
License CC BY-NC |

Copyright © SYSGO

REAL-TIME, SAFE AND CERTIFIED OS
FOR A SAFE & SECURE CONNECTED FUTURE

License CC BY-NC |

SYSGO

Real-Time, Safe and Certif ied OS 2

• Engineering company
• ~150 people (incl. support staff, management etc.)
• Flagship product

− PikeOS
− Real-time operating system certified for safety and security
− Only other 4 such systems supporting certification available worldwide

• Secondary products
− ElinOS – Embedded linux distribution maintained by Sysgo with smooth integration with PikeOS
− PikeOS for MPU – PikeOS spin-off aimed for embedded platforms without MMU
− CODEO – Eclipse-based IDE for Sysgo products

License CC BY-NC |

INTRODUCTION

Real-Time, Safe and Certif ied OS 3

• Realtime systems design patterns
− Predictability as goal
− Offline/integration time/fixed design
− Simplicity

• Usual differences between Realtime vs General purpose operating systems
− Scheduling

− usually threads do not have quantums
− predictable scheduling scheme

− Resource management
− stronger separation mechanisms
− no malloc()/free() during regular operation of the device
− no fork() or similar process creation API => OS image contains the apps to run

− Features
− lack of drivers, frequent customization for the hardware platform specifics

License CC BY-NC |

WHERE CAN I GET PIKEOS?

Real-Time, Safe and Certif ied OS 4

• Not available as consumer product (B2B only)
• Typical workflow:

1. Customer evaluates the HW (System on Chip) and SW (the OS)
2. We provide PikeOS either for QEMU or a SoC Development board

and some training or support
3. Customer builds a custom board for that SoC, with special peripherals
4. We provide OS support for his custom board
5. We provide certification documents (if necessary)

• Best for certified and mixed-criticality usage. Alternatives:
− Linux with RT patches?
− Lots of other RTOSes

License CC BY-NC |

CERTIFICATION

License CC BY-NC |

WHAT IS SAFETY AND SECURITY?

Real-Time, Safe and Certif ied OS 6

• System does not harm the environment
− Czech translation overloaded: (provozní) bezpečnost

• Safety ≠ Flawless, if there is:
− Safe backup

• Airbus A340 rudder can still be controlled mechanically
− Safe failure-mode

• Stop position is safe failure mode for a rail signal
− Or if it is harmless

• In-flight entertainment
• Safety ≠ Security (i.e. System is resistant to cyberattacks)

− But there are overlaps
• Safety-critical device under control of an attacker is not safe

• Is certification perfect?
− Boeing 787s must be restarted every 51 days

• https://www.theregister.com/2020/04/02/boeing_787_power_cycle_51_days_stale_data

By Wiki user User:Stannered

License CC BY-NC |

SAFE AND SECURE SOFTWARE – MEANING?

Real-Time, Safe and Certif ied OS 7

• In Sysgo we mostly use administrative perspective on these terms
• Safety

− We call software safe (synonymously reliable, dependent) when it has been developed, verified
and certified according to the proper level of a safety standard.

− Computations of reliability (e.g. faults per hour of service, ...) are applied very rarely.

• Security
− We call software secure when it has been developed, verified and certified according to the

proper level a of security standard and all this has been done in environment or conditions
complient to that standard.

License CC BY-NC |

CERTIFICATION – WHY?

Real-Time, Safe and Certif ied OS 8

• Safety – In some domains safety-critical software cannot be put into service without being
certified on proper level for the proper certification standard
− And of course safety certification contributes to safety to certain extent

• Security – Decision makers holding responsibility may appreciate a solid argument why
they did their best for security if bad things happen and serious disputes may occur
− And of course security certification contributes to security to certain extent

License CC BY-NC |

SAFETY AND SECURITY CERTIFICATION

Real-Time, Safe and Certif ied OS 9

We provide Certification Kits for PikeOS for a wide
range of industry domains and up to the highest levelsSafety: ECSS-E-40 - Space

"Software Engineering"

Safety: ISO 26262 - Automotive ASIL - Automotive Safety Integrity Level

"Road vehicles - Functional Safety"

Safety: DO-178C - Avionics DAL - Design Assurance Level

„Software Considerations in Airborne Systems and Equipment Certification“

Safety: EN 50128/29 - Railway SIL - Safety Integrity Level

"Software for train control and management systems"

