Model Checking
Programs

http://d3s.mff.cuni.cz

=Depasntet s Pavel Parizek

Dependable

FACULTY
OF MATHEMATICS

AND PHYSICS
Charles University




Model checking

Structure M Formula f

LTL:p = Fq

Verification task: M, s |=f ?

Pavel Parizek Model Checking Programs 2



Model checking SW and HW

* Goals

= Systematic exploration of all possible behaviors
* Example: all possible interleavings of concurrent threads

= Checking required properties in each state (path)

* Model

= Source code (binary) =2 program state space
®* Property

= assertion, deadlock freedom, no data races, ...

Pavel Parizek Model Checking Programs 3



Program state space

* Directed graph
= States

= Transitions

Pavel Parizek Model Checking Programs 4



States

® Local state of each thread
= Program counter (PC)
= Call stack (parameters, local variables, operands)

* Global state shared between multiple threads
= Heap objects (field values) and pointers
= Status of each thread (runnable, waiting, ...)
= Thread synchronization primitives (locks)

Pavel Parizek Model Checking Programs 5



Transitions

® Statements (instructions)
= Updating states (PC, variables)

Pavel Parizek Model Checking Programs 6



Program state space

* Directed graph
= States

= Transitions

Pavel Parizek Model Checking Programs 7



Program state space

* Directed graph
= States
= Transitions
= Choices

Pavel Parizek Model Checking Programs 8



Choices

® Thread scheduling

® Data

= Unknown inputs

Pavel Parizek Model Checking Programs 9



Program state space

® States
® Transitions PC: 3, 0
® Choices PC = PC+1, j++

PC:4,i1:1

PC = PC+1, i = choose-int(2,3)

/
PC:5,i: 2 ‘ PC:5,i: 3

Pavel Parizek Model Checking Programs 10



Example: producer — consumer

public Producer extends Thread {
void run () {
while (true) {
buf.add (++1) ;

}

}

public Consumer extends Thread {
void run () {
while (true) {
i = buf.get(0);
print (i) ;

}

}

public static List buf;

(new Producer (var)) .start();
(new Consumer (var)) .start () ;

Pavel Parizek

P: start

P:i++ C: start
P: buf.add(i)
P:i++ _
P: buf.add(i) C: start
P:i++ _
P: buf.add(i) C: i =buf.get(0)

Model Checking Programs 11



Terminology

®* Reachable state space

all states

= From the initial program state

reachable
state space

® Error state @

* Safety

" Error state is not reachable

Pavel Parizek Model Checking Programs 12



Properties

® Categories
= State
= Path

Pavel Parizek Model Checking Programs 13



Properties

Properties Category

no deadlock ---------——______ state
assertion ----“"'—______—_—_ ____ path

LTL formula —“""—_—_ _________ multiple paths
datarace -----"77

Pavel Parizek Model Checking Programs 14



State space traversal

Pavel Parizek Model Checking Programs 15



State space traversal

* Explicit traversal of the concrete state space

* SAT-based traversal of symbolic state space

Pavel Parizek Model Checking Programs 16



Explicit state space traversal

°* DFS: depth-first search

= From the node corresponding to the initial state

* Properties checked in each state

= Error state reached =» counterexample

°* Counterexample (error trace)

= Path in the state space that violates given property

Pavel Parizek Model Checking Programs 17



Explicit state space traversal with DFS

INIT DFS (s)
visited : = {s0} for each t in enabled(s) do
push (stack, s0) s’ = t(s)
DFS (s0) 1f not P(s’) then
end INIT counterexample := stack
exit
1f s’ not in visited then
visited := visited + {s’}
push (stack, s’)
DEFS (s’)
pop (stack)
end for
end DFS ()

Pavel Parizek Model Checking Programs 18



Explicit state space traversal with DFS

INIT DFS (s)
visited : = {s0} for each t in enabled(s) do
push (stack, sO0) s’ := t(s)
DFS (s0) 1f not P(s’) then
end INIT counterexample := stack
exit
1f s’ not in visited then
visited := visited + {s’}
push (stack, s’)
DEFS (s’)
pop (stack)
end for
end DFS ()

