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• Engineering company
• ~150 people (incl. support staff, management etc.)
• Flagship product

− PikeOS
− Real-time operating system certified for safety and security
− Only other 4 such systems supporting certification available worldwide

• Secondary products
− ElinOS – Embedded linux distribution maintained by Sysgo with smooth integration with PikeOS
− PikeOS for MPU – PikeOS spin-off aimed for embedded platforms without MMU
− CODEO – Eclipse-based IDE for Sysgo products
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INTRODUCTION
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• Realtime systems design patterns
− Predictability as goal
− Offline/integration time/fixed design
− Simplicity

• Usual differences between Realtime vs General purpose operating systems
− Scheduling

− usually threads do not have quantums
− predictable scheduling scheme

− Resource management
− stronger separation mechanisms
− no malloc()/free() during regular operation of the device
− no fork() or similar process creation API => OS image contains the apps to run 

− Features
− lack of drivers, frequent customization for the hardware platform specifics
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WHERE CAN I GET PIKEOS?
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• Not available as consumer product (B2B only)
• Typical workflow:

1. Customer evaluates the HW (System on Chip) and SW (the OS)
2. We provide PikeOS either for QEMU or a SoC Development board 

and some training or support
3. Customer builds a custom board for that SoC, with special peripherals
4. We provide OS support for his custom board
5. We provide certification documents (if necessary)

• Best for certified and mixed-criticality usage. Alternatives:
− Linux with RT patches? 
− Lots of other RTOSes
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CERTIFICATION
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WHAT IS SAFETY AND SECURITY?
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• System does not harm the environment
− Czech translation overloaded: (provozní) bezpečnost

• Safety ≠ Flawless, if there is:
− Safe backup

• Airbus A340 rudder can still be controlled mechanically
− Safe failure-mode

• Stop position is safe failure mode for a rail signal
− Or if it is harmless

• In-flight entertainment
• Safety ≠ Security (i.e. System is resistant to cyberattacks)

− But there are overlaps
• Safety-critical device under control of an attacker is not safe

• Is certification perfect?
− Boeing 787s must be restarted every 51 days

• https://www.theregister.com/2020/04/02/boeing_787_power_cycle_51_days_stale_data

By Wiki user User:Stannered



License CC BY-NC  |

SAFE AND SECURE SOFTWARE – MEANING?
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• In Sysgo we mostly use administrative perspective on these terms
• Safety

− We call software safe (synonymously reliable, dependent) when it has been developed, verified 
and certified according to the proper level of a safety standard.

− Computations of reliability (e.g. faults per hour of service, ...) are applied very rarely.

• Security
− We call software secure when it has been developed, verified and certified according to the 

proper level a of security standard and all this has been done in environment or conditions 
complient to that standard.



License CC BY-NC  |

CERTIFICATION – WHY?
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• Safety – In some domains safety-critical software cannot be put into service without being 
certified on proper level for the proper certification standard
− And of course safety certification contributes to safety to certain extent

• Security – Decision makers holding responsibility may appreciate a solid argument why 
they did their best for security if bad things happen and serious disputes may occur
− And of course security certification contributes to security to certain extent
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SAFETY AND SECURITY CERTIFICATION
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We provide Certification Kits for PikeOS for a wide 
range of industry domains and up to the highest levelsSafety: ECSS-E-40 - Space

"Software Engineering"

Safety: ISO 26262 - Automotive ASIL - Automotive Safety Integrity Level

"Road vehicles - Functional Safety"

Safety: DO-178C - Avionics DAL - Design Assurance Level

„Software Considerations in Airborne Systems and Equipment Certification“

Safety: EN 50128/29 - Railway SIL - Safety Integrity Level

"Software for train control and management systems"

Safety: IEC 61508 - Industry SIL - Safety Integrity Level

"Functional Safety of Electrical / Electronic / Programmable  Electronic 
Safety-related Systems"

