
http://d3s.mff.cuni.cz

Deductive Methods, 
Bounded Model Checking

Pavel Parízek



Deductive methods

Pavel Parízek Deductive Methods, Bounded Model Checking 2



If you want to know more ...

Pavel Parízek Deductive Methods, Bounded Model Checking 3

Decision Procedures and Verification (NAIL094)

Lecturer: Petr Kučera, KTIML

D. Kroening and O. Strichman. Decision 
Procedures: An Algorithmic Point of View. 
Springer, 2008.



Basic terminology (reminder)

Pavel Parízek Deductive Methods, Bounded Model Checking 4

Logic formula
syntax, semantics

Propositional logic
First-order logic

Predicates
Quantifiers

Assignment
Partial assignment

Satisfiability
Validity (tautology)



Relation between satisfiability and validity

Pavel Parízek Deductive Methods, Bounded Model Checking 5

φ is valid ↔ !φ is unsatisfiable

φ is satisfiable ↔ !φ is not valid

φ is valid → φ is satisfiable



Normal forms

Pavel Parízek Deductive Methods, Bounded Model Checking 6

Negation normal form (NNF)
syntax: !, |, & and variables
Negation only for variables
Example: (a | (b & !c)) & (!d)

Conjunctive normal form (CNF)
NNF as a conjunction of disjunctions
Example: (a | b | !c) & (!d) & (e | !f)

Disjunctive normal form (DNF)
NNF as a disjunction of conjunctions
Example: (a & b & !c) | (!d) | (e & !f)



Getting the normal forms

Pavel Parízek Deductive Methods, Bounded Model Checking 7

De Morgan’s law

Distributive law



Getting the normal forms

Pavel Parízek Deductive Methods, Bounded Model Checking 8

Transformation into an equivalent formula in 
CNF or DNF

Problem: exponential blow-up of the size

Remedy: creating equisatisfiable formula



Equisatisfiability

Pavel Parízek Deductive Methods, Bounded Model Checking 9

Equisatisfiable formulas φ, ψ

both satisfiable or both unsatisfiable

Examples

φ: !(a → b) ψ: a & !b

φ: a | b ψ: (a | n) & (!n | b)

φ: a & b & !c ψ: true

φ: !a ↔ b ψ: false

??

??

??

??



Equisatisfiability

Pavel Parízek Deductive Methods, Bounded Model Checking 10

Equisatisfiable formulas φ, ψ

both satisfiable or both unsatisfiable

Examples

φ: !(a → b) ψ: a & !b

φ: a | b ψ: (a | n) & (!n | b)

φ: a & b & !c ψ: true

φ: !a ↔ b ψ: false

EQ, ES

ES

ES

–



Equisatisfiability

Pavel Parízek Deductive Methods, Bounded Model Checking 11

Tseitin’s encoding

Widely used algorithm for transforming a given 
propositional formula φ into an equisatisfiable
formula φ’ in CNF with linear growth only

Practice: various optimizations applied



SAT solving

Pavel Parízek Deductive Methods, Bounded Model Checking 12



SAT solving

Pavel Parízek Deductive Methods, Bounded Model Checking 13

Goal
Decide whether a given propositional formula φ
in CNF is satisfiable

Possible answers
Satisfiable + assignment (values, model)

Unsatisfiable + core (subset of clauses)

Satisfiable formula φ ↔ there exists a partial 
assignment satisfying all clauses in φ



SAT solving

Pavel Parízek Deductive Methods, Bounded Model Checking 14

Naive brute force solution
Trying all possible assignments

Systematic traversal of a binary tree

DPLL (Davis-Putnam-Loveland-Logemann)
Motivation: partial assignment can imply values of 
other variables in the given formula

Example: from (!a | b), v = { a → 1 } we get { b → 1 }

Approach: iterative deduction
Inferring value of a particular variable

Basic algorithm used in modern SAT solvers (with many 
additional optimizations) ➔ DPLL-based SAT solving



SAT solving: optimizations

Pavel Parízek Deductive Methods, Bounded Model Checking 15

Adding learned clauses (implied)

Non-chronological backtracking

Choice of the branching variable

Various heuristics on the best choice exist

Restarts

When it takes too long, restart the solver and use 
other “seeds” for heuristic functions