Pavel Parizek Model Checking Programs 19



Explicit state space traversal with DFS

INIT DFS (s)
visited : = {s0} for each t in enabled(s) do
push (stack, s0) s’ := t(s)
DFS (s0) //// 1f not P(s’) then
end INIT / counterexample := stack
A// exit

if s’ not 1in visited then

visited := visited + {s’}
push (stack, s’)
DEFS (s’)

Executing pop (stack)

transitions end for

end DFS ()

Pavel Parizek Model Checking Programs 20



Explicit state space traversal with DFS

INIT DFS (s)
visited : = {s0} for each t in enabled(s) do
push (stack, s0) s’ = t(s)
DES (s0) if not P(s’) then
end INIT counterexample := stack
/ exit

if s’ not 1in visited then

visited := visited + {s’}
push (stack, s’)
DEFS (s’)

Evaluating pop (stack)

properties end for

end DFS ()

Pavel Parizek Model Checking Programs 21



Explicit state space traversal with DFS

INIT DFS (s)
visited : = {s0} for each t in enabled(s) do
push (stack, s0) s’ = t(s)
DFS (s0) 1f not P(s’) then
end INIT counterexample := stack
exit

if s’ not in wvisited then

////* visited := visited + {s’}
push (stack, s’)

DFS (s’)
pop (stack)

_ end for
State matching end DFS ()

Pavel Parizek Model Checking Programs 22



State space traversal with DFS — example

Random rnd = new Random() ;
int 1 = 2;
int J = 0;
int ¢ = rnd.nextInt (3);
if (¢ == 1)
Jt++; =
else if (c == 2) { c=£
J = 1;
c = 1;
} i=2
c=1
int k =1 / 3;

Stack: 1,2,6 'C
Visited states: {1,2,3,4,5,6} K

Pavel Parizek Model Checking Programs 23



State space traversal with DFS — example

Random rnd = new Random() ;
int 1 = 2;
int J = 0;
int ¢ = rnd.nextInt (3);
if (¢ == 1)
Jt++;
else if (c == 2) {
) =17
c = 1;
}
intk=1i/ j;

Stack: 1,2,7
Visited states: {1,2,3,4,5,6,7}

Pavel Parizek

division by zero!

Model Checking Programs 24



Model checking programs: limitations

Pavel Parizek Model Checking Programs 25



Limitations

* Decidability
= For many interesting programs and interesting
properties, model checking is undecidable

= Example: assertion checking
* Undecidable for multi-threaded programs with procedures
* Decidable for single-threaded boolean programs

Pavel Parizek Model Checking Programs 26



Limitations

® Possibly infinite state systems

Q: What can make the state space infinite ?

Pavel Parizek Model Checking Programs 27



Limitations

* Possibly infinite state systems
= Data types with large or infinite domains (int, float)
= Unbounded heap and number of threads
= Unbounded recursion of procedure calls (stack)

°* Remedy: abstraction

Pavel Parizek Model Checking Programs 28



Limitations

* State explosion
= 3 non-trivial program has too many states

= the state space contains too many choices

* State space size exponential with respect to
" Number of threads
= Size of data domains

Pavel Parizek Model Checking Programs 29



State explosion

* High number of concurrent program threads
°* Many instructions executed by each thread

Processes Interleavings
R OR R ly -
. N ' RN
. ] § - > ¥ )
R B R B
Atomic =k B - IT_(nD
Instructions ™ ll ﬂg Ny e _
e Eni

Pavel Parizek Model Checking Programs 30



State explosion

®* Consequences
= Exploring too many choices, states, and transitions
= Storing too many states in memory

=>» model checker runs out of memory and time

°* Model checking of large and complex programs
is not practically feasible

= .. but many research teams are working on this

Pavel Parizek Model Checking Programs 31



State explosion

Q: So what can we do with state explosion ?

