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About the Speaker

+ Charles University in Prague, Faculty of Mathematics and Physics

– MSc. (2005), Ph.D. (2015)

– Researcher at the Department of Distributed and Dependable Systems (2008 – 2017)

– Co-author of the HelenOS microkernel multiserver operating system (since 2004)

+ Huawei Technologies

– Senior Research Engineer at the Munich Research Center (2017 – 2019)

– Principal Research Engineer and co-founder of the Dresden Research Center (2019 – 2021)

– Contributing to the HarmonyOS NEXT microkernel-based operating system

+ Kernkonzept GmbH

– Senior Software Engineer (since 2021)

– Contributing to the L4Re microkernel-based operating system framework

https://d3s.mff.cuni.cz/
http://www.helenos.org/
https://en.wikipedia.org/wiki/HarmonyOS#HarmonyOS_NEXT
https://www.kernkonzept.com/
https://l4re.org/
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About the Speaker

+ Invitation: Advanced Operating Systems

– NSWI161

– Summer semester course

∞ Originally since 2017

∞ New form since 2022

– Continuation of the Operating Systems winter semester course

∞ Advanced algorithms and techniques

∞ Focus on challenges and trade-offs of real-world operating systems

– Lectures by yours truly and other invited speakers

https://d3s.mff.cuni.cz/teaching/nswi161/
https://d3s.mff.cuni.cz/teaching/nswi004/
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About Kernkonzept

Owner-
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Kernkonzept Customers

+ infodas

– SDoT Security Gateway and other products

∞ German & NATO SECRET classification

+ genua

– Secure laptop, Cyber data diode

∞ BSI approval for NATO SECRET & EU SECRET

+ Elektrobit

– Wholly-owned subsidiary of Continental

– EB Corbos Hypervisor

∞ Bare-metal mixed-criticality hypervisor for automotive systems (targeting Adaptive AUTOSAR)

∞ Actually running in Volkswagen ID.3 and other cars

+ Electrolux, Airbus, IABG, etc.

40

https://www.infodas.com/en/
https://www.genua.eu/
https://www.elektrobit.com/
https://www.continental.com/en/


 

MISSION-CRITICAL
SAFETY-CRITICAL

001



Critical Systems

+ Mission-critical systems

– Essential to business/organization survival

∞ E.g. on-line banking, state secrets, transport operation, electric grid

– Usually associated with security properties (protecting computers against humans)

∞ Fail-safe design

+ Safety-critical systems

– Essential to human well-being and survival

∞ E.g. medical devices, transport control, nuclear power plant control

– Usually associated with safety properties (protecting humans against computers)

∞ Fail-operational design



 



Operating System Reliability

+ Necessary* condition for general reliability

– Ability to perform its intended function without failure

∞ Probability function depending on assumptions

∞ “An operating system is said to be reliable when a 
typical user has never experienced even a single 
failure in his or her lifetime and does not know 
anybody who has ever experienced a failure.” 
[Tanenbaum 2014]

– Dependability

∞ “Dependability is a measurable and provable degree of 
system's availability, reliability and its maintenance 
support” [IEEE 2004]

Andy Tanenbaum at EuroBSDcon 2014, Sofia, Bulgaria
Photo by Ollivier Robert

* Unfortunately, not a satisfying condition.
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Motivation

+ Avoiding fundamentally unreliable software architecture

– “To me, writing a monolithic system in 1991 is a truly poor idea.” [Tanenbaum 1991]

– “There are no demonstrated examples of highly secure or highly robust unstructured 
(monolithic) systems in the history of computing.” [Shapiro 2006]

– Biggs S., Lee D., Heiser G.: The Jury Is In: Monolithic OS Design Is Flawed: Microkernel-
based Designs Improve Security, ACM 9th Asia-Pacific Workshop on Systems (APSys), 
2018

∞ “While intuitive, the benefits of the small TCB have not been quantified to date. We 
address this by a study of critical Linux CVEs, where we examine whether they 
would be prevented or mitigated by a microkernel-based design. We find that 
almost all exploits are at least mitigated to less than critical severity, and 40 % 
completely eliminated by an OS design based on a verified microkernel, such as 
seL4.”

