑠′ = 0 for all 𝑠′ ≠ 𝑠.

Then it holds:

𝑃𝑟𝑜𝑏𝐷 𝑠, Φ 𝑈≤𝑘 Ψ = ෍
𝑠′⊨Ψ

𝜋𝑠,𝑘
𝐷 ¬Φ∨Ψ

𝑠′

Jan Kofroň: Behaviour Models and Verification 26

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 ≠ ∞

Vector of probabilities 𝑃𝑟𝑜𝑏𝐷(Φ 𝑈≤𝑘 Ψ) can be computed as:

𝑃𝑟𝑜𝑏𝐷 Φ 𝑈≤𝑘 Ψ = 𝐏 ¬Φ ∨ Ψ 𝑘 ⋅ Ψ

Usually computed in iterative way

but can be pre-computed for particular 𝑘

Jan Kofroň: Behaviour Models and Verification 27

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 ≠ ∞ – EXAMPLE

Jan Kofroň: Behaviour Models and Verification 28

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝐏>0.98 𝐹≤2𝑠𝑢𝑐𝑐 = 𝐏>0.98[𝑡𝑟𝑢𝑒 𝑈≤2𝑠𝑢𝑐𝑐]

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 ≠ ∞ – EXAMPLE

Jan Kofroň: Behaviour Models and Verification 29

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑆𝑎𝑡 𝑡𝑟𝑢𝑒 = 𝑠0, 𝑠1, 𝑠2, 𝑠3 , 𝑆𝑎𝑡 𝑠𝑢𝑐𝑐 = 𝑠3

𝐏 ¬𝑡𝑟𝑢𝑒 ∨ 𝑠𝑢𝑐𝑐 = 𝐏

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 ≠ ∞ – EXAMPLE

Jan Kofroň: Behaviour Models and Verification 30

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑃𝑟𝑜𝑏𝐷 Φ 𝑈≤0Ψ = 𝑠𝑢𝑐𝑐 = 0,0,0,1

𝑃𝑟𝑜𝑏𝐷 Φ 𝑈≤1Ψ = 𝐏 ¬𝑡𝑟𝑢𝑒 ∨ 𝑠𝑢𝑐𝑐 ⋅ 𝑃𝑟𝑜𝑏𝐷(Φ 𝑈≤0 Ψ) = 0,0.98,0,1

𝑃𝑟𝑜𝑏𝐷 Φ 𝑈≤2Ψ = 𝐏 ¬𝑡𝑟𝑢𝑒 ∨ 𝑠𝑢𝑐𝑐 ⋅ 𝑃𝑟𝑜𝑏𝐷(Φ 𝑈≤1 Ψ) = 𝟎. 𝟗𝟖, 𝟎. 𝟗𝟖𝟗𝟖, 𝟎, 𝟏

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 ≠ ∞ – EXAMPLE

Jan Kofroň: Behaviour Models and Verification 31

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑃𝑟𝑜𝑏𝐷 Φ 𝑈≤2 Ψ = 𝟎. 𝟗𝟖, 𝟎. 𝟗𝟖𝟗𝟖, 𝟎, 𝟏

Hence 𝑆𝑎𝑡 𝑃>0.98 𝐹≤2𝑠𝑢𝑐𝑐 = {𝑠1, 𝑠3}

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞

For brevity, instead of 𝑈≤∞ we just write 𝑈

We need to compute 𝑃𝑟𝑜𝑏𝐷(𝑠, Φ 𝑈 Ψ) for each state 𝑠:

𝑃𝑟𝑜𝑏𝐷 𝑠, Φ 𝑈 Ψ ==

1 𝑖𝑓 𝑠 ∈ 𝑆𝑎𝑡 Ψ

0 𝑖𝑓 𝑠 ∈ 𝑆𝑎𝑡 ¬Φ ∧ ¬Ψ

෍
𝑠′∈𝑆

𝐏 𝑠, 𝑠′ ⋅ 𝑃𝑟𝑜𝑏𝐷 𝑠′, Φ 𝑈 Ψ otherwise

Jan Kofroň: Behaviour Models and Verification 32

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞

This system of equations can have many solutions – we convert it to one with just

one solution

The following sets are computed using fixpoint algorithm (similar to CTL case, using

complement on sets):

