Symbolic Execution,
Dynamic Analysis

http://d3s.mff.cuni.cz

Ditibutad and Pavel Parizek

Dependable

§ © AND PHYSICS
) Charles University

Symbolic execution

Pavel Parizek Symbolic Execution, Dynamic Analysis 2

Key concepts

* Symbolic values used for program variables
" v: x+2, x: 10+11-3, y: 2*1l

®* Program inputs: variable names
* Other variables: functions over symbolic inputs

* Path condition (PaC)

= Set of constraints over symbolic input values that
hold in the current program state

Pavel Parizek Symbolic Execution, Dynamic Analysis 3

Example program

input: X,V
l: u =x - vy;
1f (x 1)
+ X;
X)

o U W N
|_|.
Fh
<
<V GV

assert (u >= 0);

Pavel Parizek Symbolic Execution, Dynamic Analysis 4

Symbolic execution and program verification

* Symbolic program state

= Symbolic values of program variables
= Path condition (PaC)
= Program counter (PC)

* Symbolic state = a set of concrete states

* Symbolic execution tree = state space

= Tree of symbolic program states
= Transitions labeled with the PC

Pavel Parizek Symbolic Execution, Dynamic Analysis 5

Symbolic execution and program verification

® Path condition updated at each branching point
in the program code

= Different constraints added for each branch

" Example: i f-else with a boolean condition C
® Formula C added for the i f branch
® Formula not C added forthe else branch

® State space traversal
= Satisfiability of PaC checked in each symbolic state

= PaC == false =» symbolic state not reachable
* Verification tool backtracks and explores different branches

Pavel Parizek Symbolic Execution, Dynamic Analysis 6

Symbolic execution: possible applications

®* Automatically generating test inputs
" From path conditions in symbolic program states

* Find inputs that trigger a specific error

® Systematic testing of open systems
= Examples: isolated procedures, components
= Programs with unspecified concrete inputs

®* Checking programs with inputs from unbounded
domains (integers, floats, strings)

Pavel Parizek Symbolic Execution, Dynamic Analysis 7

Symbolic execution: limitations

* Handling loops with many iterations

* Stateless exploration (no state matching)
°* Undecidable and complex path conditions
* State explosion (too many paths)

®* Concurrent accesses from multiple threads

Pavel Parizek Symbolic Execution, Dynamic Analysis 8

Loops with many iterations

X = 1nput ()

i = 1000;

while (true) {
1f (x > 1)

1-=;

Pavel Parizek Symbolic Execution, Dynamic Analysis 9

Loops: practical approach

* Unrolling loops to a specific depth

= Limited number of loop iterations explored

°* Exploring data structures up to a given
bounded size

Pavel Parizek Symbolic Execution, Dynamic Analysis 10

Concolic execution

Pavel Parizek Symbolic Execution, Dynamic Analysis 11

Concolic execution

concrete + symbolic = concolic

°* How it works
= Performs concrete execution on random inputs
= Tracks symbolic values of program variables

= Gathers constraints forming a path condition
along the single executed path

Pavel Parizek Symbolic Execution, Dynamic Analysis 12

Concolic execution: applications

®* Dynamic test generation

= Path condition for the single explored path defines
corresponding test inputs

= Negating constraints (clauses) for branching points

* Find test inputs that drive program execution along
different paths (control-flow)

Pavel Parizek Symbolic Execution, Dynamic Analysis 13

KLEE: Symbolic Virtual Machine

* Symbolic execution tool for system code

= Used to detected many real bugs in Linux/Unix core
system utilities (1s, chmod, ...)

