Metrics for Performance Advertisement Performance Evaluation of Computer Systems

Vojtěch Horký Peter Libič Petr Tůma

Department of Distributed and Dependable Systems Faculty of Mathematics and Physics Charles University

2010 - 2023

Operation Frequency Related Metrics

3 Operation Duration Related Metrics

4 Benchmark Workloads

Performance Advertisement

Measuring for the purpose of publishing performance information.

Requirements:

- Well defined meaning.
- Simple to understand.
- Difficult to game.

Pitfalls:

- Publication makes results subject to pressure.
- Often too simple to convey meaningful information.
- Performance in contemporary computer systems is never simple.

Speed Related Metrics

Responsiveness Metrics

- Time (Task Response Time)
- How long does it take to finish the task ?

Productivity Metrics

- Rate (Task Throughput)
- How many tasks can the system complete per time unit ?

Utilization Metrics

- Resource Use (Utilization)
- How much is the system loaded when working on a task?
- Share of time a resource is busy or over given load level.
- Helps identify bottlenecks (most utilized resources in the system).

Overview

2 Operation Frequency Related Metrics

3 Operation Duration Related Metrics

4 Benchmark Workloads

Clock Rate

Clock rate (frequency) of the component (CPU, bus, memory) in MHz. Most often we talk about CPU frequency.

Not Reliable

CPU with higher frequency does not run all applications faster.

- Ignores IPC.
- Ignores how much of the work done is actually used (speculative execution, pipelining ...).
- Ignores that CPU might not be a bottleneck of an application.

Not Repeatable

Clock rate is not constant on many platforms.

- Dynamic frequency scaling.
 - CPU can run on lower frequency to save energy and heat.
 - CPU can boost frequency to give more performance online.
- This can sometimes be monitored or adjusted.

MIPS

Millions of instructions executed per second. Defined for a given instruction mix. Gibson Mix (IBM) for scientific applications 34% int math, 13% float math, etc. Whetstone Mix for floating point computations Dhrystone Mix for system programming

Not Linear, Not Reliable, Not Consistent

- Results depend on the code executed and cannot be generalised.
- With the same code, instructions on different platforms do different amount of work:

RISC simple instructions, more needed CISC complex instructions, fewer needed

MFLOPS

Millions of floating point operations executed per second. Assumes certain similarity for basic floating point operations.

Not Reliable

Makes only sense when floating point operations are the major factor of performance (scientific computing).

Not Independent

Different platforms support different operations:

- Division sometimes directly supported, sometimes implemented using other operations (Cray, Itanium).
- Sin, Cos, Log sometimes single operation, sometimes look up and approximations (Taylor).
- Are these single or multiple operations ?
- Interpretation prone to marketing games.

Operation Frequency Related Metrics

Operation Duration Related Metrics

4 Benchmark Workloads

Wall Clock Time I

```
start = get_real_time ();
// run the operation of interest
end = get_real_time ();
return (end - start);
```

Operation time that would have been measured by a person with a stop watch.

Pros

- Very intuitive metric in units everyone understands.
- Reliable for representative benchmarks.
- Consistent seconds are the same with all systems.
- Independent if the benchmarks are not optimized against.

Wall Clock Time II

Cons

- Only applies to a particular operation (usually generalized using benchmarks).
- Typically sensitive to background load:
 - Non random load (scheduled tasks) can bias the results.
 - Random load is not easily reproducible.
 - Realistic background load might make sense, but must be made part of controlled experiment.

Also think about exact operation boundaries:

- User oriented metrics would prefer end-to-end times:
 - From click to end of page rendering.
 - From application launch to result display.
- Developer oriented metrics would prefer measuring within single domain:
 - Separate communication time, queueing time, processing time.
 - Separate data load and save time from computation time.

Processor Time I

```
start = get_thread_consumed_time ();
// run the operation of interest
end = get_thread_consumed_time ();
return (end - start);
```

Aggregate work time that would have been reported by workers working in parallel.