Safety: IEC 61508 - Industry SIL - Safety Integrity Level

"Functional Safety of Electrical / Electronic / Programmable Electronic
Safety-related Systems"

Security: SAR - Avionics SAL - Security Assurance Level

„Airbus Security Standard“

Security: ISO/IEC 15408-1/2/3 – Industry Evaluation Assurance Level

"Common Criteria for Information Technology Security Evaluation"

D C B A

D C B A

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4 5 6 7

License CC BY-NC |

• Design Assurance levels (DAL) from A to E

DO178 SAFETY LEVELS

DAL Failure condition Consequences Failure Rate
A Catastrophic May cause an airplane crash 10^-9/h

B Hazardous May cause fatal injuries 10^-7/h

C Major May cause injuries 10^-5/h

D Minor May cause inconvenience 10^-3/h

E No Effect No impact on safety

License CC BY-NC |

SAFETY CERTIFICATION

Real-Time, Safe and Certif ied OS 11

• Software development
− Requirement documents, Software architecture (a lot of documentation and paperwork)
− Development processes (how to commit, peer review and testing, …)
− Traceability, annotations
− Coding standards

• Verification
− Requirement-based testing (~80% of the verification efforts)
− Analysis

− Stack analysis, Partitioning analysis, Timing analysis
− Formal reviews (a lot of paperwork)

− Documents, System under, Tests
− Independence on development (verification engineer cannot commit into the verified code)

• Process description, plans and other paperwork

License CC BY-NC |

WHY CERTIFIED HYPERVISING KERNEL?

Real-Time, Safe and Certif ied OS 12

• Separate critical and non-critical components
− MMU/MPU required

• We need to certify
− The critical components
− The kernel
− Smaller kernel = less work

• Non-critical parts can use
− Off-the-shelf software
− Linux
− => Easier development and lowered certification costs

License CC BY-NC |

MIXED CRITICALITY EXAMPLE

Real-Time, Safe and Certif ied OS 13

• Typical examples of mixed criticality:
− Control loop (critical) vs. diagnostics (non-critical)
− Combined Control Unit for multiple functions in car

Least critical Most critical

https://www.jnovel.co.jp/en/service/compiler/iso26262.html

License CC BY-NC |

PARTITIONING EXAMPLE: AIRBUS A400M

Real-Time, Safe and Certif ied OS 14

Hardware

PikeOS Virtualization Platform

Level B

Ramp, Doors,
Aerial Delivery,

Cargo Locks
...

Level B

Graphics
OpenGL

GUI
HMI

Level C

Winches,
Crane

...

Level D

9 Applications
incl.

Waste & Water

Pictures: Rheimetall Defense A400M

License CC BY-NC |

VERIFICATION EXAMPLE

Real-Time, Safe and Certif ied OS 15

• Testing of ANIS
− ANIS = UDP/IP network stack certified for DO178C - DAL C (safety)
− ANIS has 80 000 LOC of C code
− 755 low-level design requirements, 587 interface requirements, 75 high-level requirements

• ANIS verification (tests only)
− 2 test suites: Low-level test suite and Integration test suite
− 694 low-level test cases, 25 integration test cases
− Test suites have 125 000 LOC of C code
− > 1000 pages of test suite description
− ~ 5000 man-hours of verification effort
− One test case 1-3 man-hours in simplest cases; man-weeks in most complex cases

License CC BY-NC |

EXAMPLES OF HIGH-LEVEL REQUIREMENTS

Real-Time, Safe and Certif ied OS 16

• The Ethernet driver shall forward and separate traffic between up to 3 physical ports
(VLANs).

• A resource partition shall have a statically configurable set of memory requirements
which specify physical memory, memory mapped I/O and port mapped I/O regions
assigned to the partition.

• PikeOS shall mask an interrupt source if no thread is registered as handler for this
interrupt.

License CC BY-NC |

EXAMPLES OF INTERFACE REQUIREMENTS

Real-Time, Safe and Certif ied OS 17

• vm_write() shall write an Ethernet message from the buffer "buff" to the device and return
the number of bytes written in "written_size" and return P4_E_OK.

• The driver shall use interrupt specified by "Int" property.

• The driver shall raise a HM error of type P4_HM_TYPE_P4_E if the GEM hardware has
unsupported version.

License CC BY-NC |

EXAMPLES OF LOW-LEVEL REQUIREMENTS

Real-Time, Safe and Certif ied OS 18

• anisUDP_checkChksum() shall return ANIS_ERR_OK if the computed checksum
matches the value in the header.