𝑆𝑎𝑡 𝑃≤0 Φ 𝑈 Ψ = 𝑠 ∈ 𝑆 𝑃𝑟𝑜𝑏𝐷 𝑠, Φ 𝑈 Ψ = 0}

𝑆𝑎𝑡 𝑃≥1 Φ 𝑈 Ψ = 𝑠 ∈ 𝑆 𝑃𝑟𝑜𝑏𝐷 𝑠, Φ 𝑈 Ψ = 1}

Jan Kofroň: Behaviour Models and Verification 33

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞

Resulting system of equation then reads:

𝑃𝑟𝑜𝑏𝐷 𝑠, Φ 𝑈 Ψ =

=

1 𝑖𝑓 𝑠 ∈ 𝑆𝑎𝑡 P≥1 Φ 𝑈 Ψ

0 𝑖𝑓 𝑠 ∈ 𝑆𝑎𝑡 𝑃≤0 Φ 𝑈 Ψ

෍
𝑠′∈𝑆

𝐏 𝑠, 𝑠′ ⋅ 𝑃𝑟𝑜𝑏𝐷 𝑠′, Φ 𝑈 Ψ otherwise

Having computed sets for probabilities 0 and 1, we can restrict computation to rest of

states

Optimization

Jan Kofroň: Behaviour Models and Verification 34

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞ – EXAMPLE

Jan Kofroň: Behaviour Models and Verification 35

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑃>0.99[𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐]

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞ – EXAMPLE

Jan Kofroň: Behaviour Models and Verification 36

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑆𝑎𝑡 𝑡𝑟𝑦 = 𝑠1 , 𝑆𝑎𝑡 𝑠𝑢𝑐𝑐 = {𝑠3}

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞ – EXAMPLE

Jan Kofroň: Behaviour Models and Verification 37

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑆𝑎𝑡 𝑃≤0 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 = 𝑠0, 𝑠2 , 𝑆𝑎𝑡 𝑃≥1[𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐] = {𝑠3}

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞ – EXAMPLE

Jan Kofroň: Behaviour Models and Verification 38

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑃𝑟𝑜𝑏𝐷 𝑠0, 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 = 0
𝑃𝑟𝑜𝑏𝐷 𝑠1, 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 = 0.01 ⋅ 𝑃𝑟𝑜𝑏𝐷 𝑠1, 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 +
 0.01 ⋅ 𝑃𝑟𝑜𝑏𝐷 𝑠2, 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 +
 0.98 ⋅ 𝑃𝑟𝑜𝑏𝐷 𝑠3, 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐
𝑃𝑟𝑜𝑏𝐷 𝑠2, 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 = 0
𝑃𝑟𝑜𝑏𝐷 𝑠3, 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 = 1

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞ – EXAMPLE

Jan Kofroň: Behaviour Models and Verification 39

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑃𝑟𝑜𝑏𝐷 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 = (0,
98

99
, 0, 1)

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

𝚽 𝐔≤𝐤 𝚿 – FOR 𝒌 = ∞ – EXAMPLE

Jan Kofroň: Behaviour Models and Verification 40

𝐏 =

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

𝑃>0.99[𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐] is satisfied in 𝑠3

𝑃𝑟𝑜𝑏𝐷 𝑡𝑟𝑦 𝑈 𝑠𝑢𝑐𝑐 = (0,
98

99
, 0, 1)