Pavel Parizek Model Checking Programs 32



Partial order reduction

°* Most transitions perform operations local to
a given thread

= Examples: arithmetic over stack operands (in
Java), updating local variables

* Global operations (statements)
= Field access on a shared heap object
= Thread synchronization (lock, wait)

Pavel Parizek Model Checking Programs 33



Partial order reduction

°* Independent transitions
= Performing only thread-local statements
= All their interleavings give the same result

Pavel Parizek Model Checking Programs 34



Partial order reduction

°* Independent transitions
= Commutative = any ordering is valid
= Execution of one does not disable others

* All the possible interleavings of independent
transitions from a given state are equivalent

Pavel Parizek Model Checking Programs 35



Partial order reduction

® Practical approach

= Scheduling choices only at statements that represent
communication among threads (conflicts)

® Communication statement
= may have effects visible to other concurrent threads
= may depend on other threads by reading shared data

* Why thread choice
= |Let other threads react or modify shared data

Pavel Parizek Model Checking Programs 36



Addressing state explosion

°* Symmetry reductions
® Heuristics

Pavel Parizek Model Checking Programs 37



Symmetry reductions

® Two states: s1, s2
= State matching: s1 =52

" Program execution: s1 ==5s2
* Goal: avoid repeated processing of such states

°* Approach
= Divide state space into equivalence classes
= Explore only canonical representation

Pavel Parizek Model Checking Programs 38



Symmetry reductions

* Class loading order
°* Heap addresses

® Partial order reduction

Pavel Parizek Model Checking Programs 39



Class loading symmetry

® Program execution

= Actual position of class data in the static area does
not influence observable behavior

* Model checkers
= |Internal representation of program states
= Class loading order matters in some cases

® Solution

= Canonical representation of the static area
* Fixed order of class loading over all state space paths

Pavel Parizek Model Checking Programs 40



Heap symmetry

® Program execution

= Exact address of a heap object does not influence
observable behavior

* Model checkers
= |Internal representation of program states
= Heap shape and layout matters in some cases

* Solution: heap canonicalization
= Canonical addresses of heap objects
= |ssues: garbage collection, deallocation

Pavel Parizek Model Checking Programs 41



Heuristics

° Motto

= “find an error before the model checker runs out
of memory and time (resources)”

= Better testing: find many errors in reasonable time

°* Approach

= Focus on state space fragments with errors
®* Guide model checker towards possible error states
* |dentify and drop error-free parts of the state space

Pavel Parizek Model Checking Programs 42



State space traversal with heuristics

“standard” DFS BeFS + heuristics
INIT INIT
visited := {s0} visited := {s0}
push (stack, s0) push (stack, s0)
DES (s0) BeFS (s0)
end INIT end INIT
DFS (s) BeFS (s)
workSet := enabled(s) workList := order (enabled(s), h)
for each t in workSet do for each t in workList do
s’ = t(s) s’ = t(s)
if not P(s’) then if not P(s’) then
counterexample := stack counterexample := stack
exit exit
if s’ not in visited then if s’ not in visited then
visited := visited + {s’} visited := visited + {s’}
push (stack, s’) push (stack, s’)
DES (s') BeFS (s')
pop (stack) pop (stack)
end for end for
end DFS () end BeFS ()

Pavel Parizek Model Checking Programs 43



Heuristic functions
s ® 5 0 5. © s
* Random walk (search)
®* Branch coverage

= Preferring unexplored paths at branching point
°* Maximize thread switching
°® Prioritize selected threads
* Prefer most blocked threads
* ... and many others

Pavel Parizek Model Checking Programs 44



Heuristics functions

°* Problem: may not give the best/correct answer

= Error states usually identified on-the-fly during
state space traversal

®* Consequences
= Dropped state space fragments with errors inside
= Misguided search towards error-free state space

Success not guaranteed !!

Pavel Parizek Model Checking Programs 45



Practical issues

* Relaxed memory models (e.g., IMM for Java)

°* Mapping counterexamples to source code

* Efficient management of program states
= QOperations: storage, state matching, backtracking

= Transitions modify a small part of program state
* Keep only “diffs” from the previous state on the path

= Comparing hash values =» possible collisions

Pavel Parizek Model Checking Programs 46



Further reading

m

* C. Baier, J.-P. Katoen, and K.G. Larsen. Principles of
Model Checking. MIT Press, 2008

°* P. Godefroid. Partial-Order Methods for the
Verification of Concurrent Systems. LNCS 1032, 1996

®* C. Flanagan and P. Godefroid. Dynamic Partial Order
Reduction for Model Checking Software. POPL 2005

* R. losif. Symmetry Reductions for Model Checking of
Concurrent Dynamic Software. STTT, 6(4), 2004

°* A. Groce and W. Visser. Heuristics for Model Checking
Java Programs. STTT, 6(4), 2004

Pavel Parizek Model Checking Programs 47