• anisUDP_send() shall copy the message payload into the allocated buffer objects,
prefixing the message with the UDP header and leaving sufficient space to prefix the IP
header.

• anisIGMP_sendLeave() returns ANIS_ERR_SPACE if there is no internal buffer to store
the message to send.

License CC BY-NC |

PIKEOS TECHNICAL OVERVIEW

License CC BY-NC |

HISTORY AND „PREDECESSOR“ - L4/X86

Real-Time, Safe and Certif ied OS 20

• Research Micro-Kernel in mid 1990
• http://os.inf.tu-dresden.de/L4/l4doc.html
• Focus on small API (7 syscalls, slightly overloaded)

− Recent x86 Linux ~350 syscalls, PikeOS ~110
− IPC, thread and task management
− No mutexes, file descriptors, IPC used for everything

• Fast IPC for communication & configuration
− IPC can send data
− IPC can also map pages

• Hierarchical Tasks
− The root task has access all the memory and distributes it to children
− Tasks can directly IPC only to parents or siblings

http://os.inf.tu-dresden.de/L4/l4doc.html

License CC BY-NC |

PIKEOS

Real-Time, Safe and Certif ied OS 21

• Microkernel
− Inspired by L4

• https://www.researchgate.net/publication/285592141_Evolution_of_the_PikeOS_Microkernel
− Lot of stuff added since then

• Performance → larger kernel
• Business requirements from customers

• Memory protection (MMU) required
• Includes virtualization hypervisor
• X86, ARM, SPARC, PowerPC, RISC-V
• Eclipse IDE for development and configuration

License CC BY-NC |

PIKEOS ARCHITECTURE

Real-Time, Safe and Certif ied OS 22

• Microkernel (may no longer be true)
− Limited number of system calls
− Only the kernel itself runs in protected mode (since

PikeOS 4.2 not really)

• Userspace is split into „partitions“
− Each partitions holds an application or even an

operating system

• It is possible to put driver into every layer of the
system
− Most drivers are standalone user application

− Thus, their fault will not threaten the kernel
− Some drivers may be compiled into kernel

− This may have improved performance

User Mode

Kernel Mode

Linux Guest
Runtime

Environment

PikeOS
Native

PikeOS System Software

Platform Support
Package (PSP)

Architecture Support
Package (ASP)

PikeOS Microkernel

Hardware

Kernel

License CC BY-NC |

GUEST OS

Real-Time, Safe and Certif ied OS 23

• General
− POSIX
− Linux

• Hardware virtualization
• Para-virtualization

• Domain specific
− ARINC653
− PikeOS native

• Other semi-supported
− Ada, RT JAVA, AUTOSAR, ITRON, RTEMS

License CC BY-NC |

HARD REAL-TIME

Real-Time, Safe and Certif ied OS 24

• System must meet deadlines
− Missed deadline can affect safety

• Deadlines given by
− Physics

• Car must start breaking immediately
− Hardware

• Serial port buffer size – data loss
− System design

• HW and SW must cooperate
• Apollo 11 had problems due to „irq storm“ from faulty radar

− Src: https://www.doneyles.com/LM/Tales.html

License CC BY-NC |

REAL-TIME SCHEDULING

Real-Time, Safe and Certif ied OS 25

• Lot of theory about running the tasks in correct order
− MFF UK, NSWE001 - Embedded and Real Time Systems

− Earlist deadline first scheduling, Rate monotonic scheduling
• In practice simple thread priorities

− QNX, FreeRTOS, PikeOS, VxWorks …
− + Some extensions

• Often without classical time quantum
− Unlike Linux

• On Linux-RT, use pthread_attr_setschedpolicy
− SCHED_FIFO, SCHED_RR, SCHED_DEADLINE
− Documentation: https://bit.ly/3yY0GeP
− API part of POSIX, 1003.13, PSE51, PSE52

License CC BY-NC |

PIKEOS SCHEDULING

Real-Time, Safe and Certif ied OS 26

Time partitions + priorities

TP
Scheduler

Prio 255

254

255

0

254

0

Active TP Scheme 0ms 20ms 40ms 70ms 90ms 150ms

TP0 is PikeOS extension

License CC BY-NC |

WCET

Real-Time, Safe and Certif ied OS 27

= Worst-Case Execution Time

•How long will the code run?
− Will we satisfy the deadline?
− Upper bound (worst-case) is important

•Combination of code analysis and measurement
− PikeOS API function with expected use in real-time scenarios

•Jitter
− Time partition switch

•Tools e.g.: https://www.rapitasystems.com/wcet-tools#rt

License CC BY-NC |

ENEMIES OF REAL-TIME

Real-Time, Safe and Certif ied OS 28

• Shared resources
− Heap, devices, scheduler, CPU time
− Unpredictable state
− Locking

• Multi-processor
− Locking less predictable
− Shared

• Cache
• Memory bandwidth
• Other processor units?

