Static Analysis:
Overview, Data-Flow

http://d3s.mff.cuni.cz

Ditibutad and Pavel Parizek

Dependable

FACULTY
= OF MATHEMATICS
AND PHYSICS

) Charles University

Static analysis

®* Purpose

= Gather information about run-time behavior of
programs without executing them

°* Information
= Does the variable x have a constant value?
= |s the value of the variable x always positive?
= May the pointer p be null at a code location?
= What are possible values of the variable y?

Pavel Parizek Static Analysis: Overview, Data-Flow 2

Static analysis: characteristics

®* Target model of program behavior
= some kind of Control Flow Graph (CFG)

®* Provides approximate answers
= Decision problems: yes / no / don’t know
= Collecting some values: superset / subset

* |nformation valid for all possible runs

®* Summarizing different execution paths
" branches of the 1 f-else statement, loop iterations

®* Does not know run-time values (inputs)

Pavel Parizek Static Analysis: Overview, Data-Flow 3

Comparison

Static analysis Model checking
control-flow graph program state space
summarizes information reasons about execution
from different paths paths independently
approximation path-sensitivity

scalability precision

Pavel Parizek Static Analysis: Overview, Data-Flow 4

Static analysis in practice

®* Optimizing compilers
= Detect superfluous evaluations of the same expression
= Detect unused local variables or dead code fragments

® Program verification

= Search for possible runtime errors

* Example: null pointer dereference, unsynchronized access

= Constructing abstraction for model checking

* Slicing: identify statements irrelevant for a given property

Pavel Parizek Static Analysis: Overview, Data-Flow 5

Approximation

Pavel Parizek Static Analysis: Overview, Data-Flow 6

Restrictions

°* Approximation must be safe
= That precisely means “imprecise on the safe side”

°* Target domain: optimizing compilers
= Under-approximation

®* Optimization performed on the basis of analysis results
must not violate semantics of a given program

= Example: constant propagation

® Sound analysis identifies a program variable as a
constant only when it is really certain (100%)

Pavel Parizek Static Analysis: Overview, Data-Flow 7

Restrictions

°* Approximation must be safe
= That precisely means “imprecise on the safe side”

°* Target domain: search for errors

= QOver-approximation

® Safe analysis reports all real errors and also some
spurious errors (false positives)

= Example: possible null dereferences

* We want to know about all of them so we can add
runtime checks (i1 f (v != null) ...)

Pavel Parizek Static Analysis: Overview, Data-Flow 8

Basic concepts (theory and examples)

Pavel Parizek Static Analysis: Overview, Data-Flow 9

Running example

® Program
int factorial(int n) {
int r;
if (n == @) r = 0;
int £ = 1;
while (n > 0) {
f =f * n;
n=n-1;
if (n == 0) r = f;
}

return r;

¥

® Static analysis: possibly uninitialized variables

Pavel Parizek Static Analysis: Overview, Data-Flow 10

Control flow graph (CFG)

* Directed graph with labels

°* Nodes: program points (statements)

* Edges: possible flow of control
= pred(n) and succ(n) for each node nin a CFG

* Single point of entry
* Single point of exit

Pavel Parizek Static Analysis: Overview, Data-Flow 11

CFG: modeling control structures

seguence if (E) {S} 1f (E) {S1}

hile (E) {S
S175; else {S2) while (E) {S)

.

© | |-

S
Lo
AN

O-t— 1 |—— © |-—

Pavel Parizek Static Analysis: Overview, Data-Flow

Analysis domain

* Set of possible values (facts)

* Finite lattice over the set

Pavel Parizek Static Analysis: Overview, Data-Flow 13

Partial order

°* Mathematical structure L = (S, E)
= Sis aset of values (e.g., analysis facts)
= [is a binary relation (e.g., is-subset)

