Deductive Methods,
Bounded Model Checking

Pavel Parizek

http://d3s.mff.cuni.cz

Department of
Distributed and
Dependable

o2k FACULTY
= OF MATHEMATICS

= AND PHYSICS
Charles University

Deductive methods

Pavel Parizek Deductive Methods, Bounded Model Checking 2

If you want to know more ...

* Decision Procedures and Verification (NAILO94)

= Lecturer: Petr Kucera, KTIML

°* D. Kroening and O. Strichman. Decision
Procedures: An Algorithmic Point of View.
Springer, 2008.

Pavel Parizek Deductive Methods, Bounded Model Checking 3

Basic terminology (reminder)

® |Logic formula
= syntax, semantics

®* Propositional logic

* First-order logic
= Predicates
= Quantifiers

® Assignment
= Partial assighment

* Satisfiability
* Validity (tautology)

Pavel Parizek Deductive Methods, Bounded Model Checking 4

Relation between satisfiability and validity

¢ isvalid — @ Is satisfilable
¢ is valid < lo Is unsatisfiable

¢ is satisflable <« ! I1s not valid

Pavel Parizek Deductive Methods, Bounded Model Checking 5

Normal forms

* Negation normal form (NNF)
= syntax: !, |, & and variables

= Negation only for variables
= Example: (a | (b & !c)) & (!d)

® Conjunctive normal form (CNF)

= NNF as a conjunction of disjunctions
= Example:(a | b | Ic) & (Id) & (e | !f)

* Disjunctive normal form (DNF)

= NNF as a disjunction of conjunctions
= Example: (a & b & Ic) | (!d) | (e & !f)

Pavel Parizek Deductive Methods, Bounded Model Checking 6

Getting the normal forms

°* De Morgan’s law
* Distributive law

Pavel Parizek Deductive Methods, Bounded Model Checking 7

Getting the normal forms

°* Transformation into an equivalent formula in
CNF or DNF

°* Problem: exponential blow-up of the size

°* Remedy: creating equisatisfiable formula

Pavel Parizek Deductive Methods, Bounded Model Checking

Equisatisfiability

* Equisatisfiable formulas ¢,

= both satisfiable or both unsatisfiable

°* Examples

Pavel Parizek

é: (a - b) V:a &b

d:a|b J:(a | n)&(!n| b)
d:a&b&lc Y:true

d:la>b J: false

Deductive Methods, Bounded Model Checking

27
27

27

Equisatisfiability

* Equisatisfiable formulas ¢,

= both satisfiable or both unsatisfiable

°* Examples

Pavel Parizek

é: (a - b) V:a &b

d:a|b J:(a | n)&(!n| b)
d:a&b&lc Y:true

d:la>b J: false

Deductive Methods, Bounded Model Checking

EQ, ES
ES
ES

10

Equisatisfiability

* Tseitin’s encoding

= Widely used algorithm for transforming a given
propositional formula ¢ into an equisatisfiable
formula ¢’ in CNF with linear growth only

® Practice: various optimizations applied

Pavel Parizek Deductive Methods, Bounded Model Checking 11

SAT solving

Pavel Parizek Deductive Methods, Bounded Model Checking 12

SAT solving

* Goal

= Decide whether a given propositional formula ¢
in CNF is satisfiable

® Possible answers
= Satisfiable + assignment (values, model)
= Unsatisfiable + core (subset of clauses)

* Satisfiable formula ¢ €= there exists a partial
assignment satisfying all clauses in ¢

Pavel Parizek Deductive Methods, Bounded Model Checking 13

SAT solving

® Naive brute force solution

= Trying all possible assignments
* Systematic traversal of a binary tree

® DPLL (Davis-Putnam-Loveland-Logemann)

= Motivation: partial assignment can imply values of
other variables in the given formula

= Example: from (la | b),v={a—>1}weget{b—>1}
= Approach: iterative deduction
°* Inferring value of a particular variable

= Basic algorithm used in modern SAT solvers (with many
additional optimizations) = DPLL-based SAT solving

Pavel Parizek Deductive Methods, Bounded Model Checking 14

SAT solving: optimizations

°* Adding learned clauses (implied)
* Non-chronological backtracking
* Choice of the branching variable