SAT solving

Pavel Parízek Deductive Methods, Bounded Model Checking 16

Problem size: 10K – 1M variables
Typical input formulas have structure

Worse for random instances
Hard instances exist (of course)
Tools are getting better all the time

Reason: industry demand, annual competitions
http://www.satcompetition.org/

Other approaches
Stochastic search (random walk)

Quickly finds solution for satisfiable instances

Ordered binary decision diagrams

http://www.satcompetition.org/


Propositional logic: semantic X proof

Pavel Parízek Deductive Methods, Bounded Model Checking 17

Semantic domain ⊨

Goal: find satisfying assignment for ϕ

We know that:  ⊨ ϕ ↔ ⊢ ϕ

Proof domain ⊢

Goal: derive the proof

axioms, inference rules



Resolution

Pavel Parízek Deductive Methods, Bounded Model Checking 18

Input: CNF formula φ (a set of clauses)

Goal: derive empty clause (false)

Iterative process

Choose two suitable clauses from the set

Requirement: they must have complementary literals r, !r

Apply resolution step on these clauses
(p1 | ... | pN | r), (q1 | ... | qN | !r) ➔ (p1 | ... | pN | q1 | ... | qN)

Add the newly derived clause into the set

Repeat until we derive false (or fail/stop)



Resolution

Pavel Parízek Deductive Methods, Bounded Model Checking 19

Equivalent statements

1) CNF formula φ is unsatisfiable

2) We can derive empty clause using resolution on
the clauses from φ

Resolution used in practice

Checking validity of a first-order logic formula

Proof-by-contradiction

Add negation of the conjecture into the set



SAT solving and propositional logic

Pavel Parízek Deductive Methods, Bounded Model Checking 20

SAT looks very good, but we need more

For program verification, full theorem proving, ...

First-order logic (predicate logic)

Interesting theories

Linear integer arithmetic (ℕ, ℤ)

Data structures (arrays, bit vectors)



Decision procedure

Pavel Parízek Deductive Methods, Bounded Model Checking 21



Decision procedure

Pavel Parízek Deductive Methods, Bounded Model Checking 22

Algorithm that

Always terminates

Outputs: YES/NO

Decision procedure for a particular theory T

Always terminates and provides a correct answer 
for every formula of T

Goal: checking validity of logic formulas



Interesting theories

Pavel Parízek Deductive Methods, Bounded Model Checking 23

Equality logic
With uninterpreted functions

Linear arithmetic
Integer

Rational

Difference logic

Arrays

Bit vectors

Strings
including regular expressions



Equality logic

Pavel Parízek Deductive Methods, Bounded Model Checking 24

Syntax
Atomic formulas

term = term | true | false

Terms

variable | constant

Deciding validity of an equality logic formula is 
NP-complete problem

Polynomial algorithm exists for the conjunctive 
fragment (uses only & and ∃)



Equality logic with uninterpreted functions

Pavel Parízek Deductive Methods, Bounded Model Checking 25

Syntax
Atomic formulas

term = term | predicate(term, ..., term) | true | false
Terms

variable | constant | function(term, ..., term)

Semantics
No implicit meaning of functions and predicates
a1 = b1 & ... & aN = bN → f(a1,...,aN) = f(b1,...,bN)

Decision procedure
Transform into an equisatisfiable formula in equality logic



Equality logic with uninterpreted functions

Pavel Parízek Deductive Methods, Bounded Model Checking 26

Purpose: abstraction
Full formula ➔ function semantics defined using axioms

Uninterpreted symbols ➔ just equality between arguments

⊨ φEUF → ⊨ φ

False answers possible
Example:  add(1,2) != add(2,1) in EUF

Formula with UF easier to decide than the “full” formula



Linear arithmetic

Pavel Parízek Deductive Methods, Bounded Model Checking 27

Syntax
Atomic formulas

term = term | term < term | term ≤ term | true | false
Terms

variable | constant | constant variable | term + term

Example: (3x + 2y ≤ 5z) & (2x – 2y = 0)

Arithmetic without multiplication ➔ Presburger arithmetic

Decision procedure
General case (full theory): 22O(n)

