
cbea

Measurement: Instrumentation
Performance Evaluation of Computer Systems

Vojtěch Horký Peter Libič Petr Tůma

Department of Distributed and Dependable Systems
Faculty of Mathematics and Physics

Charles University

2010 – 2023

cbea

Outline

1 Overview

2 Source Code Instrumentation

3 Bytecode Instrumentation

4 Machine Code Instrumentation

5 Instrumentation Overwriting Code

6 Instrumentation Translating Code

cbea

Instrumentation

Purpose
Instrumentation inserts measurement code (probes) into well defined
program locations to facilitate data collection.

Examples of instrumentation:

Static instrumentation in source files

Dynamic instrumentation in object model

Static or dynamic instrumentation in bytecode

Static or dynamic instrumentation in machine code

Static preparation in source files that allows
dynamic instrumentation in machine code

cbea

Instrumentation

Collected Information
Information that is interesting but cannot be measured directly:

Precise program traces

Program state snapshots

Function parameter values

Anything else the program can observe …

Applications
Useful for many dynamic analyses:

Test coverage

Race detection

Taint tracking

Origin tracking

Memory usage checks

cbea

Outline

1 Overview

2 Source Code Instrumentation

3 Bytecode Instrumentation

4 Machine Code Instrumentation

5 Instrumentation Overwriting Code

6 Instrumentation Translating Code

cbea

Source Code Instrumentation

Benefits
Relatively easy to insert

I Source code is made to be modified
I Automated tools sometimes struggle

Program state naturally available

Locations relevant to code structure

Challenges
Instrumentation is subject to compiler optimization:

I Optimized together with surrounding code
I Can impact surrounding optimizations
I Can be subject to code motion

Conditional instrumentation possibly tricky

Requires source code and compilation

cbea

Source Code Instrumentation

Manual
Programmer inserts measurement code into locations of interest.

Fine grained placement control

Tedious and possibly error prone

Assisted
Tool inserts measurement code into specified locations.

Tool guarantees systematic coverage

Specification of locations limited

For tool examples think about logging frameworks or macro processors.

cbea

Source Code Instrumentation Problems

Configurability
We want to have simple way to turn instrumentation on and off.

Preprocessing

Conditional calls

Think what a modern runtime will do with the following:

log.debug ("App results are '" + results.toString () + "'.");

log.debug ("App results are '{}'.", results);

if (log.isDebugEnabled ()) {

log.debug ("App results are '" + results.toString () + "'.");

}

cbea

Source Code Instrumentation Problems
Reliability
We need reliable association between instrumentation and application code.

Think what a modern compiler will do with the following:

int sqrt_counter = 0;

inline double counted_sqrt (double x) {

sqrt_counter ++;

return (sqrt (x));

}

This is the square root function disassembly:

sqrt: pxor xmm1,xmm1 // Set xmm1 to zero

ucomisd xmm1,xmm0 // Compare argument to zero

ja fail // Negative argument check

sqrtsd xmm0,xmm0 // Compute square root

ret // Register passing

cbea

Outline

1 Overview

2 Source Code Instrumentation

3 Bytecode Instrumentation

4 Machine Code Instrumentation

5 Instrumentation Overwriting Code

6 Instrumentation Translating Code

cbea

Bytecode Instrumentation

Benefits
Still relatively easy to insert

I Bytecode contains much metadata
I Compilation produces predictable bytecode

Program state still naturally available

Can be done at runtime without sources

Challenges
Requires tools

Not all languages and environments have bytecode

Locations in bytecode possibly different from code structure

For tool examples consider ASM or DiSL.
Also aspect oriented frameworks such as AspectJ.

cbea

ASM

Library for bytecode manipulation.
Main features of ASM are:

Core API based on visitor design pattern
I ClassReader to generate events from class file
I ClassWriter to generate class file from events
I Transformations implemented as event pipes
I Adapters for predefined transformations

Tree API for in memory class file representation
I Can build representation from Core API events
I Can generate Core API events from representation

http://asm.ow2.io

http://asm.ow2.io

cbea

Aspect Oriented Programming

Idea
What if we could express independent concerns
by separate code fragments ?

Logging

Transactions

Authorization

concern Program feature that stands apart from other features.

join point Program location where concern code resides.

pointcut Specification of a set of join points.

advice Code inserted at pointcut.

weave Insert advice.

Obviously AOP can be used to insert measurement instrumentation.
Some pointcut specifications can introduce significant perturbation.

cbea

AspectJ

Aspect oriented programming framework for Java.

Main features of AspectJ are:

Byte code instrumentation at compile time and load time

Declarative language for defining instrumentation points

Instrumenting code written in Java

http://www.eclipse.org/aspectj

http://www.eclipse.org/aspectj

cbea

Instrumentation with AspectJ

aspect Measurement {

// Select all executions of methods of class Main.

pointcut allMainMethods (): execute (* Main.* (..));

// Attach an around advice that measures time.