Security: SAR - Avionics SAL - Security Assurance Level

„Airbus Security Standard“

Security: ISO/IEC 15408-1/2/3 – Industry Evaluation Assurance Level

"Common Criteria for Information Technology Security Evaluation"

D C B A

D C B A

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4 5 6 7
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• Design Assurance levels (DAL) from A to E

DO178 SAFETY LEVELS

DAL Failure condition Consequences Failure Rate
A Catastrophic May cause an airplane crash 10^-9/h

B Hazardous May cause fatal injuries 10^-7/h

C Major May cause injuries 10^-5/h

D Minor May cause inconvenience 10^-3/h

E No Effect No impact on safety
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SAFETY CERTIFICATION
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• Software development
− Requirement documents, Software architecture (a lot of documentation and paperwork)
− Development processes (how to commit, peer review and testing, …)
− Traceability, annotations
− Coding standards

• Verification
− Requirement-based testing (~80% of the verification efforts)
− Analysis

− Stack analysis, Partitioning analysis, Timing analysis
− Formal reviews (a lot of paperwork)

− Documents, System under, Tests
− Independence on development (verification engineer cannot commit into the verified code)

• Process description, plans and other paperwork



License CC BY-NC  |

WHY CERTIFIED HYPERVISING KERNEL?
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• Separate critical and non-critical components
− MMU/MPU required

• We need to certify
− The critical components
− The kernel
− Smaller kernel = less work

• Non-critical parts can use 
− Off-the-shelf software
− Linux
− => Easier development and lowered certification costs
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MIXED CRITICALITY EXAMPLE
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• Typical examples of mixed criticality:
− Control loop (critical) vs. diagnostics (non-critical)
− Combined Control Unit for multiple functions in car 

Least critical Most critical

https://www.jnovel.co.jp/en/service/compiler/iso26262.html
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PARTITIONING EXAMPLE: AIRBUS A400M
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Hardware

PikeOS Virtualization Platform

Level B

Ramp, Doors, 
Aerial Delivery, 

Cargo Locks
...

Level B

Graphics
OpenGL

GUI
HMI

Level C

Winches, 
Crane

...

Level D

9 Applications
incl.

Waste & Water

Pictures: Rheimetall Defense A400M 
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VERIFICATION EXAMPLE
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• Testing of ANIS
− ANIS = UDP/IP network stack certified for DO178C - DAL C (safety)
− ANIS has 80 000 LOC of C code
− 755 low-level design requirements, 587 interface requirements, 75 high-level requirements

• ANIS verification (tests only)
− 2 test suites: Low-level test suite and Integration test suite
− 694 low-level test cases, 25 integration test cases
− Test suites have 125 000 LOC of C code
− > 1000 pages of test suite description
− ~ 5000 man-hours of verification effort
− One test case 1-3 man-hours in simplest cases; man-weeks in most complex cases
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EXAMPLES OF HIGH-LEVEL REQUIREMENTS
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• The Ethernet driver shall forward and separate traffic between up to 3 physical ports 
(VLANs).

• A resource partition shall have a statically configurable set of memory requirements 
which specify physical memory, memory mapped I/O and port mapped I/O regions 
assigned to the partition.

• PikeOS shall mask an interrupt source if no thread is registered as handler for this 
interrupt.
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EXAMPLES OF INTERFACE REQUIREMENTS
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• vm_write() shall write an Ethernet message from the buffer "buff" to the device and return 
the number of bytes written in "written_size" and return P4_E_OK.

• The driver shall use interrupt specified by "Int" property.

• The driver shall raise a HM error of type P4_HM_TYPE_P4_E if the GEM hardware has 
unsupported version.
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EXAMPLES OF LOW-LEVEL REQUIREMENTS
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• anisUDP_checkChksum() shall return ANIS_ERR_OK if the computed checksum 
matches the value in the header.

