Program Analysis and
Code Verification

http://d3s.mff.cuni.cz

Ditibutad and Pavel Parizek

Dependable

’ © AND PHYSICS
> S JD Charles University

Software bugs and errors

®* Race condition

°* Deadlock

* Null pointer dereference
* Array index out of bounds

* Firefox crashes
®* Blue screen of death

®* Train accident

Pavel Parizek Program Analysis and Code Verification 2

Why bugs matter ?

* Mission- and safety-critical systems
= |ndustry: robots, assembly lines

= Transportation: cars, trains, airplanes

°* Embedded systems

= Mobile phones, tablets, household appliances,
consumer electronics

Pavel Parizek Program Analysis and Code Verification 3

Detecting bugs

* Software testing is not enough
= Pros: scalable, precise, well-established (industry)

= Cons: very expensive (people, money), selected
executions, bugs depend on thread interleaving

®* Program verification
= Pros: coverage, multi-threaded programs
= Cons: precision, scalability, performance

Pavel Parizek Program Analysis and Code Verification 4

Tools

Pavel Parizek

Java Pathfinder (https://github.com/javapathfinder/jpf-core/wiki/)

= exhaustive state space traversal of Java

CHESS (https://www.microsoft.com/en-us/research/project/chess-find-and-reproduce-heisenbugs-
in-concurrent-programs/)

= systematic testing of multi-threaded programs in C#

SLAM/SDV (https://www.microsoft.com/en-us/research/project/slam/)
= software model checking for Windows device drivers

KLEE (http://klee.github.io/)

= symbolic execution for low-level C programs (e.g., Linux binutils)

CBMC (http://www.cprover.org/cbmc/)
" bounded model checking for system programs in C and C++

Code Contracts (https://www.microsoft.com/en-us/research/project/code-contracts/)
= behavior specification language for C# + abstract interpretation

Dafny (https://dafny.org/, https://github.com/dafny-lang/dafny)

= programming language with built-in support for verification (based on Spec#)

Soot, WALA and LLVM (https://sable.github.io/soot/, https://wala.github.io/, http://llvm.org/)

= static analysis frameworks/libraries for Java and C/C++

Infer (http://fbinfer.com/)

= static analysis and bug-finding tool for Java, C/C++ and Objective-C

Program Analysis and Code Verification 5

Goals of the course

* Show algorithms and tools for program
analysis, verification, and bug detection

* Practical experience with selected tools

Pavel Parizek Program Analysis and Code Verification 6

Why you should attend

* Basic knowledge of the main program analysis
and verification techniques

= Key aspects: scalability, coverage, automation, ...

® Current state of the art

= How good or bad the tools are

Pavel Parizek Program Analysis and Code Verification 7

Program

* Model checking of programs

* Detecting concurrency errors

* Symbolic execution

® Dynamic analysis

* Deductive methods (SAT solvers, SMT solvers)
* Bounded model checking

®* Predicate abstraction and CEGAR

* Selected applications of deductive methods in software verification
= Verification of program code against contracts

® Static analysis and its usage in program verification
* Abstract interpretation

°* Combination of verification techniques

® Program termination

®* Program synthesis and repair

Pavel Parizek Program Analysis and Code Verification 8

Theoretical limitations

Pavel Parizek Program Analysis and Code Verification 9

Know your enemy !!

Pavel Parizek Program Analysis and Code Verification 10

Know your enemy !!

Pavel Parizek

3 . L
A N +
[A . ‘
. '.-a
¢ . .{:{\ ;

Kurt Godel
(1906-1978)

Program Analysis and Code Verification

————————————————

— o o o e e e o

MY 174
Alan Turing
(1912-1954)

11

Know your enemy !!

Completeness theorem

TEf > THf
Incompleteness theorem

For “interesting” theories T

Af: (THF)N(TH-f)

————————————————

“Halting problem is undecidable”

F——————=——=—=—=—=—=—=———————

Pavel Parizek Program Analysis and Code Verification 12

What do they really say ?