" Models interaction with complex environment (files,
networking, unix syscalls)

= Highly optimized (performance, scalability)
® Built upon the LLVM compiler infrastructure

e Web: http://klee.github.io/

®* Further information (recommended)
= http://llvm.org/pubs/2008-12-OSDI-KLEE.pdf

Pavel Parizek Symbolic Execution, Dynamic Analysis 14

http://klee.github.io/
http://llvm.org/pubs/2008-12-OSDI-KLEE.pdf

PEX: White-box unit testing for .NET

°* Dynamic test generation (concolic execution)
®* Generates unit tests with high code coverage

* Availability
= Visual Studio 2010 Power Tools, command-line

* \Web sites

= https://www.microsoft.com/en-us/research/project/pex-and-moles-isolation-
and-white-box-unit-testing-for-net/

* Live demo: Code Digger
= Vijsual Studio 2012 extension based on Pex

* |ntelliTest extension for Visual Studio 2015
= https://learn.microsoft.com/en-us/visualstudio/releasenotes/vs2015-rtm-vs#intellitest

Pavel Parizek Symbolic Execution, Dynamic Analysis 15

https://www.microsoft.com/en-us/research/project/pex-and-moles-isolation-and-white-box-unit-testing-for-net/
https://learn.microsoft.com/en-us/visualstudio/releasenotes/vs2015-rtm-vs#intellitest

SAGE: Scalable Automated Guided Execution

°* Automated whitebox fuzz testing for security
* Systematic dynamic generation of unit tests

* How it works

= concolic execution + solving negated conditions to infer
new test inputs

® Main author: Patrice Godefroid
= https://patricegodefroid.github.io/

® Further information (selected papers)

= https://patricegodefroid.github.io/public psfiles/ndss2008.pdf
= https://patricegodefroid.github.io/public psfiles/icse2013.pdf

Pavel Parizek Symbolic Execution, Dynamic Analysis 16

http://research.microsoft.com/en-us/um/people/pg/
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/ndss2008.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/icse2013.pdf

Symbiotic

* Software verifier for programs in C

= Techniques: symbolic execution, static analysis,
program slicing, ...

* \Winner of SV-COMP 2022

° Further information and source code
" http://staticafi.github.io/symbiotic/
" https://github.com/staticafi/symbiotic

Pavel Parizek Symbolic Execution, Dynamic Analysis 17

http://staticafi.github.io/symbiotic/
https://github.com/staticafi/symbiotic

Other tools

* JDart: dynamic symbolic execution for Java
= https://github.com/psycopaths/jdart

* https://www.diffblue.com/try-cover

= Automatically generating unit tests for Java code

Pavel Parizek Symbolic Execution, Dynamic Analysis 18

https://github.com/psycopaths/jdart
https://www.diffblue.com/try-cover

Dynamic analysis

Pavel Parizek Symbolic Execution, Dynamic Analysis 19

Dynamic analysis

®* Goal: analyze behavior of the program based
on concrete execution of a single path

° |[nput: binary executable

Pavel Parizek Symbolic Execution, Dynamic Analysis 20

Collecting information about single path

®* |nstrumentation
= Target: binary executable, source code

® Runtime monitoring
=" manual inspection of huge log files
® Custom libraries

® Events
= field accesses on shared heap objects
= |ocking (acquisition, release, attempts)
= procedure calls (e.g., user-defined list)

Pavel Parizek Symbolic Execution, Dynamic Analysis 21

Benefits

® Precision
= Complete information about program state
= Recording only events that really happen

* Tool support
= Errors: deadlocks, race conditions, atomicity
= Languages: Java, C/C++, CH

Pavel Parizek Symbolic Execution, Dynamic Analysis 22

Limitations

®* Coverage
= Single execution path
= Few related paths

® Overhead

= Compared with plain concrete execution
= Range: 50 % - 1000 % (!)
= Possible remedy: sampling

Pavel Parizek Symbolic Execution, Dynamic Analysis 23

Selected tools (part 1)

® Pin
= Runtime binary instrumentation platform for Linux (32-bit x86,
64-bit x86, ARM)
= Custom tools written in C/C++ using rich Pin API

= |mportant features:
* efficient dynamic compilation (JIT)
® process attaching, transparency

® Valgrind

= Heavyweight dynamic binary instrumentation framework again
for Linux (x86, PPC)