• anisUDP_send() shall copy the message payload into the allocated buffer objects, 
prefixing the message with the UDP header and leaving sufficient space to prefix the IP 
header.

• anisIGMP_sendLeave() returns ANIS_ERR_SPACE if there is no internal buffer to store 
the message to send.
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PIKEOS TECHNICAL OVERVIEW
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HISTORY AND „PREDECESSOR“ - L4/X86

Real-Time, Safe and Certif ied OS 20

• Research Micro-Kernel in mid 1990
• http://os.inf.tu-dresden.de/L4/l4doc.html
• Focus on small API (7 syscalls, slightly overloaded)

− Recent x86 Linux ~350 syscalls, PikeOS ~110
− IPC, thread and task management
− No mutexes, file descriptors, IPC used for everything

• Fast IPC for communication & configuration
− IPC can send data
− IPC can also map pages

• Hierarchical Tasks
− The root task has access all the memory and distributes it to children
− Tasks can directly IPC only to parents or siblings

http://os.inf.tu-dresden.de/L4/l4doc.html
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PIKEOS
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• Microkernel
− Inspired by L4

• https://www.researchgate.net/publication/285592141_Evolution_of_the_PikeOS_Microkernel
− Lot of stuff added since then

• Performance → larger kernel
• Business requirements from customers

• Memory protection (MMU) required
• Includes virtualization hypervisor
• X86, ARM, SPARC, PowerPC, RISC-V
• Eclipse IDE for development and configuration
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PIKEOS ARCHITECTURE
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• Microkernel (may no longer be true)
− Limited number of system calls
− Only the kernel itself runs in protected mode (since 

PikeOS 4.2 not really)

• Userspace is split into „partitions“
− Each partitions holds an application or even an 

operating system

• It is possible to put driver into every layer of the
system
− Most drivers are standalone user application

− Thus, their fault will not threaten the kernel
− Some drivers may be compiled into kernel

− This may have improved performance

User Mode

Kernel Mode

Linux Guest
Runtime

Environment

PikeOS
Native

PikeOS System Software

Platform Support
Package (PSP)

Architecture Support
Package (ASP)

PikeOS Microkernel

Hardware

Kernel
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GUEST OS
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• General
− POSIX
− Linux

• Hardware virtualization
• Para-virtualization

• Domain specific
− ARINC653
− PikeOS native

• Other semi-supported
− Ada, RT JAVA, AUTOSAR, ITRON, RTEMS
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HARD REAL-TIME
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• System must meet deadlines
− Missed deadline can affect safety

• Deadlines given by
− Physics

• Car must start breaking immediately
− Hardware

• Serial port buffer size – data loss
− System design

• HW and SW must cooperate
• Apollo 11 had problems due to „irq storm“ from faulty radar

− Src: https://www.doneyles.com/LM/Tales.html
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REAL-TIME SCHEDULING
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• Lot of theory about running the tasks in correct order
− MFF UK, NSWE001 - Embedded and Real Time Systems

− Earlist deadline first scheduling, Rate monotonic scheduling
• In practice simple thread priorities

− QNX, FreeRTOS, PikeOS, VxWorks …
− + Some extensions

• Often without classical time quantum
− Unlike Linux

• On Linux-RT, use pthread_attr_setschedpolicy
− SCHED_FIFO, SCHED_RR, SCHED_DEADLINE
− Documentation: https://bit.ly/3yY0GeP
− API part of POSIX, 1003.13, PSE51, PSE52
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PIKEOS SCHEDULING
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Time partitions + priorities

TP
Scheduler

Prio 255

254

255

0

254

0

Active TP Scheme 0ms    20ms    40ms        70ms   90ms          150ms

TP0 is PikeOS extension
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WCET
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= Worst-Case Execution Time

•How long will the code run?
− Will we satisfy the deadline?
− Upper bound (worst-case) is important

•Combination of code analysis and measurement
− PikeOS API function with expected use in real-time scenarios

•Jitter
− Time partition switch

•Tools e.g.: https://www.rapitasystems.com/wcet-tools#rt
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ENEMIES OF REAL-TIME
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• Shared resources
− Heap, devices, scheduler, CPU time
− Unpredictable state
− Locking

• Multi-processor
− Locking less predictable
− Shared

• Cache
• Memory bandwidth
• Other processor units?