• Devices
− Interrupts

Broadwell die map, copyright Intel

License CC BY-NC |

MORE ENEMIES

Real-Time, Safe and Certif ied OS 29

• Modern hardware
− Lazy algorithms
− Branch predictors
− Out-of-order execution

• Unpredictable pipeline
− TLB, caches
− SMI, ARM Trust Zone etc.

• Modern OS features
− Swap, overcommit
− Copy on Write
− Thread migration

• Complexity in general

License CC BY-NC |

MEMORY MANAGEMENT IN RTOS

Real-Time, Safe and Certif ied OS 30

• Sometimes no MMU at all
− FreeRTOS, some VxWorks variants
− Or just MPU – memory protection units

• Memory regions without paging
• PikeOS: Simple virtual to physical mapping

− Mmap-like syscalls directly fill in page tables, no unmap
X Swap, memory mapped files, copy on write …
 Shared memory
 Memory protection (NX bit etc.)

• Compared with Linux… (correct me if w rong)

• Mmap-like syscalls prepare struct vm_area, page tables on-demand
• Each physical page has a descriptor to track refcounts and other state

License CC BY-NC |

PIKEOS KERNEL MEMORY

Real-Time, Safe and Certif ied OS 31

• User-space needs kernel memory for:
− Threads (kernel stacks)
− Processes
− Memory mappings

• Pre-allocated pools
− Safe limit
− Avoids extra locks

License CC BY-NC |

USER-SPACE MEMORY ALLOCATION

Real-Time, Safe and Certif ied OS 32

• Heap allocator problems
− Locking
− Allocator latency
− Fragmentation
− Unpredictable failures

• General rule: Avoid malloc/free
− Except for initialization
− Pre-allocate everything
− Malloc/free is error prone anyway

• Or use task-specific allocator

License CC BY-NC |

MULTI-PROCESSOR

Real-Time, Safe and Certif ied OS 33

• Threads are bound to single CPU
− No automatic balancing of tasks
− PikeOS has implicit migration on IPC
− Scheduler ready queues per-CPU

• Kernel should avoid locks
• Especially in real-time syscalls
• If locks are fair (FIFO queue), WCET is

− num_cpus * lock_held_time

License CC BY-NC |

MULTI-PROCESSOR

Real-Time, Safe and Certif ied OS 34

• Predicting resources like caches and memory is difficult
• Disable HyperThreading

− it is not worth the trouble
• SYSGO’s recommendation “avoid the problem”
• Better solutions are being investigated

Non-real-time APP1

Linux Real-time APP Non-real-time APP2

Non-real-time APP3Idle

CPU 1

CPU 2

License CC BY-NC |

OTHER CONSIDERATIONS

Real-Time, Safe and Certif ied OS 35

• Worst-case complexity
− Hash-map is O(1) in practice, O(n) in worst case
− AVL or RB trees are always O(log n)

• Log messages may slow you down
• Keep the code small (certification)

− Sadly, it often is better to copy and specialize the code
• General guiding principle:

Configure/initialize most things statically
− Static number of FDs, buffers etc.

License CC BY-NC |

OTHER CONSIDERATIONS

Real-Time, Safe and Certif ied OS 36

• Control over the platform
− You are not alone on X86

• System Management Mode
• Intel Management Engine
• AMD Platform Security Processor

License CC BY-NC |

INTERRUPT HANDLING

Real-Time, Safe and Certif ied OS 37

• Interrupt handling sequence:
1. HW signals interrupt
2. CPU runs kernel’s interrupt handler
3. Kernel masks (disables) the interrupt
4. Unblocks the thread blocked in wait_for_interrupt
5. Thread handles interrupt
6. Calls wait_for_interrupt
7. Kernel blocks the thread
8. Unmasks the interrupt
+ variations for different platforms