Conjunctive fragment over ℚ
Linear programming: Simplex method (EXP), Ellipsoid method (P)

Conjunctive fragment over ℤ
Integer linear programming (NP-complete)



Difference logic

Pavel Parízek Deductive Methods, Bounded Model Checking 28

Syntax
Atomic formulas

variable – variable < constant |

variable – variable ≤ constant |

true | false

Operators: !, &, ←, ↔

Example: (x – y < 3) & (y – z ≤ -4) & (z – x ≤ 1)

Decision procedure
Conjunctive fragment polynomial for ℚand ℤ



Data structures

Pavel Parízek Deductive Methods, Bounded Model Checking 29

Array theory
Function symbols

select(a,i)      // read, a[i]
store(a,i,e)    // update, a[i] = e

Axiom read-over-write
select(store(a,i,e),i) = e

Bit vectors
Motivation: precise computer arithmetic (overflows, ...)
Reasoning about individual bits in a finite vector (array)
Syntax: operators bitwise-AND, bitwise-OR, bitwise-XOR
Decision procedure

Typically flattened into a large instance of SAT
Many clever optimizations (encoding)



Strings and regular expressions

Pavel Parízek Deductive Methods, Bounded Model Checking 30

Reasoning about word equations
Example: a · u = b · v

Supported operations
substring (membership)

concatenation (u · v)

queries about length

basic regular operators (+, *)

Tools: Norn, Z3-str, S3, Sloth



Combining theories

Pavel Parízek Deductive Methods, Bounded Model Checking 31

Goal

Formulas that combine multiple theories

Example: linear arithmetic + arrays

Decision procedures

Combined under specific constraints

Nelson-Oppen method



Decision procedures: summary

Pavel Parízek Deductive Methods, Bounded Model Checking 32

Decision procedures

Typically work for conjunctive fragments of the 
respective theories

But we still need more

Formulas with arbitrary boolean structure and 
interesting theories (linear arithmetic, arrays)



Satisfiability Modulo Theory (SMT)

Pavel Parízek Deductive Methods, Bounded Model Checking 33



Satisfiability Modulo Theory (SMT)

Pavel Parízek Deductive Methods, Bounded Model Checking 34

Goal

Decide satisfiability of a quantifier-free formula 
that involves constructs of specific theories

Idea

Using combination of a SAT solver and a decision 
procedure (DP) for a conjunctive fragment of the 
respective theory



Approaches to SMT

Pavel Parízek Deductive Methods, Bounded Model Checking 35

Naive use of a SAT solver

1. Extract boolean skeleton of the given formula φ

2. Run the SAT solver on the boolean skeleton

a) unsatisfiable➔ the input formula is unsatisfiable

b) satisfiable➔ we get a satisfying assignment v

3. Run the DP on the formula derived from the
satisfying assignment v

a) satisfiable➔ the input formula is satisfiable

b) unsatisfiable➔ add the blocking clause for v to the
boolean skeleton and continue with the step 2



Approaches to SMT

Pavel Parízek Deductive Methods, Bounded Model Checking 36

DPLL(T)-based SMT solving

Eagerness: DPLL asks DP for partial assignments 
during traversal

Benefit: earlier conflict discovery

Updating the set of clauses given to DP on-the-fly

iteration (add), backtracking (remove)

Theory-based learning

DP can identify clauses valid/invalid in the given theory T



SMT solving in practice

Pavel Parízek Deductive Methods, Bounded Model Checking 37

Available SMT solvers
Z3, CVC4, Yices, MathSAT 5, OpenSMT, ...

SMT-LIB v2
Defines common input format
Big library of SMT problems
https://smtlib.cs.uiowa.edu/

SMT-COMP
Competition of SMT solvers
https://smt-comp.github.io/2022/

https://smtlib.cs.uiowa.edu/
https://smt-comp.github.io/2022/


SMT solving in practice

Pavel Parízek Deductive Methods, Bounded Model Checking 38

Current state

Good performance

Highly automated

Many applications

Drawbacks

Restricted to specific theories and domains (ℚ, ℤ)

Very limited support for quantifiers (mostly ∃)