• Devices
− Interrupts

Broadwell die map, copyright Intel
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MORE ENEMIES
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• Modern hardware
− Lazy algorithms
− Branch predictors
− Out-of-order execution

• Unpredictable pipeline
− TLB, caches
− SMI, ARM Trust Zone etc.

• Modern OS features
− Swap, overcommit
− Copy on Write
− Thread migration

• Complexity in general
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MEMORY MANAGEMENT IN RTOS
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• Sometimes no MMU at all
− FreeRTOS, some VxWorks variants
− Or just MPU – memory protection units

• Memory regions without paging
• PikeOS: Simple virtual to physical mapping

− Mmap-like syscalls directly fill in page tables, no unmap
X Swap, memory mapped files, copy on write …
 Shared memory
 Memory protection (NX bit etc.)

• Compared with Linux… (correct me if w rong)

• Mmap-like syscalls prepare struct vm_area, page tables on-demand
• Each physical page has a descriptor to track refcounts and other state
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PIKEOS KERNEL MEMORY
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• User-space needs kernel memory for:
− Threads (kernel stacks)
− Processes
− Memory mappings

• Pre-allocated pools
− Safe limit
− Avoids extra locks
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USER-SPACE MEMORY ALLOCATION
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• Heap allocator problems
− Locking
− Allocator latency
− Fragmentation
− Unpredictable failures

• General rule: Avoid malloc/free
− Except for initialization
− Pre-allocate everything
− Malloc/free is error prone anyway

• Or use task-specific allocator
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MULTI-PROCESSOR

Real-Time, Safe and Certif ied OS 33

• Threads are bound to single CPU
− No automatic balancing of tasks
− PikeOS has implicit migration on IPC
− Scheduler ready queues per-CPU

• Kernel should avoid locks
• Especially in real-time syscalls
• If locks are fair (FIFO queue), WCET is

− num_cpus * lock_held_time
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MULTI-PROCESSOR
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• Predicting resources like caches and memory is difficult
• Disable HyperThreading

− it is not worth the trouble
• SYSGO’s recommendation “avoid the problem”
• Better solutions are being investigated

Non-real-time APP1

Linux Real-time APP Non-real-time APP2

Non-real-time APP3Idle

CPU 1

CPU 2
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OTHER CONSIDERATIONS
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• Worst-case complexity
− Hash-map is O(1) in practice, O(n) in worst case
− AVL or RB trees are always O(log n)

• Log messages may slow you down
• Keep the code small (certification)

− Sadly, it often is better to copy and specialize the code
• General guiding principle:

Configure/initialize most things statically
− Static number of FDs, buffers etc.



License CC BY-NC  |

OTHER CONSIDERATIONS
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• Control over the platform
− You are not alone on X86

• System Management Mode
• Intel Management Engine
• AMD Platform Security Processor
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INTERRUPT HANDLING
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• Interrupt handling sequence:
1. HW signals interrupt
2. CPU runs kernel’s interrupt handler
3. Kernel masks (disables) the interrupt
4. Unblocks the thread blocked in wait_for_interrupt
5. Thread handles interrupt
6. Calls wait_for_interrupt
7. Kernel blocks the thread
8. Unmasks the interrupt
+ variations for different platforms
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USER-SPACE DRIVERS
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• Modern hardware looks like a memory (MMIO)
• Can be mapped to user-space using MMU

− PikeOS is configured to map the IO memory into the driver’s partition address space
• Most drivers use file API as interface with its client application