e Reflexivity: Vx € S: x E x
® Transitivity: Vx,y,z€S: xEyAyE z=>xC z

° Anti-symmetry: Vx,y €S: xEyAyCx=x=y

°* Examples

Pavel Parizek Static Analysis: Overview, Data-Flow 14

Bounds
s 5 0 5 ® o

Lets have a partialorder L=(S,E)and XS S

* Upper bound
= y € SisanupperboundforX,i.e. XCy,ifVxeX:xCy

° Lower bound
= y € Sisalower boundforX,i.e.y C X,if Vx€ X:y L x

® Least upper bound of X, denoted as LIX
= XCUX AVyeS: XEy=>UXCy

® Greatest lower bound of X, denoted as IMNX
=" MXCX AVyeS:yCX=>yLCNX

Pavel Parizek Static Analysis: Overview, Data-Flow 15

Bounds: example 1

Lets have a partial order L = (S, E) and
thesetS=1{a, b, c, d, e}

The upper bounds of X ={a, b} are the elements {c, e}

e

d

Pavel Parizek Static Analysis: Overview, Data-Flow 16

Bounds: example 2

Lets have a partial order L = (S, E) and
thesetS=1{a, b, c, d, e}

The greatest lower bound of X = {b, e} is the element b

d

Pavel Parizek Static Analysis: Overview, Data-Flow 17

Lattice

® Partial order L = (S, E) such that
= LIX and MX exist for VXS S
= Unique greatest element T = US=MNQ
= Unique least element L =MNS=UY

°* Height of a lattice
= Length of the longest path from L to T

Pavel Parizek Static Analysis: Overview, Data-Flow 18

Finite lattice

® Partial order L = (S, E) such that

= Vx,y € Sthere is
® Least upper bound x Ll y
* Greatest lower bound x My

Pavel Parizek Static Analysis: Overview, Data-Flow 19

Lattice: examples

b 8

Pavel Parizek Static Analysis: Overview, Data-Flow 20

Using finite lattices in static analysis

° LatticelL = (S, E)
= Set S of analysis facts (units of information)

= Relation E defines an ordering with respect
to precision of the abstraction
°* x C y = xis more precise than y
°* x C y = yapproximates x

= Example
® Sign abstraction: x ={POS }, y = { POS, ZERO }

Pavel Parizek Static Analysis: Overview, Data-Flow 21

How to construct lattices

* Finite set R induces a lattice (2%, C)
= | =4O

® No information available

s T=R
* Any possible value
" |

T ={0,1,2}

S

xUdy=xU

) jt))/in ! {0,1} {0,2} {1,2}
" xOy=xNy ><

®* meet
= Height |R| o Y)

°* Example \ /

= SetR=/{0, 1, 2}
" Height=3 1 ={}

Pavel Parizek Static Analysis: Overview, Data-Flow 22

Running example

® Program
int factorial(int n) {
int r;
if (n == @) r = 0;
int £ = 1;
while (n > 0) {
f =f * n;
n=n-1;
if (n == 0) r = f;
}

return r;

¥

® Static analysis: possibly uninitialized variables

Pavel Parizek Static Analysis: Overview, Data-Flow 23

Encoding program statements

® Data for each node in the CFG

= |IN: valid before the program statement
= QUT: valid after the program statement

®* Merge operator Ll
= CFG nodes with multiple predecessors
= Typical approach: union or intersection

* Transfer functions

Pavel Parizek Static Analysis: Overview, Data-Flow 24

Transfer functions

°* For each node in CFG (statement), we must
define a transfer function

OUT = (IN \ kill) U gen

°* Examples
= Statement int r;
kill={}, gen={r}
= Statementr = f;
kill={r}, gen={}

Pavel Parizek Static Analysis: Overview, Data-Flow 25

Monotone functions

® Functionf:S— Sis monotone if
"Vx,y€S:xCy= f(x) Cfly)

°* Examples
= Constant functions
= Operators M and U
= Their compositions

Pavel Parizek Static Analysis: Overview, Data-Flow 26

Computing static analysis

® |nput
= Control flow graph of the given program

= |nitial value for each CFG node (L or ©)
°* Value is the set of known analysis facts (information)

= Merge operator defined as the set union
= Transfer functions F, for each node in CFG

°* Approach: compute fixed points

" |Information associated with the CFG nodes

Pavel Parizek Static Analysis: Overview, Data-Flow 27

Duality

(S, E) is a lattice & (S, 3) is a lattice

Ui)= T, o) (S,

M

—(S, 3)

)

[is,)= U, o) -,

M

) (S, 2)

°* We focus just on E and initial values L

Pavel Parizek Static Analysis: Overview, Data-Flow 28

Computing fixed points

°* Motto: “walk up the lattice starting at L, until
you reach a fixed point”

" |In the worst case, T is the fixed point (if exists)

