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Deductive methods
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If you want to know more ...

* Decision Procedures and Verification (NAILO94)

= Lecturer: Petr Kucera, KTIML

°* D. Kroening and O. Strichman. Decision
Procedures: An Algorithmic Point of View.
Springer, 2008.
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Basic terminology (reminder)

® |Logic formula
= syntax, semantics

®* Propositional logic

* First-order logic
= Predicates
= Quantifiers

® Assignment
= Partial assighment

* Satisfiability
* Validity (tautology)
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Relation between satisfiability and validity

¢ isvalid — @ Is satisfilable
¢ is valid < lo Is unsatisfiable

¢ is satisflable <« ! I1s not valid
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Normal forms

* Negation normal form (NNF)
= syntax: !, |, & and variables

= Negation only for variables
= Example: (a | (b & !c)) & (!d)

® Conjunctive normal form (CNF)

= NNF as a conjunction of disjunctions
= Example:(a | b | Ic) & (Id) & (e | !f)

* Disjunctive normal form (DNF)

= NNF as a disjunction of conjunctions
= Example: (a & b & Ic) | (!d) | (e & !f)
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Getting the normal forms

°* De Morgan’s law
* Distributive law
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Getting the normal forms

°* Transformation into an equivalent formula in
CNF or DNF

°* Problem: exponential blow-up of the size

°* Remedy: creating equisatisfiable formula
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Equisatisfiability

* Equisatisfiable formulas ¢,

= both satisfiable or both unsatisfiable

°* Examples

Pavel Parizek

é: (a - b) V:a &b

d:a|b J:(a | n)&(!n| b)
d:a&b&lc Y:true

d:la>b J: false
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Equisatisfiability
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Equisatisfiability

* Tseitin’s encoding

= Widely used algorithm for transforming a given
propositional formula ¢ into an equisatisfiable
formula ¢’ in CNF with linear growth only

® Practice: various optimizations applied
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SAT solving
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SAT solving

* Goal

= Decide whether a given propositional formula ¢
in CNF is satisfiable

® Possible answers
= Satisfiable + assignment (values, model)
= Unsatisfiable + core (subset of clauses)

* Satisfiable formula ¢ €= there exists a partial
assignment satisfying all clauses in ¢
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SAT solving

® Naive brute force solution

= Trying all possible assignments
* Systematic traversal of a binary tree

® DPLL (Davis-Putnam-Loveland-Logemann)

= Motivation: partial assignment can imply values of
other variables in the given formula

= Example: from (la | b),v={a—>1}weget{b—>1}
= Approach: iterative deduction
°* Inferring value of a particular variable

= Basic algorithm used in modern SAT solvers (with many
additional optimizations) = DPLL-based SAT solving
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SAT solving: optimizations

°* Adding learned clauses (implied)
* Non-chronological backtracking
* Choice of the branching variable

= Various heuristics on the best choice exist

® Restarts

= When it takes too long, restart the solver and use
other “seeds” for heuristic functions
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SAT solving

® Problem size: 10K — 1M variables
= Typical input formulas have structure

* Worse for random instances
* Hard instances exist (of course)

* Tools are getting better all the time
= Reason: industry demand, annual competitions
= http://www.satcompetition.org/

®* QOther approaches

= Stochastic search (random walk)
® Quickly finds solution for satisfiable instances

= Qrdered binary decision diagrams
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Propositional logic: semantic X proof

* Semantic domain E

= Goal: find satisfying assignment for ¢

°* We knowthat: Ep < ¢

®* Proof domain
= Goal: derive the proof
= axioms, inference rules
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Resolution
e — N

® |nput: CNF formula ¢ (a set of clauses)
®* Goal: derive empty clause (false)

® |terative process

" Choose two suitable clauses from the set
* Requirement: they must have complementary literals r, !r

= Apply resolution step on these clauses
(PL| .. pN[r), (a1 |..[aN|!r)=>(p1l]..|pN|qgl]..[|QqN)
= Add the newly derived clause into the set

= Repeat until we derive false (or fail/stop)
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Resolution

* Equivalent statements
1) CNF formula ¢ is unsatisfiable

2) We can derive empty clause using resolution on
the clauses from ¢

®* Resolution used in practice
= Checking validity of a first-order logic formula

= Proof-by-contradiction
* Add negation of the conjecture into the set
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SAT solving and propositional logic

* SAT looks very good, but we need more

= For program verification, full theorem proving, ...