− open(“eth0:0”, O_WR_RD, &fd);       // open the Ethernet driver device
− read(fd, ethernet_frame_buf, 1536); // receive a frame from Ethernet network
− write(fd, my_frame_buf, 100);           // send a frame to Ethernet network
− ioctl(fd, NET_IOCTL_GET_LINK_STATUS, &status); // check if the network link is up or down

• PikeOS interrupt handler is a user-space thread
− with regular scheduling

for(;;) {

wait_for_interrupt();

/* handle the interrupt */
}
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IOMMU
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• Q: Is MMU enough to isolate drivers?
• A: No, because of DMA
• The driver can tell device to read/write memory

− Bypasses CPU MMU
• We can

− Ignore the problem
− Disable DMA
− Use IOMMU

CPU

Disk

RAM

BUS
(PCI-e …)

Please read disk, store 
data at 0xDEADBEEF

Please write 
“kernel_shellcode.bin”

to 0xDEADBEEF

M
M
U
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IOMMU
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• IOMMU is MMU for the Non-CPU Bus Masters
• Available on modern x86, ARM and PowerPC

− Different hardware, same goal
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WHY VIRTUALIZATION?
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• To use Linux
− … and Linux device drivers
− Safely

• Offered by
− SYSGO
− GreenHills
− VxWorks …

• Minimal hypervisor part of the kernel
• VMs subject to access rights

− … and scheduling
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VIRTUALIZATION COMPARISON
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• PikeOS offers
− Para-virtualization (similar to User-mode Linux)
− HW Assisted virtualization

Linux Kernel

KVM

QEMU 

Guest Linux

PikeOS

Hypervisor

HWVIRT Manager

Guest Linux

PikeOS

SysEmu

P4Linux

Linux Kernel

PTrace

User-mode 
Linux

Hardware Virtualization Para-virtualization
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P4LINUX
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• Linux kernel as a PikeOS process
• Runs unmodified Linux executables
• Inspired by User Mode Linux
• Virtual CPUs backed by PikeOS threads
• Linux processes backed by PikeOS processes
• sysemu_enter syscall to “run the userspace”

− Use address space of other PikeOS process
− Start executing code in this context
− Returns control on exceptions, privileged instructions etc.

• Also returns to the old address space
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P4LINUX
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• Full Linux memory management
− Paging, CoW, memory mapped files …
− Page tables simulated by PikeOS processes

• Linux kernel not mapped in user-space at all
− Now pretty standard with Spectre & Meltdown mitigations

• Para-virtual drivers for PikeOS devices
• Code to access passed-through devices

− Most drivers are well behaved and use proper APIs to map device memory and handle interrupts
− => can be used unchanged
− E.g. You can play OpenArena on an Intel GPU
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OTHER PIKEOS FEATURES

Real-Time, Safe and Certif ied OS 45

• Interpartition communication
− Shared memory
− Queuing ports, Sampling ports

• Synchronization primitives
− Mutexes
− Condition variables
− Barriers
− Semaphores

• Volume providers
− CFS (Certifiable filesystem)

• Integration-time xml configuration
− PikeOS, drivers and optionally applications have build-time xml configuration
− Integrated with CODEO for pleasant user experience
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PIKEOS AS SECURING COMPONENT
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SECURITY AND REAL-TIME SYSTEMS
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• Connecting embedded devices to internet (internet of things)
− Increasing trend in the last decade
− Somewhat limited know-how about how to secure embedded software among device 

manufacturers
• Connecting safety-critical software to internet extends the possibility to disable the device 

by a third-party
• How much is this real today?