https://dl.acm.org/doi/10.1145/3265723.3265733
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Microkernel-Based Operating Systems

+ Built according to coherent design principles

– Component-based architecture
∞ Operating system composed of isolated components that communicate via well-

defined interfaces

– Separation of concerns
∞ Each component takes care of a specific well-defined functionality and implements 

it well

– Split of mechanism and policy
∞ Components implement generic mechanisms without implicitly imposing a specific 

policy on the client components

– Least privilege
∞ Components have a minimal set of privileges required to do their job
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Microkernel-Based Operating Systems

+ Typical emerging properties

– Fine-grained components

∞ As opposed to monolithic components

– Minimality of the kernel & trusted computing base

∞ Most mechanisms do not require the privileged CPU mode

∞ File systems, most device drivers, security policies, etc., run as user mode components

– Modularity

∞ Replacing component implementation while keeping the interface

– Seamless virtualization

∞ VMs and tasks are essentially similar entities
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Microkernel-Based Operating Systems

+ Typical emerging properties

– Loose module coupling

∞ Configurability via different composition of modules

∞ Policies in user space and distributed

– Architectural safety, security, reliability and dependability guarantees

∞ Limiting the “blast radius” of faults at run time

– Architectural enabler for advanced reasoning about correctness

∞ Certification

∞ Real-time guarantees

∞ Formal verification
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Abridged History of Microkernels

+ 1969

– RC 4000 Multiprogramming System
∞ Per Brinch Hansen (Regnecentralen)
∞ Separation of mechanism and policy, modularity via isolated concurrently running 

processes, message passing
∞ Same year as Multics

+ 1971

– HYDRA
∞ William Wulf (Carnegie Mellon University)
∞ Capability-based, object-oriented kernel
∞ Around the same time as UNIX
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Abridged History of Microkernels

+ 1979
– EUMEL / L2

∞ Jochen Liedtke (University of Bielefeld)
∞ Microkernel running bitcode virtual machines

+ 1982
– QNX

∞ Gordon Bell, Dan Dodge (University of Waterloo, later Quantum 
Software Systems)

∞ Earliest commercially successful microkernel-based OS (still in active 
development and use today, owned by BlackBerry)
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Abridged History of Microkernels

+ 1985

– CMU Mach

∞ Richard Rashid, Avie Tevanian (Carnegie Mellon University)

∞ Arguably the most widespread microkernel code base

– Core part of the operating systems by Apple (no longer following the 
original design principles) and GNU/Hurd

∞ Highly influential

– Affected the design of Windows NT

– Establishing the usual terminology and conventions

∞ Well-publicized shortcomings
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Abridged History of Microkernels

+ 1988
– L3

∞ Jochen Liedtke (Gesellschaft für Mathematik und Datenverarbeitung, later known as Fraunhofer)
∞ Addressing the main performance issues of CMU Mach

– Synchronous rendezvous-style remote calls instead of asynchronous in-kernel buffered 
message passing

+ 1993
– L4

∞ Order of magnitude performance improvement compared to CMU Mach
– Small and cache-friendly kernel working set, fast-path IPC without complex processing (access 

rights, data interpretation, etc.)
∞ User mode pagers and recursive address spaces
∞ Non-portable hand-written assembly implementation (for 486 and Pentium)
∞ Liedtke J.: Improving IPC by Kernel Design, ACM SIGOPS Operating Systems Review, Volume 27, 

Issue 5, 1993

https://dl.acm.org/doi/10.1145/173668.168633
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L4Re in a Nutshell

L4Re Microkernel / Hypervisor

Hardware

L4Re Run-time Environment

Native driver Native task

uvmm

L4Linux

Non-critical 
VM

Critical
VM

Privileged
mode

Non-privileged
mode

RTOSfr
ee

uvmm ...
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L4Re in a Nutshell
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L4Re

+ Microkernel

– Designed at TU Dresden, follows the historical lineage from L4/x86

∞ Continuity in design, not in code, API or ABI

– Direct predecessor: L4/Fiasco

∞ Original implementation by Michael Hohmuth and others

∞ Fully preemptive kernel targeting real-time workloads

∞ Portable C++ with a custom preprocessor

∞ The name refers to the legal struggles of releasing the original L4/x86 code as open source