* First-order logic (predicate logic)
* Interesting theories

= Linear integer arithmetic (N, Z)
= Data structures (arrays, bit vectors)
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Decision procedure

Pavel Parizek Deductive Methods, Bounded Model Checking 21



Decision procedure

* Algorithm that
= Always terminates
= Qutputs: YES/NO

* Decision procedure for a particular theory T

= Always terminates and provides a correct answer
for every formula of T

= Goal: checking validity of logic formulas
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Interesting theories

® Equality logic
= With uninterpreted functions

® Linear arithmetic
= |nteger
= Rational

* Difference logic
® Arrays
® Bit vectors
® Strings
" including regular expressions

Pavel Parizek Deductive Methods, Bounded Model Checking 23



Equality logic

® Syntax
= Atomic formulas
term = term | true | false
= Terms
variable | constant

* Deciding validity of an equality logic formula is
NP-complete problem

* Polynomial algorithm exists for the conjunctive
fragment (uses only & and 3)
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Equality logic with uninterpreted functions

* Syntax
= Atomic formulas
term = term | predicate(term, ..., term) | true | false
= Terms
variable | constant | function(term, ..., term)

® Semantics

= No implicit meaning of functions and predicates
" gl=b1&..&aN=bN - f(al,...,aN) = f(b1,...,bN)

* Decision procedure
= Transform into an equisatisfiable formula in equality logic
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Equality logic with uninterpreted functions

® Purpose: abstraction
" Full formula = function semantics defined using axioms
= Uninterpreted symbols =2 just equality between arguments

m I:d)EUF 9 |=¢
* False answers possible

= Example: add(1,2) !=add(2,1) in EUF

® Formula with UF easier to decide than the “full” formula
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Linear arithmetic

® Syntax
= Atomic formulas
term = term | term < term | term < term | true | false
= Terms
variable | constant | constant variable | term + term

° Example: (3x+2y<5z) & (2x—2y =0)
* Arithmetic without multiplication = Presburger arithmetic

* Decision procedure
= General case (full theory): 22°"

= Conjunctive fragment over Q
® Linear programming: Simplex method (EXP), Ellipsoid method (P)

= Conjunctive fragment over Z
* Integer linear programming (NP-complete)
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Difference logic

® Syntax
= Atomic formulas
variable — variable < constant |
variable — variable < constant |
true | false
= QOperators: |, &, &, &

° Example: (x—y<3)&(y—-2z<-4)&(z—x<1)

® Decision procedure
= Conjunctive fragment polynomial for Qand Z
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Data structures

* Array theory
= Function symbols
select(a,i) // read, ali]
store(a,i,e) //update, a[i] =e
= Axiom read-over-write
select(store(a,i,e),i) = e

® Bit vectors
= Motivation: precise computer arithmetic (overflows, ...)
= Reasoning about individual bits in a finite vector (array)
= Syntax: operators bitwise-AND, bitwise-OR, bitwise-XOR
= Decision procedure

* Typically flattened into a large instance of SAT
* Many clever optimizations (encoding)
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Strings and regular expressions

* Reasoning about word equations
= Example:a-u=b-v

* Supported operations
= substring (membership)
= concatenation (u - v)
= queries about length
= basic regular operators (+, *)

®* Tools: Norn, Z3-str, S3, Sloth
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Combining theories

°* Goal
= Formulas that combine multiple theories

= Example: linear arithmetic + arrays

* Decision procedures

= Combined under specific constraints

* Nelson-Oppen method
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Decision procedures: summary

* Decision procedures

= Typically work for conjunctive fragments of the
respective theories

® But we still need more

= Formulas with arbitrary boolean structure and
interesting theories (linear arithmetic, arrays)
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Satisfiability Modulo Theory (SMT)
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Satisfiability Modulo Theory (SMT)

* Goal

= Decide satisfiability of a quantifier-free formula
that involves constructs of specific theories

®* |dea

= Using combination of a SAT solver and a decision
procedure (DP) for a conjunctive fragment of the
respective theory
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Approaches to SMT

* Naive use of a SAT solver
1. Extract boolean skeleton of the given formula ¢

2. Run the SAT solver on the boolean skeleton
a) unsatisfiable = the input formula is unsatisfiable
b) satisfiable =» we get a satisfying assignment v
3. Run the DP on the formula derived from the
satisfying assignment v
a) satisfiable =» the input formula is satisfiable

b) unsatisfiable = add the blocking clause for v to the
boolean skeleton and continue with the step 2
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Approaches to SMT

® DPLL(T)-based SMT solving

= Eagerness: DPLL asks DP for partial assignments
during traversal

* Benefit: earlier conflict discovery

= Updating the set of clauses given to DP on-the-fly
* jteration (add), backtracking (remove)

= Theory-based learning
* DP can identify clauses valid/invalid in the given theory T
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SMT solving in practice

®* Available SMT solvers
= 73, CVC4, Yices, MathSAT 5, OpenSMT, ...

