Abstraction

http://d3s.mff.cuni.cz

Department of
Distributed and
Dependable

FACULTY
OF MATHEMATICS

AND PHYSICS
Charles University

Pavel Parizek

Motivating example

1: int sum(int from, int to) {

2: int total = 0O;

3: for (int 1 = from; i1 <= to; i++) {
4: total += 1;

5: }

6: return total;

7. '}

8: main () {

9: int x = sum(1l, 1000);

10: assert(x > 0);

11: }

Pavel Parizek Abstraction 2

Abstraction

* Goal: smaller reachable program state space

°* Approaches
= Reducing the size of variables’ data domains
= |gnoring concrete values of certain variables

* Benefits
= Mitigating the state space explosion
= Improved scalability (performance)

Pavel Parizek Abstraction 3

Data abstraction

® Using abstract domains for program variables
* Tracking only abstract states of the program

® Abstract state = set of concrete states

° Process: mapping concrete to abstract

= data types, values, operations, program states

Pavel Parizek Abstraction 4

Example: Signs abstraction

* Abstract data type
= int =2 { NEG, ZERO, POS }

Pavel Parizek Abstraction 5

Example: Signs abstraction

* Abstract data type
= int =2 { NEG, ZERO, POS }

® Abstract values
= a(x) € { NEG, ZERO, POS}
* Abstract operation +

NEG ZERO POS
NEG { NEG } { NEG } { NEG, ZERO, POS }
ZERO { NEG } { ZERO } {POS}
POS { NEG, ZERO, POS } | {POS} {POS }

Pavel Parizek Abstraction 6

Construction of abstract programs

* Transformation of program source code

int x = 05 Signs x = Signs.ZERO;
int y; Signs y;
y = X + 27 y = Signs.add(x, Signs.POS) ;

Pavel Parizek Abstraction 7

Abstract state space

* Non-deterministic choice

= assignment, branching condition (if-else, loops)

x: POS
y: NEG
Z=X+Yy
%nt X = 57 z: {NEG, ZERO, POS}
int y = -2; | S \
N L4 \
z = X + vy, z: NEG // I N z: POS
/ \

‘K z: ZE:RO "‘
O

Pavel Parizek Abstraction 8

Other simple data abstractions

* |nterval abstraction

= Example: x<0,0<x<10,x>10

°* Combining intervals with concrete values

= Example:x<0,x=0,x=1,x=2,x=3,x=4,x>4

Pavel Parizek Abstraction 9

Predicate abstraction

Pavel Parizek Abstraction 10

Predicate abstraction

* Data type

= Predicates about program variables
®* Theories: linear integer arithmetic, equality, arrays
°* Example:x=0,x>0,y+z22,u=y,select(a,1) =5

®* Abstract state

= Some valuation of all the predicates

Pavel Parizek Abstraction 11

Example

1: int sum(int from, int to) {

2: int total = 0O;

3: for (int 1 = from; i1 <= to; i++) {
4: total += 1;

5: }

6: return total;

/7. }

8: 1int x = sum(l, 1000);

9: assert(x > 0);

Pavel Parizek Abstraction 12

Boolean program

bool Pl = false;

Predicates
bool P2 = false;

P1:/i>0
// inttotal =0; P2: total >0

P2 = true;

// inti=from;
Pl = *;

// total +=1i;

if (Pl && P2) P2 = true;
else P2 = *;

Pavel Parizek Abstraction 13

Deriving predicate valuations

* \Weakest preconditions
= Predicate p: total 20
= Statement s: total +=1i;
= WP(s,p) =total +i=>0

® Querying the SMT solver
= Example: pl && p2 - WP(s,p) is valid ?

® Processing results
1) p1 && !'p2 > WP(s,p) isvalid = if (pl && !p2) p = true;
2) pl1 && !'p2 > WP(s,!p)isvalid =2 if (pl && !p2) p
3) both valid or none valid = if (pl && !'p2) p = *;

= false;

Pavel Parizek Abstraction 14

Optimizations

®* Goal: reduce the number of queries for SMT

* Possible approaches

= Compute new valuation only for predicates that
refer to variables modified by the given concrete
assignment statement

* We must be very careful though: aliasing
= For generating branches of the big if-else
statements in the abstract boolean program,

consider only predicates that refer to variables
read by the assighment statement

Pavel Parizek Abstraction 15

Verification using predicate abstraction

* Using model checker for boolean programs
= Much easier task than for general programs (C, Java)
= Well-known optimizations: symbolic model checking

® Practical challenges
" Translating counterexamples back to source code
" Encoding properties into reachability of assertions

Pavel Parizek Abstraction 16

Abstraction: characteristics

Pavel Parizek Abstraction 17

Abstraction: characteristics

Pavel Parizek Abstraction 18

Over-approximation

Pavel Parizek

Abstract program captures all possible behaviors of the
original concrete program

= Behavior: possible control flow path, thread interleaving

Purpose: complete verification (all reachable states)

Examples

= Simple data abstraction
= Predicate abstraction

Problem: imprecise abstraction

= Captures some infeasible execution paths =» spurious errors
= Branch conditions replaced with a non-deterministic choice

Abstraction

19

Under-approximation

* Abstract program captures only a certain subset of all
possible behaviors of the concrete program

= selected thread interleavings, reduced data domains
®* Purpose: fast error detection (subset of reachable states)

® Examples
= Normal tests (used in SW industry)
= State space traversal with heuristics
= Context-bounded search (traversal)
= Bounded model checking in general

®* Problem: imprecise abstraction
= Omits some feasible execution paths =» missed errors

Pavel Parizek Abstraction 20

Abstractions: characteristics

Over-approximation

Under-approximation

Error in abstraction

1

Error in concrete program

Error in abstraction

!