𝑠2

𝑠1𝑠0

𝑠3

1

0.01

0.98

0.01

1

1

{try}
{fail}

{succ}

EXTENDING DTMC AND PCTL WITH REWARDS

DTMC and PCTL can be extended by rewards (or costs)

specification of cost for transition

reasoning about cost of particular computation, e.g., satisfying PCTL property, restricting to

computations with cost less than 𝑘, …

Jan Kofroň: Behaviour Models and Verification 41

CONTINUOUS-TIME MARKOV CHAINS

Jan Kofroň: Behaviour Models and Verification 42

CONTINUOUS-TIME MARKOV CHAINS

Transitions are supposed to occur at real time

contrary to DTMC where they occur at discrete time steps

CTMC allow to reason about different properties

Continuous Stochastic Logic (CSL) is used instead of PCTL

very close to PCTL including time specifications

support for specification of time intervals

Jan Kofroň: Behaviour Models and Verification 43

CONTINUOUS-TIME MARKOV CHAINS

Instead of probability matrix of DTMC, we have transition rate matrix (of real numbers)

assigns rates to each pair of states

rates determine the probability of the transition

exponential distribution – probability of transition (𝑠, 𝑠′) within 𝑡 time units, if 𝐑 𝑠, 𝑠′ > 0 equals

1 − 𝑒−𝐑 𝑠,𝑠′ ⋅ 𝑡

Exit rate 𝐸 𝑠 of state 𝑠 is given by:

𝐸 𝑠 ≝ ෍
𝑠′∈𝑆

𝐑(𝑠, 𝑠′)

Jan Kofroň: Behaviour Models and Verification 44

CTMC – EXAMPLE

Jan Kofroň: Behaviour Models and Verification 45

𝐑 =

0
3

2
0 0

3 0
3

2
0

0 3 0
3

2
0 0 3 0

𝑠2𝑠1𝑠0 𝑠3

3

2

3

{full}{empty}
3

2

3

2

33

𝐏𝐞𝐦𝐛 =

0 1 0 0
2

3
0

1

3
0

0
2

3
0

1

3
0 0 1 0

PRISM – PROBABILISTIC MODEL CHECKER

Allows for checking DTMC, CTMC and other types of models

Uses simple dedicated input language

http://www.prismmodelchecker.org

Jan Kofroň: Behaviour Models and Verification 46

http://www.prismmodelchecker.org/

	Slide 1: NSWI101: System Behaviour Models And Verification 10. Stochastic Model Checking
	Slide 2: Motivation
	Slide 3: Today
	Slide 4: Stochastic model checking
	Slide 5: Discrete-time Markov chains
	Slide 6: Discrete-time Markov chains
	Slide 7: Discrete-time Markov chains
	Slide 8: Example
	Slide 9: Notions
	Slide 10: Path probability
	Slide 11: Probability measure
	Slide 12: Probability measure – Example
	Slide 13: Probabilistic Computational Tree Logic (PCTL)
	Slide 14: Probabilistic Computational Tree Logic (PCTL)
	Slide 15: Semantics of PCTL
	Slide 16: Common CTL operators
	Slide 17: Negation
	Slide 18: Quantifiers
	Slide 19: Examples of PCTL properties
	Slide 20: Model checking PCTL
	Slide 21: bold cap X bold cap phi
	Slide 22: bold cap X bold cap phi – Example
	Slide 23: bold cap X bold cap phi – Example
	Slide 24: bold cap X bold cap phi – Example
	Slide 25: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k not equal infinity
	Slide 26: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k not equal infinity
	Slide 27: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k not equal infinity
	Slide 28: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k not equal infinity – Example
	Slide 29: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k not equal infinity – Example
	Slide 30: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k not equal infinity – Example
	Slide 31: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k not equal infinity – Example
	Slide 32: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k equals infinity
	Slide 33: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k equals infinity
	Slide 34: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k equals infinity
	Slide 35: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k equals infinity – Example
	Slide 36: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k equals infinity – Example
	Slide 37: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k equals infinity – Example
	Slide 38: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k equals infinity – Example
	Slide 39: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k equals infinity – Example
	Slide 40: bold cap phi , bold cap U to the , less than or equal to bold k end superscript , , bold cap psi – for bold italic k equals infinity – Example
	Slide 41: Extending DTMC and PCTL with rewards
	Slide 42: Continuous-time Markov Chains
	Slide 43: Continuous-time Markov Chains
	Slide 44: Continuous-time Markov Chains
	Slide 45: CTMC – Example
	Slide 46: PRISM – Probabilistic Model Checker