® SMT-LIB v2
= Defines common input format
= Big library of SMT problems
= https://smtlib.cs.uiowa.edu/

* SMT-COMP

= Competition of SMT solvers
" https://smt-comp.github.io/2022/

Pavel Parizek Deductive Methods, Bounded Model Checking 37


https://smtlib.cs.uiowa.edu/
https://smt-comp.github.io/2022/

SMT solving in practice

® Current state
= Good performance
= Highly automated
= Many applications

°* Drawbacks
= Restricted to specific theories and domains (Q, Z)
= Very limited support for quantifiers (mostly 3)
= Much less powerful than full theorem proving
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Theorem proving

°* |nput
= Theory T: set of axioms
= General formula ¢ in predicate logic

® Goal

= Decide validity of the formula ¢ in T
* Semantic domain: show unsatisfiable negation
®* Proof domain: prove ¢ from the axioms of T

* \Very powerful

®* |nteractive
= Partially automated

® Tools: PVS, Isabelle/HOL
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Deductive methods: closing remarks

* Approaches
= DPLL-based SAT solving
= Decision procedures
= DPLL(T)-based SMT solving

* Formulas
" Propositional logic (boolean)

= Predicate logic with theories
® Equality with uninterpreted functions
® Linear arithmetic (difference logic)
® Data structures (arrays, bit vectors)

* Applications in program verification
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Bounded model checking
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Bounded model checking

®* Goal: Exploring traces with bounded length
= Options: fixed integer value K, iteratively increasing
= Still remember preemption bounding for threads ?

®* Approach

" Encoding bounded program state space and properties
into a logic formula ¢

= Find property violations by checking satisfiability of ¢

®* Challenge
" Encoding program behavior into the formula ¢
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Program state space

® Program P = (S, T, INIT)

= Sis aset of program states
* Predicates about values of program variables
® Program counter (PC)

= INIT € S is a set of initial states
= TC SxSisatransition relation

* Single transition
= Updates program counter and some variables
= Relating old and new values (x, x, pc, pc’)
= Example:x=2,x=x+1,pc=5,pc’ =pc+1
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Transition relation

(pc=1) A (X' =x+2y) A(pc’ =pc+1)
Vv

(pc=2) A (X =0) A (pc’ =pc+6)
Vv

Vv
(bc=N)A (X' =x-y+5)A(pc’ =pc+1)
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Traces with bounded length

® Transition relation unfolded at most K times

= Fresh copies of program variables (x, x/, ..., xX)) used for each
unfolding of the transition relation

°* Example
= INIT:x=0,pc=1
= T(K): (
((pc=1)A (X =x+2y)A(pc’ =pc+ 1))V
((pC(K'l) = ]_) A\ (X(K) = x(K-1) 4 Zy(K'l)) A (pC(K) = pc(K'l) + 1)) V
)

® Specific consequences
= Bounded number of loop iterations (unrolling)
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Encoding program behavior in logic

° Large formula

INIT(50) A ( Nico.icr T(8i, $+1) ) A (Vico.i —0(s) )

* Represents all possible executions of the
program with the length bounded by K
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BMC: verification procedure

1) Derive formula representing the state space
2) Run the SAT/SMT solver on the formula in CNF

3) Interpret verification results

= Satisfying assighment =2 we get a counterexample
with the length < K

= Unsatisfiable formula =2 no property violations in
program executions of the length < K
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BMC: technical challenges

® Encoding program in a mainstream language into
a logic formula

= heap, allocation, pointers, threads, synchronization

®* Example: dynamic heap
= Use predicate logic with array theory (select, store)

= Array element access a[i]
® Separate variables for the element a [i] and the index i

= Pointer access (*p)
* Separate variables for dereference *p and the pointer p

" Transitions defined properly
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Further reading

* D. Kroening and O. Strichman. Decision
Procedures: An Algorithmic Point of View.
Springer, 2008.

* A. Biere, A. Cimatti, E. Clarke, O. Strichman,
and Y. Zhu. Bounded Model Checking.
Advanced in Computers, 58, 2003
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