Pros

- Counts only actually consumed time.
- Can distinguish kernel time and user time.

Processor Time II

Cons

- Possibly low precision (depends on accounting mechanism).
- Does not include necessary waiting (I/O, synchronization).
- Still may be affected by background load (caches, TLB, memory).

A possible compromise is to collect both processor and wall clock time. Think about processor to wall clock time ratio:

- High ratio indicates high parallelism.
- Low ratio indicates blocking.

Overview

- 2 Operation Frequency Related Metrics
- 3 Operation Duration Related Metrics
- 4 Benchmark Workloads

Standard Benchmarks

Report performance of a well known (standardized) benchmark. The question is who should standardize such benchmarks.

Industrial Standards

Benchmarks developed through cooperation between multiple vendors. Focus on transparent process and fair comparison. For example SPEC or TPC benchmarks.

Research Standards

Benchmarks developed for evaluating research results. Focus on insight into particular research topic. For example DaCapo or NPB benchmarks.

Popular Standards

Benchmarks developed often for fun but with popular acceptance.

Standard Performance Evaluation Corporation

A non profit consortium developing industry standard benchmarks.

Provides a set of benchmark suites for different systems and workloads:

- CPU SPEC CPU2017 ...
- Power SPECpower ssj2008, SERT ...
- Graphics SPECviewperf 13, SPECwpc, SPECapc ...
- Computational SPEC ACCEL, SPEC MPI2007, SPEC OMP2012 ...
- Java SPECjvm2008, SPECjEnterprise2018, SPECjbb2015 ...
- Cloud SPECvirt sc2013, SPEC Cloud IaaS 2018 ...

More information on http://www.spec.org.

SPEC CPU Benchmarks

Reporting combined performance of multiple benchmarks.

Characteristics

- Set of (about 40) diverse benchmark tasks (compilation, compression, rendering ...)
- Run each benchmark program, measure execution time.
- Provide geometric mean of normalised benchmark execution times.

Benchmark metric comments:

- Geometric mean perhaps a sensitivity compromise.
- Not linear with program execution time.
- Not always reliable.
- Not very intuitive.
- Weights unclear.

SPEC CPU Benchmarks

Reliability ?

- Good for individual benchmarks, but these not always of interest.
- For general applications, low level benchmarks (SPECint, SPECfpu) less reliable than application benchmarks (SPECjbb, SPECjvm).

Independence ?

- Vendors are known to optimise for SPEC benchmarks.
- Partial solution is use of base and peak profiles.
 - Base compiles all benchmarks with the same flags.
 - Peak permits benchmark specific flags and feedback directed optimization.
- However, developers should not include optimizations that are unlikely to improve real applications.

SPEC JBB Benchmarks

Reporting transaction rate of a model application.

Characteristics

- A model application of a supermarket chain backend.
 - Customers buy in markets.
 - Markets order from suppliers.
 - Headquarters perform data mining.
- Multiple deployment models (local and distributed).
- Gradually increase workload and look at transaction processing.
 - Report critical-jOPS as throughput under response time constraints.
 - Report max-jOPS as peak throughput with correctness constraints.

Benchmark metric comments:

- Easily related to practical performance.
- Response time constraints sensitive to disruptions.
- Low resolution due to coarse workload steps in implementation.

Transaction Processing Performance Council

A non profit consortium developing standard data processing benchmarks.

Provides a set of benchmark suites for different systems and workloads:

- TPC-C order entry system
- TPC-DI data transformation (ETL)
- TPC-DS decision support system for retail supplier
- TPC-E financial brokerage system
- TPC-H decision support system for product distribution industry
- TPC-VMS extending benchmarks to virtualized environments
- TPCx-BB big data benchmark using Hadoop queries
- TPCx-HS big data benchmark using Hadoop filesystem

• ...

More information on http://www.tpc.org.