License CC BY-NC |

USER-SPACE DRIVERS

Real-Time, Safe and Certif ied OS 38

• Modern hardware looks like a memory (MMIO)
• Can be mapped to user-space using MMU

− PikeOS is configured to map the IO memory into the driver’s partition address space
• Most drivers use file API as interface with its client application

− open(“eth0:0”, O_WR_RD, &fd); // open the Ethernet driver device
− read(fd, ethernet_frame_buf, 1536); // receive a frame from Ethernet network
− write(fd, my_frame_buf, 100); // send a frame to Ethernet network
− ioctl(fd, NET_IOCTL_GET_LINK_STATUS, &status); // check if the network link is up or down

• PikeOS interrupt handler is a user-space thread
− with regular scheduling

for(;;) {

wait_for_interrupt();

/* handle the interrupt */
}

License CC BY-NC |

IOMMU

Real-Time, Safe and Certif ied OS 39

• Q: Is MMU enough to isolate drivers?
• A: No, because of DMA
• The driver can tell device to read/write memory

− Bypasses CPU MMU
• We can

− Ignore the problem
− Disable DMA
− Use IOMMU

CPU

Disk

RAM

BUS
(PCI-e …)

Please read disk, store
data at 0xDEADBEEF

Please write
“kernel_shellcode.bin”

to 0xDEADBEEF

M
M
U

License CC BY-NC |

IOMMU

Real-Time, Safe and Certif ied OS 40

• IOMMU is MMU for the Non-CPU Bus Masters
• Available on modern x86, ARM and PowerPC

− Different hardware, same goal

License CC BY-NC |

WHY VIRTUALIZATION?

Real-Time, Safe and Certif ied OS 41

• To use Linux
− … and Linux device drivers
− Safely

• Offered by
− SYSGO
− GreenHills
− VxWorks …

• Minimal hypervisor part of the kernel
• VMs subject to access rights

− … and scheduling

License CC BY-NC |

VIRTUALIZATION COMPARISON

Real-Time, Safe and Certif ied OS 42

• PikeOS offers
− Para-virtualization (similar to User-mode Linux)
− HW Assisted virtualization

Linux Kernel

KVM

QEMU

Guest Linux

PikeOS

Hypervisor

HWVIRT Manager

Guest Linux

PikeOS

SysEmu

P4Linux

Linux Kernel

PTrace

User-mode
Linux

Hardware Virtualization Para-virtualization

License CC BY-NC |

P4LINUX

Real-Time, Safe and Certif ied OS 43

• Linux kernel as a PikeOS process
• Runs unmodified Linux executables
• Inspired by User Mode Linux
• Virtual CPUs backed by PikeOS threads
• Linux processes backed by PikeOS processes
• sysemu_enter syscall to “run the userspace”

− Use address space of other PikeOS process
− Start executing code in this context
− Returns control on exceptions, privileged instructions etc.

• Also returns to the old address space

License CC BY-NC |

P4LINUX

Real-Time, Safe and Certif ied OS 44

• Full Linux memory management
− Paging, CoW, memory mapped files …
− Page tables simulated by PikeOS processes

• Linux kernel not mapped in user-space at all
− Now pretty standard with Spectre & Meltdown mitigations

• Para-virtual drivers for PikeOS devices
• Code to access passed-through devices

− Most drivers are well behaved and use proper APIs to map device memory and handle interrupts
− => can be used unchanged
− E.g. You can play OpenArena on an Intel GPU

License CC BY-NC |

OTHER PIKEOS FEATURES

Real-Time, Safe and Certif ied OS 45

• Interpartition communication
− Shared memory
− Queuing ports, Sampling ports

• Synchronization primitives
− Mutexes
− Condition variables
− Barriers
− Semaphores

• Volume providers
− CFS (Certifiable filesystem)

• Integration-time xml configuration
− PikeOS, drivers and optionally applications have build-time xml configuration
− Integrated with CODEO for pleasant user experience

License CC BY-NC |

PIKEOS AS SECURING COMPONENT

License CC BY-NC |

SECURITY AND REAL-TIME SYSTEMS

Real-Time, Safe and Certif ied OS 47

• Connecting embedded devices to internet (internet of things)
− Increasing trend in the last decade
− Somewhat limited know-how about how to secure embedded software among device

manufacturers
• Connecting safety-critical software to internet extends the possibility to disable the device

by a third-party
• How much is this real today?