Object around (): allMainMethods () {

long timeBefore = System.nanoTime ();

Object result = proceed ();

long timeAfter = System.nanoTime ();

System.out.println (timeAfter - timeBefore);

return (result);

}

}

cbea

AspectJ Join Points I

Join points are:

call and execution of a method or a constructor,

execution of an exception handler,

execution of a static initializer,

read or write access to a field,

execution of an advice.

execution (int SomeClass.someMethod (int))

execution (String *.get*Name (..)

call (* AnotherClass.* (String))

call (*.new (long))

handler (RemoteException+)

get (int *.counter)

cbea

AspectJ Join Points II

Join points can be further constrained by:

presence of an annotation,

location within a class or a method,

actual type of the current object, called object, arguments,

control flow selected by particular pointcut,

boolean expression.

this (SomeClass)

target (AnotherClass)

args (int, int, int, int)

cflow (SomePointcut)

within (SomeClass)

cbea

AspectJ Pointcuts I

Pointcuts combine specifications of join points
using standard operators &&, ||, !.

pointcut callToSomeClassFromMain ():

within (Main) && target (SomeClass+);

pointcut nonRecursiveCallToSomeClass ():

call (* SomeClass.* (..)) && !within (SomeClass)

cbea

AspectJ Pointcuts II

Pointcuts can make accessible variables in their context:

current object,

target object,

arguments.

pointcut callToSomeClass (SomeClass o):

call (* SomeClass.* (..)) && target (o);

pointcut namingSomething (String name):

call (void *.set*Name (String)) && args (name);

cbea

AspectJ Advice

Advice can be associated with join point:

before the join point,
after the join point

I when it returns normally,
I when it throws an exception,

around the join point.

before SomePointcut ():

Object [] arguments = thisJoinPoint.getArgs ();

for (Object argument : arguments) {

System.out.println (argument);

}

Object around AnotherPointcut ():

return (proceed ());

cbea

More AspectJ Features

Aspects can include declarations across types:

declare new fields,

declare new methods,

declare new constructors,

introduce new parents,

introduce new interfaces.

private interface HasCounter {}

declare parents:

(SomeClass || AnotherClass) implements HasCounter;

private long HasCounter.executionCount = 0;

before (HasCounter o):

execution (* *.* (..)) && this (o) {

o.executionCount ++;

}

cbea

Bytecode Instrumentation Problems

Consider
Inserted instrumentation executes in the same virtual machine as program.

Can this cause any problems ?

Deadlock between analysis and application

State corruption inside application code

Arbitrary assumptions in virtual machine

Bytecode verification failures

Shared reference handlers

Coverage approximation

…

Based on Kell et al.: The JVM is Not Observable … doi:10.1145/2414740.2414747

https://doi.org/10.1145/2414740.2414747

cbea

Program State Corruption

Coverage
Analyses may require total code coverage:

Memory allocation tracking (leaves important)

Taint tracking (and any other data flow)

Reliable race detection

…

What happens if we try to instrument every class of the application ?

This includes Object, String, System classes.
These will likely be used by instrumentation and analysis code too.
It is (too) easy to run into infinite recursion or state corruption problems.

cbea

Program State Corruption

Coverage
Analyses may require total code coverage:

Memory allocation tracking (leaves important)

Taint tracking (and any other data flow)

Reliable race detection

…

What happens if we try to instrument every class of the application ?

This includes Object, String, System classes.
These will likely be used by instrumentation and analysis code too.
It is (too) easy to run into infinite recursion or state corruption problems.

cbea

Dynamic Bypass Pseudocode

static boolean instrumentationOnline = false;

// Instrumentation snippet

if (!instrumentationOnline) {

instrumentationOnline = true;

// Actual instrumentation here

instrumentationOnline = false;
}

Simple with single-threaded programs,
can be tricky with multiple threads.

cbea

DiSL

A bytecode instrumentation framework with emphasis on coverage.

Language and framework for Java bytecode instrumentation

Similar to aspects, but read only and with more control

Allows to write instrumentation snippets directly in Java

Instrumentation points are selected using annotations

Dynamic bypass is provided automatically

http://disl.ow2.org

http://disl.ow2.org

cbea

Example Instrumentation Snippet

@Before (
marker = BodyMarker.class,
scope = "TargetClass.print (boolean)",
order = 8)

public static void precondition () {
System.out.println ("Precondition !");

}

snippet Code inserted as instrumentation.

marker Specification of location to instrument.

scope Specification of classes to instrument.

guard Instrumentation condition.

cbea

DiSL Architecture

Instrumentation Server
Standalone server responsible for creating instrumented classes.