Much less powerful than full theorem proving



Theorem proving

Pavel Parízek Deductive Methods, Bounded Model Checking 39

Input
Theory T: set of axioms
General formula φ in predicate logic

Goal
Decide validity of the formula φ in T

Semantic domain: show unsatisfiable negation
Proof domain: prove φ from the axioms of T

Very powerful
Interactive

Partially automated

Tools: PVS, Isabelle/HOL



Deductive methods: closing remarks

Pavel Parízek Deductive Methods, Bounded Model Checking 40

Approaches
DPLL-based SAT solving
Decision procedures
DPLL(T)-based SMT solving

Formulas
Propositional logic (boolean)
Predicate logic with theories

Equality with uninterpreted functions
Linear arithmetic (difference logic)
Data structures (arrays, bit vectors)

Applications in program verification



Bounded model checking

Pavel Parízek Deductive Methods, Bounded Model Checking 41



Bounded model checking

Pavel Parízek Deductive Methods, Bounded Model Checking 42

Goal: Exploring traces with bounded length
Options: fixed integer value K, iteratively increasing

Still remember preemption bounding for threads ?

Approach
Encoding bounded program state space and properties 
into a logic formula φ

Find property violations by checking satisfiability of φ

Challenge
Encoding program behavior into the formula φ



Program state space

Pavel Parízek Deductive Methods, Bounded Model Checking 43

Program P = (S, T, INIT)
S is a set of program states

Predicates about values of program variables

Program counter (PC)

INIT⊆ S is a set of initial states

T ⊆ S × S is a transition relation

Single transition
Updates program counter and some variables

Relating old and new values (x, x’, pc, pc’)

Example: x = 2, x’= x + 1, pc = 5, pc’ = pc + 1



Transition relation

Pavel Parízek Deductive Methods, Bounded Model Checking 44

(pc = 1) ∧ (x’ = x + 2y) ∧ (pc’ = pc + 1)

∨

(pc = 2) ∧ (x’ = 0) ∧ (pc’ = pc + 6)

∨

... ... ...

∨

(pc = N) ∧ (x’ = x - y + 5) ∧ (pc’ = pc + 1)



Traces with bounded length

Pavel Parízek Deductive Methods, Bounded Model Checking 45

Transition relation unfolded at most K times
Fresh copies of program variables (x, x’, ..., x(K)) used for each 
unfolding of the transition relation

Example
INIT: x = 0, pc = 1
T(K): (

((pc = 1) ∧ (x’ = x + 2y) ∧ (pc’ = pc + 1)) ∨
... ... ...

((pc(K-1) = 1) ∧ (x(K) = x(K-1) + 2y(K-1)) ∧ (pc(K) = pc(K-1) + 1)) ∨
... ... ...

)

Specific consequences
Bounded number of loop iterations (unrolling)



Encoding program behavior in logic

Pavel Parízek Deductive Methods, Bounded Model Checking 46

Large formula

INIT(s0) ∧ ( ⋀i=0..k-1 T(si, si+1) ) ∧ ( ⋁i=0..k ¬p(si) )

Represents all possible executions of the 
program with the length bounded by K



BMC: verification procedure

Pavel Parízek Deductive Methods, Bounded Model Checking 47

1) Derive formula representing the state space

2) Run the SAT/SMT solver on the formula in CNF

3) Interpret verification results

Satisfying assignment ➔ we get a counterexample 
with the length ≤ K

Unsatisfiable formula ➔ no property violations in 
program executions of the length ≤ K



BMC: technical challenges

Pavel Parízek Deductive Methods, Bounded Model Checking 48

Encoding program in a mainstream language into 
a logic formula

heap, allocation, pointers, threads, synchronization

Example: dynamic heap
Use predicate logic with array theory (select, store)

Array element access  a[i]
Separate variables for the element a[i] and the index i

Pointer access  (*p)
Separate variables for dereference *p and the pointer p

Transitions defined properly



Further reading

Pavel Parízek Deductive Methods, Bounded Model Checking 49

D. Kroening and O. Strichman. Decision 
Procedures: An Algorithmic Point of View. 
Springer, 2008.

A. Biere, A. Cimatti, E. Clarke, O. Strichman, 
and Y. Zhu. Bounded Model Checking. 
Advanced in Computers, 58, 2003