− Jeep Cherokee, 2015, documented a possibility of disabling brakes over Internet (cellular phone
connection)

− http://illmatics.com/Remote%20Car%20Hacking.pdf

License CC BY-NC |

CERTIFICATION / SECURITY

Real-Time, Safe and Certif ied OS 48

• Common Criteria, Security Target
• Trusted world (kernel, PSP, some partitions)
• Untrusted world (partitions with low security demands (e.g. Linux))
• Well-defined interface between the two worlds

− Attack surface syscalls to kernel, ioctl and other communication channels between the trusted
and untrusted world

− Verification approach
• Some safety requirements marked as security relevant, these are then tested more

extensively or just differently
• Vulnerability analysis instead of some safety-related analyses

• Security board monitors reported vulnerabilities for other operating systems
• Fuzz tests
• Increased demands for physical security

License CC BY-NC |

PIKEOS SECURITY USE CASE - CAR INFOTAINMENT UNIT

Real-Time, Safe and Certif ied OS 49

OMAP-DM3730 is controlled by embedded Linux that manages:
•Infotainment devices
•Internet access
•Renesas V850 local firmware update (update-v850-firmware.sh)

-> once hacked the hacker has direct access to Renesas V850 and consequently the CAN bus

Uconnect Infotainment System

Renesas V850

Locks

Blinker

ABS

Steering

Parking

SPI CAN

Internet

OMAP-DM3730

Cellurar and
Wifi device

Heating,
Volume,

Display, ...
GPS

License CC BY-NC |

HARDENING WITH HYPERVISOR AND PARTITIONING

Real-Time, Safe and Certif ied OS 50

Uconnect Infotainment System

Renesas V850

Partition 1
Linux for infotainment

Cellurar and
Wifi device

Renesas V850

Heating,
Volume,
Display,

...

GPS

SPI

Internet

PikeOS running on OMAP-DM3730 with secure boot

Partition 2
SPI whitelisting

application

Partition 3
Linux for firmware

update

OMAP-DM3730

License CC BY-NC |

Vehicule
API

Eth. Dev. SD dev.

PikeOS 4.2

RCAR-H3
KingfisherUSB Dev.

Root FS

Root FSWIFI
Access Point

Capability
Cluster
Application
(screen #1)

IVI
Application
(screen #2)

AUTOSAR
(Classic)

Application

vG
PU
drv

Android

vet
h1

IVI
Applicati

ons

Cores 1,2,3

US
B
dr
v

Core 8

Network
Security
(ELinOS)

veth veth

Net. Filter

Core 5

PikeOS
Native

(services)

Eth.
Drv
+

VLAN
Tag

ch. 3

ch. 2

ch. 1

ch. 0

Core 6Core 7

MICROSAR
(OS + CAN
+ MCAL)

port

CAN Ctlr

CAN
Simulation

Linux
(Access
Point)

WIFI
drv

WIIF dev.

Swich

Vlan 2
OEM Network

Vlan 1
Internet

veth0

Linux

Cluster
Application

Core 4

veth veth

Display
Mgt

SD
drv

vGPU
drv

DU Dev. GPU dev.

veth1

veth

IDS
(network)

Linux

Cores 1,2,3

Authentication

authorization

Accounting / ids
(host based)

ANOTHER HARDENING EXAMPLE

License CC BY-NC |

TOPICS FOR THESIS (AMONG OTHERS)

License CC BY-NC |

POSSIBLE TOPICS

Real-Time, Safe and Certif ied OS 53

• IAT0131 Modify the HWVIRT to allow a more modular approach
to VMM-drivers and P4BUS-drivers.

• IAT0132 Support Intel Processor Trace (PT) in PikeOS.
• IAT0137 Pluggable Scheduling Policies in the PikeOS kernel.
• IAT0142 Implement RDMA / RoCEv2 Support for PikeOS
• IAT0143 Power Management in PikeOS (suspend/resume)
• IAT0144 VirtIO Interface for PikeOS HWVIRT
• IAT0145 Precision Time Protocol for PikeOS
• IAT0147 Implement fuzz testing for certified network stack (ANIS)

License CC BY-NC |

SYSGO GmbH
Am Pfaffenstein 8

55270 Klein-Winternheim
Germany

...

Student Contact (CZ)
tomas.martinec@sysgo.com

QUESTIONS OR COMMENTS?

Subscribe, Like and Follow:

www.sysgo.com

...

www.sysgo.com/twitter

www.sysgo.com/linkedin

www.sysgo.com/youtube

54

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54