Standalone to minimize perturbation

Instrumentation using ASM

Optimizations

Application Client
Java virtual machine executing the instrumented application.

JVMTI agent to intercept class loading process

Remote communication with instrumentation server

Also executes whatever instrumentation code is inserted

cbea

Outline

1 Overview

2 Source Code Instrumentation

3 Bytecode Instrumentation

4 Machine Code Instrumentation

5 Instrumentation Overwriting Code

6 Instrumentation Translating Code

cbea

Machine Code Instrumentation

Benefits
Machine code (almost) always available

Looking at code in very fine resolution

Challenges
Machine code difficult to analyze

I Mixing code and data
I Variable length instructions
I Very far from source code structure

Inserting extra code difficult
I No space for extra instructions
I Register state must be preserved

Some patterns complicate things
I Auto generated or self modifying code
I Computed branch targets

cbea

Recognizing Machine Code

.. 04 0A 11 1F 11 11 ..

...

04 0A add $0xa,%al

11 1F adc %ebx,(%rdi)

11 11 adc %edx,(%rcx)

...

0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
1 1 1 1 1
1 0 0 0 1
1 0 0 0 1

DUMP

AS CODE AS BITS

cbea

Shifting Machine Code

8A 02 mov (%rdx),%al

84 C0 test %al,%al

74 05 je loop_exit

48 FF C2 inc %rdx
EB F5 jmp loop_head

...

8A 02 mov (%rdx),%al

E8 01 02 03 04 callq probe

84 C0 test %al,%al

74 05 je loop_exit

48 FF C2 inc %rdx
EB F5 jmp loop_head

...

BEFORE PATCH
AFTER PATCH

cbea

Machine Code Instrumentation

Available tools use combinations of many techniques:

Overwrite instrumentation locations

Instrument only prepared locations

Use dynamic translation

Example tools: DTrace, KProbes, PIN, Valgrind, DynamoRIO.

cbea

Outline

1 Overview

2 Source Code Instrumentation

3 Bytecode Instrumentation

4 Machine Code Instrumentation

5 Instrumentation Overwriting Code

6 Instrumentation Translating Code

cbea

Overwriting Instructions
Instrumentation can be inserted by overwriting
the instruction(s) at the target location.

Challenges
Must overwrite only single location

I As little as single byte on variable opcode length architectures
I Single instruction on constant opcode length architectures

Overwrite must be an atomic operation

Original instruction must be replayed

Specialized instructions
I Intel INT 3 opcode is single byte 0xCC
I Translates into SIGTRAP on Linux
I But also writes on stack

Hardware support
I Explicit control transfers or barriers sometimes needed

Trampolines

See Chamith et al.: Living On The Edge … doi:10.1145/2908080.2908084

https://doi.org/10.1145/2908080.2908084

cbea

Instrument Prepared Locations

Instrumentation can be inserted at locations
that were previously prepared for such use.

Challenges
Identifying suitable locations

Low overhead when not instrumented

Prologues
I Compilers can generate suitable function prologue

Exported symbols
I Reasonable location to expect instrumentation at
I Often called through relatively standard code (PLT)

Specialized instructions
I Intel NOP has opcode variants for up to nine bytes
I Atomic updates for long variants require some care

cbea

Linux Kernel Function Tracer

System for tracing calls to kernel functions:

Instrumentation locations prepared by compiler
/sys/kernel/debug/tracing/available_filter_functions

Probes dynamically disabled and enabled

Accessed through debug file system
/sys/kernel/debug/tracing/available_tracers

/sys/kernel/debug/tracing/current_tracer

/sys/kernel/debug/tracing/trace

See Linux kernel Documentation/trace/ftrace.rst

cbea

Linux Static Kernel Trace Points

System for tracing predefined kernel events of interest:

Inserted by kernel developers into appropriate locations
/sys/kernel/debug/tracing/available_events

/sys/kernel/debug/tracing/events tree

Probes dynamically disabled and enabled

Accessed through debug file system
/sys/kernel/debug/tracing/set_event

/sys/kernel/debug/tracing/trace

See Linux kernel Documentation/trace/tracepoints.rst

cbea

Linux Kernel Probes

Interfaces that allow to instrument:

Any single instruction in kernel (Kprobes)

Any function entry and exit in kernel (Return Probes)

See Linux kernel Documentation/trace/kprobes.rst

cbea

Kprobes

Replace target instruction with breakpoint instruction

Breakpoint instruction is single byte

Control transfer similar to interrupt

Jumps can also be used (faster)

Execute probe code

Registers saved as in other interrupts

Handler for both pre code and post code

Single step the replaced instruction

Must be done inside interrupt handler

Requires understanding all instructions

cbea

Return Probes

Replace function entry with Kprobe
Kprobe saves original return address

I Limit on concurrently executing functions with return probes
I Invocations exceeding limit are counted but not intercepted

Kprobe modifies function return address to point to trampoline

Trampoline is instrumented with another Kprobe at system boot time

Execute function code

Function executes normally

On return control is passed to trampoline Kprobe

cbea

Linux Static User Mode Probe Points

System for marking predefined user mode locations of interest:

Inserted by application developers into appropriate locations

#include <sys/sdt.h>

STAP_PROBE (app, location)

STAP_PROBE1 (app, location, arg1)

STAP_PROBE2 (app, location, arg1, arg2)

...