Completeness theorem (CT)
TEf = THf

Incompleteness theorem (IT)
For “interesting” theories T

Af: (THF)N(TH-f)

1) Let’s take ffrom IT

2) Any f either holds or not:
Claim: (TEf)V(TE-f)

The completeness and
incompleteness theorems
contradict.

3) From CT follows:
(TEf)V(TE-f)

4) Contradiction

Pavel Parizek Program Analysis and Code Verification 13

What do they really say ?

Completeness theorem (CT)
TEf = THf

Incompleteness theorem (IT)
For “interesting” theories T

Af: (THF)N(TH-f)

TEf

Tllz aJIcI TOLES B & Ik 1) Let’s take ffrom IT

in all models of T, f doesn’t 2) An ither h or not:
hold (TE =f)
THEfATH-f

there is a model of T 3) From CT follows:
(TEf)V(THF-f)

where fholds and a model
where f doesn’t hold 4) Contradiction

Pavel Parizek Program Analysis and Code Verification 14

What do they really say ?

Completeness theorem

TEf > THf
Incompleteness theorem

For “interesting” theories T

Af: (THF)N(TH-f)

Pavel Parizek Program Analysis and Code Verification 15

What do they really say ?

————————————————

“Halting problem is undecidable”

Claim:

Given a program A and input data D, you
can never decide whether A(D) terminates
or not.

F——————=——=—=—=—=—=—=———————

Pavel Parizek Program Analysis and Code Verification 16

What do they really say ?

“Halting problem is undecidable”

can never deci er A(D) terminates

————————————————

F——————=——=—=—=—=—=—=———————

Sometimes you can. Consider:

void main() {
printf(“Going to halt right away!\n”);

Pavel Parizek Program Analysis and Code Verification

17

What do they really say ?

————————————————

“Halting problem is undecidable”

Claim:

You can never construct a general
algorithm that would for any program A
and any input data D always answer YES if
A(D) terminates.

F——————=——=—=—=—=—=—=———————

Pavel Parizek Program Analysis and Code Verification 18

What do they really say ?

————————————————

“Halting problem is undecidable”

ever construct a general
algorithm th program A

and any i s answer YES if
terminates.

F——————=——=—=—=—=—=—=———————

Yes, you can (but it may not terminate). Consider:

void main(program A, data D) {
... Simulate A(D) ...
printf(“YES”);

)

Pavel Parizek Program Analysis and Code Verification 19

What do they really say ?

“Halting problem is undecidable”

Claim:

There is no general algorithm that would
always terminate and solve the halting
problem for all programs and all inputs.

Pavel Parizek Program Analysis and Code Verification 20

Consequences

® Program verification (analysis) is undecidable

= Example: assertion checking for multi-threaded
programs with procedures

® But, in practice, ...

= Many interesting properties can be successfully
verified for many interesting programs

Pavel Parizek Program Analysis and Code Verification 21

Consequences

° [t may take very long
= Qut of reach of current hardware and user patience
= More than the expected age of the known universe
= Definitely past the hard deadline of your project

° But there is still hope
= Full verification is not always necessary
= Search for errors (detect some bugs)

Pavel Parizek Program Analysis and Code Verification 22

Grading

* Five homeworks
= Each will be awarded with 0-20 points
= No. 5: presenting research publication

* Final exam (voluntary)
= Awarded with 0-25 points
= Basic principles (algorithms, theory)
= Comparing different techniques

® Result
= 85-125 - excellent
= 72-84 - very good
= 60-71 - good

Pavel Parizek Program Analysis and Code Verification

23

Homework assignments

® Deadlines are strict

= We will deduct 10% of your points total for every calendar day
your assignment is late

® You have to do homework no. 5 (presentation) and two
other to get “zapocet”

* Topics
= Java Pathfinder
* Implement custom modules and verify given program

Contracts languages (Dafny, ...)
* Write specification for given program and then verify it

= Static analysis

= Finding real bugs

= Presentation of research publication
* Group homework (2-3 people)

Pavel Parizek Program Analysis and Code Verification 24