®* Three algorithms
= Naive (brute force)
= Chaotic iteration
= Worklist algorithm

Pavel Parizek Static Analysis: Overview, Data-Flow 29

Worklist algorithm

u, = 1, ..., u, = L;
qg=1[1, ..., n];

while (g # []) {
1 = head(q);

vy = merge(pred(i));

Vour = Fi(vpy)s

g = tail(q);

if (voyr # u;) A
append(g, succ(i));

U; = Vours

Pavel Parizek Static Analysis: Overview, Data-Flow 30

Classification

Pavel Parizek Static Analysis: Overview, Data-Flow 31

Static analysis categories

* Data-flow analysis

* Call graph construction

* Pointer analysis (aliasing)
° Escape analysis (threads)
* Side effect analysis

Pavel Parizek Static Analysis: Overview, Data-Flow 32

Data-flow analysis

* Available expressions
®* Reaching definitions
° Live variables (values)

Pavel Parizek Static Analysis: Overview, Data-Flow 33

Available expressions

var x,vy,a,b,t;

y = a - b;

y = a - b; t = a + b;
while (y < a + b) { - while (y < t) {
a =a - 1; a =a - 1;
x = a + b; t =a + b;

¥ X = t;

Pavel Parizek Static Analysis: Overview, Data-Flow 34

Direction

®* Forward analysis
= Computes information about the past behavior
= Starts at the entry node (CFG) and goes forward

* Backward analysis
= Computes information about the future behavior
= Starts at the exit CFG node and moves backwards

Pavel Parizek Static Analysis: Overview, Data-Flow 35

Approximation level

®* May analysis
= Computes information that may be true (over-approximation)
* Information for P that is true at least for one path coming into P

= Merge operator: set union

®* Must analysis

= Computes information that must be true (under-approximation)
* Information for P that is true for all execution paths coming into P

= Merge operator: set intersection

Pavel Parizek Static Analysis: Overview, Data-Flow 36

Flow sensitivity

* Flow-sensitive analysis

= Considers the program’s control flow (CFG) and the order
of individual statements

= Example: available expressions

* Flow-insensitive analysis
" Program seen as an unordered collection of statements

= Results are valid for any order of program statements
® §1:;52 versus S2;51

= Example: type analysis (inference)

Pavel Parizek Static Analysis: Overview, Data-Flow 37

Scope

® Intra-procedural
= Every single procedure analyzed separately

= Maximally pessimistic assumptions about side
effects of procedure calls

* Inter-procedural
= Whole program analyzed together
= Sometimes without libraries (huge)

Pavel Parizek Static Analysis: Overview, Data-Flow 38

Context sensitivity

* Context-sensitive analysis
= Call site: source code location for the call
= Call stack: procedure calls and returns
= Receiver objects for method calls (“this”)

= Analysis results for the method M depend on the
specific caller of M

* Context-insensitive analysis

= Same analysis results for every call site of M

Pavel Parizek Static Analysis: Overview, Data-Flow 39

Tools

e WALA
= Java, JavaScript, JVM (bytecode)
= https://wala.github.io/
= https://github.com/wala
® Soot
= Java, JVM-based languages (bytecode)
= https://soot-oss.github.io/soot/
° C(CIL
= Only for programs written in C
= http://www.cs.berkeley.edu/~necula/cil/
= https://github.com/cil-project/cil
° [LVM
= C, C++, Objective-C
= Clang static analyzer
= http://llvm.org/
® Roslyn: .NET compiler platform
= https://github.com/dotnet/roslyn

Pavel Parizek Static Analysis: Overview, Data-Flow 40

https://wala.github.io/
https://github.com/wala
https://soot-oss.github.io/soot/
http://www.cs.berkeley.edu/~necula/cil/
https://github.com/cil-project/cil
http://llvm.org/
https://github.com/dotnet/roslyn

Further reading

°* M. Schwartzbach. Lecture Notes on Static
Analysis. Department of CS, Aarhus University

°* A. Mgller and M. Schwartzbach. Static Program
Analysis. Department of CS, Aarhus University

= https://cs.au.dk/~amoeller/spa/

°* F. Nielson, H. R. Nielson, and Chris Hankin.
Principles of Program Analysis. Springer, 2005

Pavel Parizek Static Analysis: Overview, Data-Flow 41

https://cs.au.dk/~amoeller/spa/