Error in concrete program

Error-free abstraction

!

Error-free concrete program

Error-free abstraction

1

Error-free concrete program

Spurious errors

Pavel Parizek

Missed errors

Abstraction 21

Abstraction: issues

* Very hard to get right
= Too precise =2 state explosion
= Too coarse =2 spurious errors

* Possible remedy
= Start with coarse abstraction
= Employ iterative refinement

Pavel Parizek Abstraction 22

CEGAR

Pavel Parizek Abstraction 23

CEGAR

Counter-Example Guided Abstraction Refinement

= Automated iterative refinement based on spurious errors

Pavel Parizek Abstraction 24

CEGAR

S LI — Error trace — ”Realfug
infeasible analysis feasible found

4

Predicates g Error
P trace
&
.
. BP model “System
A
Concrete Boolean
program program

Picture created by Ondrej Sery

Pavel Parizek Abstraction 25

Challenges

* Checking error trace feasibility

° Inferring additional predicates

Pavel Parizek Abstraction 26

Checking error trace feasibility

* Simulate the abstract error trace on the concrete program

®* Record the path condition PaC using symbolic execution
= QOptions selected at choice points (if-else, loops, non-determinism)

* (Create path formula that encodes the whole error trace
" The assume statement: clauses from the PaC (selected branches)

* Check satisfiability of the path formula (query the SMT solver)

°* Example
= Error trace
index = 1; total = total + index; assume index > 1000
= Path formula
(index® = 1) && (totall = totald + index®) && (index® > 1000)

Pavel Parizek Abstraction 27

Inferring additional predicates

®* Divide path formula ¢ into two parts ¢ and ¢*
= such that ¢ && ¢* is unsatisfiable
® Then derive a Craig interpolant { for ¢ and ¢*

= Logic formula Y such that
e ¢ >y, d* && Y is unsatisfiable, and
® uses symbols common to ¢ and ¢*

®* Finally generate additional predicates from

® Example

= Path formula
* (index@ = 1) && (totall = totale + index®) && (index0 > 1000)

= ¢:indexd@ = 1 & totall = totale + index©
= ¢*:index0 > 1000
= : index® = 1 // newly inferred predicate in this case

® Disclaimer
= Bad choices of inferred predicates may lead to non-termination
= Tools generate predicates that may look strange (not intuitive)

Pavel Parizek Abstraction 28

SLAM/SDV

® Static Driver Verifier (SDV)
= SLAM: verification engine that uses CEGAR

® Purpose

= Analyzing third party Windows device drivers
* Specific rules about proper usage of Windows kernel API
* Major source of kernel crashes (infamous “blue screens”)
* Drivers have feasible code size and a strict environment

®* Many extensions developed in the last decade

e Additional information
= https://www.microsoft.com/en-us/research/project/slam/
= Many research papers, slides, download, user guides

Pavel Parizek Abstraction 29

https://www.microsoft.com/en-us/research/project/slam/

Optimizations

® Lazy abstraction

= Set of predicates specific to each code location
= Tools: BLAST

°* Method summaries
= |ogic formula relating inputs and outputs
= Summaries computed using interpolants
= Tools: Whale, FunFrog, ...

Pavel Parizek Abstraction 30

Tools

® BLAST
= https://www.sosy-lab.org/~dbeyer/Blast/index-epfl.php

® CPAchecker
= http://cpachecker.sosy-lab.org/

e UFO/Whale
= https://bitbucket.org/arieg/ufo/wiki/Home

* Wolverine
® ... and many others

Pavel Parizek Abstraction 31

https://www.sosy-lab.org/~dbeyer/Blast/index-epfl.php
http://cpachecker.sosy-lab.org/
https://bitbucket.org/arieg/ufo/wiki/Home

Further reading

* T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani. Automatic Predicate
Abstraction of C Programs. PLDI 2001

®* E.M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate Abstraction of
ANSI-C Programs Using SAT. Formal Methods in System Design, 25(2-3), 2004

°* TA. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. POPL 2002

°* D. Beyer, T.A. Henzinger, R. Jhala, and R. Majumdar. The Software Model Checker
BLAST. STTT, 9(5-6), 2007

* K.L. McMillan. Lazy Abstraction with Interpolants. CAV 2006

* A. Albarghouthi, A. Gurfinkel, and M. Chechik. Whale: An Interpolation-based
Algorithm for Inter-procedural Verification. VMCAI 2012

* T Ball, V. Levin, and S.K. Rajamani. A Decade of Software Model Checking with
SLAM. Communications of the ACM, 54(7), 2011

Pavel Parizek Abstraction 32