= Various heuristics on the best choice exist

® Restarts

= When it takes too long, restart the solver and use
other “seeds” for heuristic functions

Pavel Parizek Deductive Methods, Bounded Model Checking 15

SAT solving

® Problem size: 10K — 1M variables
= Typical input formulas have structure

* Worse for random instances
* Hard instances exist (of course)

* Tools are getting better all the time
= Reason: industry demand, annual competitions
= http://www.satcompetition.org/

®* QOther approaches

= Stochastic search (random walk)
® Quickly finds solution for satisfiable instances

= Qrdered binary decision diagrams

Pavel Parizek Deductive Methods, Bounded Model Checking 16

http://www.satcompetition.org/

Propositional logic: semantic X proof

* Semantic domain E

= Goal: find satisfying assignment for ¢

°* We knowthat: Ep < ¢

®* Proof domain
= Goal: derive the proof
= axioms, inference rules

Pavel Parizek Deductive Methods, Bounded Model Checking 17

Resolution
e — N

® |nput: CNF formula ¢ (a set of clauses)
®* Goal: derive empty clause (false)

® |terative process

" Choose two suitable clauses from the set
* Requirement: they must have complementary literals r, !r

= Apply resolution step on these clauses
(PL| .. pN[r), (a1 |..[aN|!r)=>(p1l]..|pN|qgl]..[|QqN)
= Add the newly derived clause into the set

= Repeat until we derive false (or fail/stop)

Pavel Parizek Deductive Methods, Bounded Model Checking 18

Resolution

* Equivalent statements
1) CNF formula ¢ is unsatisfiable

2) We can derive empty clause using resolution on
the clauses from ¢

®* Resolution used in practice
= Checking validity of a first-order logic formula

= Proof-by-contradiction
* Add negation of the conjecture into the set

Pavel Parizek Deductive Methods, Bounded Model Checking 19

SAT solving and propositional logic

* SAT looks very good, but we need more

= For program verification, full theorem proving, ...

* First-order logic (predicate logic)
* Interesting theories

= Linear integer arithmetic (N, Z)
= Data structures (arrays, bit vectors)

Pavel Parizek Deductive Methods, Bounded Model Checking 20

Decision procedure

Pavel Parizek Deductive Methods, Bounded Model Checking 21

Decision procedure

* Algorithm that
= Always terminates
= Qutputs: YES/NO

* Decision procedure for a particular theory T

= Always terminates and provides a correct answer
for every formula of T

= Goal: checking validity of logic formulas

Pavel Parizek Deductive Methods, Bounded Model Checking 22

Interesting theories

® Equality logic
= With uninterpreted functions

® Linear arithmetic
= |nteger
= Rational

* Difference logic
® Arrays
® Bit vectors
® Strings
" including regular expressions

Pavel Parizek Deductive Methods, Bounded Model Checking 23

Equality logic

® Syntax
= Atomic formulas
term = term | true | false
= Terms
variable | constant

* Deciding validity of an equality logic formula is
NP-complete problem

* Polynomial algorithm exists for the conjunctive
fragment (uses only & and 3)

Pavel Parizek Deductive Methods, Bounded Model Checking 24

Equality logic with uninterpreted functions

* Syntax
= Atomic formulas
term = term | predicate(term, ..., term) | true | false
= Terms
variable | constant | function(term, ..., term)

® Semantics

= No implicit meaning of functions and predicates
" gl=b1&..&aN=bN - f(al,...,aN) = f(b1,...,bN)

* Decision procedure
= Transform into an equisatisfiable formula in equality logic

Pavel Parizek Deductive Methods, Bounded Model Checking 25

Equality logic with uninterpreted functions

® Purpose: abstraction
" Full formula = function semantics defined using axioms
= Uninterpreted symbols =2 just equality between arguments

m I:d)EUF 9 |=¢
* False answers possible

= Example: add(1,2) !=add(2,1) in EUF

® Formula with UF easier to decide than the “full” formula

Pavel Parizek Deductive Methods, Bounded Model Checking 26

Linear arithmetic

® Syntax
= Atomic formulas
term = term | term < term | term < term | true | false
= Terms
variable | constant | constant variable | term + term

° Example: (3x+2y<5z) & (2x—2y =0)
* Arithmetic without multiplication = Presburger arithmetic

