Code Contracts

http://d3s.mff.cuni.cz

Department of
Distributed and
Dependable

Pavel Parizek

G %)
el N e
“:

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

Assertions

* Typically used as internal checks in the program
source code

°® |imitations

= Unclear semantics
* Valid parameters (input)
® |nvariant of an algorithm
® Correctness of the result

" Modular verification

" Inheritance
® Consistency between parent and subclass

Pavel Parizek Code Contracts 2

Code Contracts

® Part of the .NET framework
= Support for many programming languages

e http://research.microsoft.com/en-us/projects/contracts/

®* QOpen source (since 2015)
= https://github.com/Microsoft/CodeContracts

®* Main features
= Declarative language
= Static verification
= Runtime checking
= Single-threaded apps

Pavel Parizek Code Contracts 3

http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
https://github.com/Microsoft/CodeContracts
https://github.com/Microsoft/CodeContracts

Example

using System.Diagnostics.Contracts;

class TestOl {
public static int CountWhiteSpaces(string text) {
Contract.Requires(text != null);
Contract.Ensures(Contract.Result<int>() >= 0);
Contract.Ensures(Contract.Result<int>() <= text.Length);

int count = 9;
char[] str = text.ToCharArray();

for (int 1 = @; i < str.Length; i++)
if (char.IsWhiteSpace(str[i])) count++;

return count;

Pavel Parizek Code Contracts 4

Basic syntax

®* Preconditions
= Contract.Requires(cond);
= Contract.Requires<exc>(cond);

® Postconditions
= Contract.Ensures(cond);
= Contract.EnsuresOnThrow<exc>(cond);
"= Contract.Result<T>()
= Contract.ValueAtReturn<T>(out T t)
" Contract.O0ldValue<T>(exp)

® Conditions must be side-effect free
= Allowed to call only methods with attribute [Pure]

Pavel Parizek Code Contracts 5

Basic syntax

® Object invariants
[ContractInvariantMethod]

private void ObjectInvariant()

{

Contract.Invariant(false);

® Simple assertions
Contract.Assert(cond)

Pavel Parizek Code Contracts 6

Quantifiers

* Contract.ForAll<T>(IEnumerable<T>
coll, Predicate<T> pred);

* Contract.ForAll(int fromInclusive, int
toExclusive, Predicate<int> pred);

public int Foo<T>(IEnumerable<T> xs) {
Contract.Requires(Contract.ForAll(xs, x => x != null));

® Contract.Exists

* System.Ling.Enumerable.All

Pavel Parizek Code Contracts 7

Runtime checking
B RRRRRRCPARAA AT AD-~,
® Contracts translated into assertions
* Works like smarter testing

* Useful both for development and production

® Supports all features of Code Contracts

Pavel Parizek Code Contracts 8

Static checking

°* Based on abstract interpretation (lecture 9)

° Limitation: very hard to write contracts that
can be proven correct by the static checker

= False errors reported
= Undecidable queries
= Modular reasoning

® Hints: Contract.Assume(cond)

Pavel Parizek Code Contracts 9

Modular reasoning

°* Approach: verify just one method at a time

* Benefits: high scalability to large programs
° Limited precision (reporting spurious errors)

°* Nested method calls
1) Assert precondition of a given callee method
2) Assume postcondition of the callee method

Pavel Parizek Code Contracts 10

Advanced features

¢ ContractAbbreviator
= Shared contracts

* ContractArgumentValidator
= Legacy code (if-then-else checks)

* [nheritance
= Contracts automatically reused from a parent class

= Subclasses may add only new postconditions and object invariants
® Goal: preserve consistency with respect to subtyping

* |nterfaces
= ContractClass(Type)
= ContractClassFor(Type)

Pavel Parizek Code Contracts 11

What problems you can encounter

® |nconsistencies among contracts
= Method boundaries: caller versus callee

= Consequence of modular verification

* Inconsistency between implementation and
contract for a single method

= Hard to define sound and complete contracts

Pavel Parizek Code Contracts 12

Support in Visual Studio

* Available through plugin

* Configuration options

= Project -> Properties -> Code Contracts “tab”

Pavel Parizek Code Contracts 13