− Jeep Cherokee, 2015, documented a possibility of disabling brakes over Internet (cellular phone 
connection)

− http://illmatics.com/Remote%20Car%20Hacking.pdf
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CERTIFICATION / SECURITY
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• Common Criteria, Security Target
• Trusted world (kernel, PSP, some partitions)
• Untrusted world (partitions with low security demands (e.g. Linux))
• Well-defined interface between the two worlds

− Attack surface syscalls to kernel, ioctl and other communication channels between the trusted 
and untrusted world

− Verification approach
• Some safety requirements marked as security relevant, these are then tested more 

extensively or just differently
• Vulnerability analysis instead of some safety-related analyses

• Security board monitors reported vulnerabilities for other operating systems
• Fuzz tests
• Increased demands for physical security
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PIKEOS SECURITY USE CASE - CAR INFOTAINMENT UNIT
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OMAP-DM3730 is controlled by embedded Linux that manages:
•Infotainment devices
•Internet access
•Renesas V850 local firmware update (update-v850-firmware.sh)

-> once hacked the hacker has direct access to Renesas V850 and consequently the CAN bus

Uconnect Infotainment System

Renesas V850

Locks

Blinker

ABS

Steering

Parking

SPI CAN

Internet

OMAP-DM3730

Cellurar and
Wifi device

Heating,
Volume,

Display, ...
GPS
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HARDENING WITH HYPERVISOR AND PARTITIONING

Real-Time, Safe and Certif ied OS 50

Uconnect Infotainment System

Renesas V850

Partition 1
Linux for infotainment

Cellurar and
Wifi device

Renesas V850

Heating,
Volume,
Display,

...

GPS

SPI

Internet

PikeOS running on OMAP-DM3730 with secure boot

Partition 2
SPI whitelisting

application

Partition 3
Linux for firmware

update

OMAP-DM3730
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Vehicule
API

Eth. Dev. SD dev.

PikeOS 4.2

RCAR-H3
KingfisherUSB Dev.

Root FS

Root FSWIFI 
Access Point

Capability
Cluster
Application
(screen #1)

IVI
Application
(screen #2)

AUTOSAR
(Classic)

Application

vG
PU
drv

Android

vet
h1

IVI
Applicati

ons

Cores 1,2,3

US
B 
dr
v

Core 8

Network
Security
(ELinOS)

veth veth

Net. Filter

Core 5

PikeOS
Native

(services)

Eth. 
Drv
+

VLAN
Tag

ch. 3

ch. 2

ch. 1

ch. 0

Core 6Core 7

MICROSAR
(OS + CAN 
+ MCAL)

port

CAN Ctlr

CAN
Simulation

Linux
(Access
Point)

WIFI
drv

WIIF dev.

Swich

Vlan 2
OEM Network

Vlan 1
Internet

veth0

Linux

Cluster
Application

Core 4

veth veth

Display 
Mgt

SD 
drv

vGPU
drv

DU Dev. GPU dev.

veth1

veth

IDS 
(network)

Linux

Cores 1,2,3

Authentication

authorization

Accounting / ids
(host based)

ANOTHER HARDENING EXAMPLE
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TOPICS FOR THESIS (AMONG OTHERS)
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POSSIBLE TOPICS
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• IAT0131 Modify the HWVIRT to allow a more modular approach 
to VMM-drivers and P4BUS-drivers.

• IAT0132 Support Intel Processor Trace (PT) in PikeOS.
• IAT0137 Pluggable Scheduling Policies in the PikeOS kernel.
• IAT0142 Implement RDMA / RoCEv2 Support for PikeOS
• IAT0143 Power Management in PikeOS (suspend/resume)
• IAT0144 VirtIO Interface for PikeOS HWVIRT
• IAT0145 Precision Time Protocol for PikeOS
• IAT0147 Implement fuzz testing for certified network stack (ANIS)
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SYSGO GmbH
Am Pfaffenstein 8

55270 Klein-Winternheim
Germany 

.......................................................

Student Contact (CZ)
tomas.martinec@sysgo.com 

QUESTIONS OR COMMENTS?

Subscribe, Like and Follow:

www.sysgo.com

...............................................................

www.sysgo.com/twitter

www.sysgo.com/linkedin

www.sysgo.com/youtube
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