* Decision procedure
= General case (full theory): 22°"

= Conjunctive fragment over Q
® Linear programming: Simplex method (EXP), Ellipsoid method (P)

= Conjunctive fragment over Z
* Integer linear programming (NP-complete)

Pavel Parizek Deductive Methods, Bounded Model Checking 27

Difference logic

® Syntax
= Atomic formulas
variable — variable < constant |
variable — variable < constant |
true | false
= QOperators: |, &, &, &

° Example: (x—y<3)&(y—-2z<-4)&(z—x<1)

® Decision procedure
= Conjunctive fragment polynomial for Qand Z

Pavel Parizek Deductive Methods, Bounded Model Checking 28

Data structures

* Array theory
= Function symbols
select(a,i) // read, ali]
store(a,i,e) //update, a[i] =e
= Axiom read-over-write
select(store(a,i,e),i) = e

® Bit vectors
= Motivation: precise computer arithmetic (overflows, ...)
= Reasoning about individual bits in a finite vector (array)
= Syntax: operators bitwise-AND, bitwise-OR, bitwise-XOR
= Decision procedure

* Typically flattened into a large instance of SAT
* Many clever optimizations (encoding)

Pavel Parizek Deductive Methods, Bounded Model Checking

29

Strings and regular expressions

* Reasoning about word equations
= Example:a-u=b-v

* Supported operations
= substring (membership)
= concatenation (u - v)
= queries about length
= basic regular operators (+, *)

®* Tools: Norn, Z3-str, S3, Sloth

Pavel Parizek Deductive Methods, Bounded Model Checking 30

Combining theories

°* Goal
= Formulas that combine multiple theories

= Example: linear arithmetic + arrays

* Decision procedures

= Combined under specific constraints

* Nelson-Oppen method

Pavel Parizek Deductive Methods, Bounded Model Checking 31

Decision procedures: summary

* Decision procedures

= Typically work for conjunctive fragments of the
respective theories

® But we still need more

= Formulas with arbitrary boolean structure and
interesting theories (linear arithmetic, arrays)

Pavel Parizek Deductive Methods, Bounded Model Checking 32

Satisfiability Modulo Theory (SMT)

Pavel Parizek Deductive Methods, Bounded Model Checking 33

Satisfiability Modulo Theory (SMT)

* Goal

= Decide satisfiability of a quantifier-free formula
that involves constructs of specific theories

®* |dea

= Using combination of a SAT solver and a decision
procedure (DP) for a conjunctive fragment of the
respective theory

Pavel Parizek Deductive Methods, Bounded Model Checking 34

Approaches to SMT

* Naive use of a SAT solver
1. Extract boolean skeleton of the given formula ¢

2. Run the SAT solver on the boolean skeleton
a) unsatisfiable = the input formula is unsatisfiable
b) satisfiable =» we get a satisfying assignment v
3. Run the DP on the formula derived from the
satisfying assignment v
a) satisfiable =» the input formula is satisfiable

b) unsatisfiable = add the blocking clause for v to the
boolean skeleton and continue with the step 2

Pavel Parizek Deductive Methods, Bounded Model Checking 35

Approaches to SMT

® DPLL(T)-based SMT solving

= Eagerness: DPLL asks DP for partial assignments
during traversal

* Benefit: earlier conflict discovery

= Updating the set of clauses given to DP on-the-fly
* jteration (add), backtracking (remove)

= Theory-based learning
* DP can identify clauses valid/invalid in the given theory T

Pavel Parizek Deductive Methods, Bounded Model Checking 36

SMT solving in practice

®* Available SMT solvers
= 73, CVC4, Yices, MathSAT 5, OpenSMT, ...