= Tools: memory checker, thread checkers, some profilers

® RoadRunner
= Dynamic analysis framework for Java programs

Pavel Parizek Symbolic Execution, Dynamic Analysis 24

Selected tools (part 2)

°* ANaConDA

= Supports creating dynamic analysis of multi-
threaded C/C++ programs

" http://www.fit.vutbr.cz/research/groups/verifit/to
ols/anaconda/

* SharpDetect
= Dynamic analysis tool for C#/.NET programs

" https://github.com/acizmarik/sharpdetect

= A. Cizmarik and P. Parizek. SharpDetect: Dynamic Analysis
Framework for C#/.NET Programs. RV 2020

Pavel Parizek Symbolic Execution, Dynamic Analysis 25

http://www.fit.vutbr.cz/research/groups/verifit/tools/anaconda/
https://github.com/acizmarik/sharpdetect

Applications

* Detecting bugs of all kinds

® Concolic execution

= Adding new symbolic constraints into PaC

* Discovering likely invariants

* Predicting race conditions

Pavel Parizek Symbolic Execution, Dynamic Analysis 26

Predicting data race conditions

° Algorithm

Pavel Parizek

1) Run dynamic analysis tool to record events about
one particular execution trace

2) Check the given trace for data race conditions
3) If we find some errors, then stop immediately

4) Generate feasible interleavings of events from the
given single trace

5) Check each generated interleaving for data races
6) Report all detected possible races to the user

Symbolic Execution, Dynamic Analysis 27

Predicting data race conditions

Pavel Parizek Symbolic Execution, Dynamic Analysis 28

Generating feasible interleavings

* All possible interleavings of events from
different threads

* Use the happens-before order between
synchronization events

= Conflicting field accesses not ordered =2 interleave

Pavel Parizek Symbolic Execution, Dynamic Analysis 29

Discovering likely invariants

* Algorithm

= Run the dynamic analysis tool several times (on
selected inputs, test suite) to get a set of traces

= Find properties over variables and data structures
that hold for all/most traces in the set

= Drop all inferred properties that do not satisfy
additional tests (e.g., statistical relevance)

= What remains are the likely invariants

Q: Looks good but there is a small catch

Pavel Parizek Symbolic Execution, Dynamic Analysis 30

Discovering likely invariants

® Limitations
= Precision depends on the test suite quality (inputs)
= Cannot guarantee soundness and completeness

® Benefits

= |t is actually useful: checking implicit assumptions
about program behavior, rediscovering formal
specifications, documentation, etc

®* Tool support: Daikon
= Predefined templates instantiated with variables
" http://plse.cs.washington.edu/daikon/

Pavel Parizek Symbolic Execution, Dynamic Analysis 31

http://plse.cs.washington.edu/daikon/

Further reading

® C.S. Pasareanu and W. Visser. A Survey of New Trends in Symbolic Execution for Software Testing
and Analysis. STTT, 11(4), 2009

® P. Godefroid, N. Klarlund, and K. Sen. DART: Directed Automated Random Testing. PLDI 2005

® (. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs. OSDI 2008

®* P. Godefroid, M. Levin, and D. Molnar. Automated Whitebox Fuzz Testing. NDSS 2008

® E.Bounimova, P. Godefroid, and D. Molnar. Billions and Billions of Constraints: Whitebox Fuzz
Testing in Production. ICSE 2013

®* N.Tillmann, J. de Halleux, and T. Xie. Transferring an Automated Test Generation Tool to Practice:
from Pex to Fakes and Code Digger. ASE 2014

®* N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dynamic Binary
Instrumentation. PLDI 2007

® (C.Wang, R. Limaye, M. Ganai, and A. Gupta. Trace-Based Symbolic Analysis for Atomicity
Violations. TACAS 2010

® M.D. Ernst, J.H. Perkins, PJ. Guo, S. McCamant, C. Pacheco, M.S. Tschantz, and C. Xiao. The Daikon
System for Dynamic Detection of Likely Invariants. Sci. Comput. Program., 69(1-3), 2007

Pavel Parizek Symbolic Execution, Dynamic Analysis 32