Probes compile into
I A NOP instruction in the probe location
I A probe record in the ELF stapsdt note section

The perf tool recognizes user mode probe points after
scanning the binary with perf buildid-cache.

See man stapprobes

cbea

Linux User Mode Probes

System for tracing dynamically instrumented user mode code locations:

Instrumentation code inserted by kernel on code load

Controlled through debug file system
/sys/kernel/debug/tracing/uprobe_events

echo "<type> <file>:<offset> [arglist]"

Support included in the perf tool:

> perf probe -x <file> --funcs

> perf probe -x <file> --line <func>

> perf probe -x <file> --vars <func>:<line>

> perf probe -x <file> <func>:<line> [<var> ...]

See Linux kernel Documentation/trace/uprobetracer.rst

cbea

Linux Extended Berkeley Packet Filters
Framework for securely injecting code into kernel.

Code
Injected code written in limited bytecode:

RISC style instructions

Limit on instruction count (1M)

Limit on branching (no loops)

Static memory access checks

Bytecode supported by LLVM backend.

Maps
Data export through maps:

In kernel key value stores

Both global and per processor

See man bpf

cbea

Outline

1 Overview

2 Source Code Instrumentation

3 Bytecode Instrumentation

4 Machine Code Instrumentation

5 Instrumentation Overwriting Code

6 Instrumentation Translating Code

cbea

Dynamic Instrumentation

Instrumentation can be inserted by translating code during execution.

Challenges
Identifying code to translate

Keeping execution overhead reasonably low

Making translation invisible to application

Code recognized during execution
I Anything executed must be code
I Translate in units of basic blocks
I Chain basic blocks from hot paths into traces
I Cache and reuse translations during execution

Instrument inside basic block discovery notification
Interface to internal code representation

I Close to binary form in “Copy and Annotate” (PIN, DynamoRIO)
I Close to compiler IR in “Disassemble and Resynthesize” (Valgrind)

cbea

PIN

Intel dynamic binary instrumentation tool.
http://software.intel.com/en-us/articles/pintool

C and C++ API

Provides multiple instrumentation points such as
Routine (RTN), Image (IMG), Instruction (INS)

Instrumentation snippet is normal C/C++ code

Operates in JIT mode or probe mode

Supports x86

http://software.intel.com/en-us/articles/pintool

cbea

PIN Tool Example

int main (int argc, char * argv []) {
if (PIN_Init (argc, argv)) exit (1);
INS_AddInstrumentFunction (CountInstruction, 0);
PIN_StartProgram ();

}

VOID CountInstruction (INS ins, VOID * v) {
INS_InsertCall (ins, IPOINT_BEFORE, (AFUNPTR) DoCount, IARG_END);

}

VOID DoCount () { ... }

… run with pin -t pintool.so -- command

Based on code from Intel PIN examples

cbea

Valgrind

Open source dynamic binary instrumentation tool.
http://valgrind.org

C API

Compiler style intermediate representation (VEX)

Instrumentation implemented as VEX manipulation

Targets heavyweight instrumentation

Supports x86, ARM, PPC, MIPS …

cbea

Valgrind VEX Example

Original Instruction

add eax,ebx

------ IMark(0x123456, 2, 0) ------

Connects VEX to original code address and length

t3 = GET:I32(8) # Guest state offset 8 is EAX

t2 = GET:I32(20) # Guest state offset 20 is EBX

t1 = Add32(t3,t2)

PUT(8) = t1

Does not show flags and program counter updates

Based on code from Valgrind headers

cbea

Valgrind VEX Example

Original Instruction

add [eax+4],edx

------ IMark(0x123456, 4, 0) ------

Connects VEX to original code address and length

t3 = Add32(GET:I32(8),0x4:I32) # Non flattened

t2 = LDle:I32(t3) # Little endian load

t1 = GET:I32(16) # Guest state offset 16 is EDX

t0 = Add32(t2,t1)

STle(t3) = t0 # Little endian store

Does not show flags and program counter updates

Based on code from Valgrind headers

	Overview
	Source Code Instrumentation
	Bytecode Instrumentation
	Machine Code Instrumentation
	Instrumentation Overwriting Code
	Instrumentation Translating Code