® SMT-LIB v2
= Defines common input format
= Big library of SMT problems
= https://smtlib.cs.uiowa.edu/

* SMT-COMP

= Competition of SMT solvers
" https://smt-comp.github.io/2022/

Pavel Parizek Deductive Methods, Bounded Model Checking 37

https://smtlib.cs.uiowa.edu/
https://smt-comp.github.io/2022/

SMT solving in practice

® Current state
= Good performance
= Highly automated
= Many applications

°* Drawbacks
= Restricted to specific theories and domains (Q, Z)
= Very limited support for quantifiers (mostly 3)
= Much less powerful than full theorem proving

Pavel Parizek Deductive Methods, Bounded Model Checking 38

Theorem proving

°* |nput
= Theory T: set of axioms
= General formula ¢ in predicate logic

® Goal

= Decide validity of the formula ¢ in T
* Semantic domain: show unsatisfiable negation
®* Proof domain: prove ¢ from the axioms of T

* \Very powerful

®* |nteractive
= Partially automated

® Tools: PVS, Isabelle/HOL

Pavel Parizek Deductive Methods, Bounded Model Checking 39

Deductive methods: closing remarks

* Approaches
= DPLL-based SAT solving
= Decision procedures
= DPLL(T)-based SMT solving

* Formulas
" Propositional logic (boolean)

= Predicate logic with theories
® Equality with uninterpreted functions
® Linear arithmetic (difference logic)
® Data structures (arrays, bit vectors)

* Applications in program verification

Pavel Parizek Deductive Methods, Bounded Model Checking 40

Bounded model checking

Pavel Parizek Deductive Methods, Bounded Model Checking 41

Bounded model checking

®* Goal: Exploring traces with bounded length
= Options: fixed integer value K, iteratively increasing
= Still remember preemption bounding for threads ?

®* Approach

" Encoding bounded program state space and properties
into a logic formula ¢

= Find property violations by checking satisfiability of ¢

®* Challenge
" Encoding program behavior into the formula ¢

Pavel Parizek Deductive Methods, Bounded Model Checking 42

Program state space

® Program P = (S, T, INIT)

= Sis aset of program states
* Predicates about values of program variables
® Program counter (PC)

= INIT € S is a set of initial states
= TC SxSisatransition relation

* Single transition
= Updates program counter and some variables
= Relating old and new values (x, x, pc, pc’)
= Example:x=2,x=x+1,pc=5,pc’ =pc+1

Pavel Parizek Deductive Methods, Bounded Model Checking 43

Transition relation

(pc=1) A (X' =x+2y) A(pc’ =pc+1)
Vv

(pc=2) A (X =0) A (pc’ =pc+6)
Vv

Vv
(bc=N)A (X' =x-y+5)A(pc’ =pc+1)

Pavel Parizek Deductive Methods, Bounded Model Checking 44

Traces with bounded length

® Transition relation unfolded at most K times

= Fresh copies of program variables (x, x/, ..., xX)) used for each
unfolding of the transition relation

°* Example
= INIT:x=0,pc=1
= T(K): (
((pc=1)A (X =x+2y)A(pc’ =pc+ 1))V
((pC(K'l) =]_) A\ (X(K) = x(K-1) 4 Zy(K'l)) A (pC(K) = pc(K'l) + 1)) V
)

® Specific consequences
= Bounded number of loop iterations (unrolling)

Pavel Parizek Deductive Methods, Bounded Model Checking 45

Encoding program behavior in logic

° Large formula

INIT(50) A (Nico.icr T(8i, $+1)) A (Vico.i —0(s))

* Represents all possible executions of the
program with the length bounded by K

Pavel Parizek Deductive Methods, Bounded Model Checking 46

BMC: verification procedure

1) Derive formula representing the state space
2) Run the SAT/SMT solver on the formula in CNF

3) Interpret verification results

= Satisfying assighment =2 we get a counterexample
with the length < K

= Unsatisfiable formula =2 no property violations in
program executions of the length < K

Pavel Parizek Deductive Methods, Bounded Model Checking 47

BMC: technical challenges

® Encoding program in a mainstream language into
a logic formula

= heap, allocation, pointers, threads, synchronization

®* Example: dynamic heap
= Use predicate logic with array theory (select, store)

= Array element access a[i]
® Separate variables for the element a [i] and the index i

= Pointer access (*p)
* Separate variables for dereference *p and the pointer p

" Transitions defined properly

Pavel Parizek Deductive Methods, Bounded Model Checking 48

Further reading

* D. Kroening and O. Strichman. Decision
Procedures: An Algorithmic Point of View.
Springer, 2008.

* A. Biere, A. Cimatti, E. Clarke, O. Strichman,
and Y. Zhu. Bounded Model Checking.
Advanced in Computers, 58, 2003

Pavel Parizek Deductive Methods, Bounded Model Checking 49