– Current: L4Re Microkernel (previously known as Fiasco.OC)

∞ Original implementation by Alexander Warg and others

∞ Object capabilities (popularized by Jonathan S. Shapiro)

∞ Support for x86, x86-64, ARM (32/64), MIPS (32/64) and RISC-V
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L4Re

+ User space

– Original implementation by Alexander Warg and others

– Follows the historical lineage from L4Env

– Specifically targets the object capability API of the L4Re Microkernel

– L4Re-core
∞ User space run-time environment (primarily C and C++)
∞ sigma0 (default pager)
∞ Moe (root task)
∞ Ned (initialization task)

– Catalogue of other user space components / packages / libraries
∞ IO, uvmm, L4Linux, device drivers, file system drivers, etc.
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Academic Roots

+ Vastly different (even conflicting) criteria of success

– Academia: publications, citations
∞ Software project as a vehicle for hosting the research on novel radical ideas

– Publications are the actual products
– Only needs to be sufficiently usable and practical for the evaluation and 

benchmarking
∞ No need to cover all real-world corner cases

– Industry: revenue
∞ Software project as a vehicle for customer satisfaction

– The actual product itself
– Usable and practical for all real-world corner cases

∞ Pragmatism and down-to-earth approaches might win over novel radical ideas
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Commercial Environment

+ Reliably fulfilling the specific needs of (our) customers

+ Better customizability and less unnecessary baggage than the competition

– Modularity helps by itself, but sometimes individual product lines are needed

+ Balance between principled and pragmatic design decisions

– Design principles are the means, not the ends

– Perfection is the enemy of the good

+ State-of-the-art software engineering is at least as important as state-of-the-art 
software architecture

– Work efficiency via processes and tooling

– Avoiding technical debt
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Commercial Environment

+ Stronger safety/security guarantees than the competition

– Already academically demonstrated, but the guarantees need to be practically attested and certified

– Hard to convince an average vendor that more security/safety is needed than Linux can ever provide

∞ Very few companies actually paid a fine* because of a software safety failure or a security vulnerability

– But that day will come as more and more critical infrastructure relies on software

– No-brainer in mission-critical and safety-critical domains

∞ But traditional reliance on hardware solutions

+ Cultivation of research projects

– Infineon, Bosch, Continental, Siemens, Airbus, Fraunhofer, etc.

– ETH KIT, FZI, TU Munich, TU Dresden, University of Postdam, University of Leipzig, University of Bologna, Barcelona 
Supercomputing Center, etc.

* Very few people actually went to jail, too.
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Commercial Environment

+ Interacting with the community

– Dresden has been the hub for operating systems research and development for decades

∞ TU Dresden, Barkhausen Institut, Genode Labs, Cyberus Technology, Huawei DRC, etc.

– Universally adopted the open source development model

– Participating both in academic and community events (OSDI, FOSDEM, etc.)

+ Reaching out to customers

– Somewhat traditional means of increasing visibility

∞ Trade fairs (Embedded World, etc.)

∞ Industry events (Omnisecure, Bitkom Forum, SOAFEE, etc.)

∞ Industrial partnerships (ST, NXP, ARM, etc.)
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Open Source

+ Double-edged sword

– Openness

∞ Enabling community contributions

– Although not that frequent and requiring additional effort

∞ Enabling research without centralized coordination

– Transparency

∞ Actual selling point (no security by obscurity)

∞ Often expected in the operating systems domain (but not universally)

– Sometimes seen as an undesired liability

∞ Some people do not fully understand the GPL license and it might scare them

– Thus moving towards the MIT license



 37

Certification

+ Independently reviewing compliance to requirements
– State-of-the-art software engineering practices

∞ Similar to other engineering fields (e.g. rolling stock certification)

– External audit of code, documentation, development processes, test coverage, 
etc.

– Requirements defined by a specific standard document
∞ Usually informal and semi-formal qualitative and quantitative requirements

– Formal methods only part of the highest levels of certification (and 
never the sole part)

∞ Adherence to coding standards and best practices
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Certification

+ L4Re Separation Kernel accreditation (BSI)
– Requirements for a microkernel-based OS for processing classified data 

up to a level secret
∞ Specifically a scenario with at most one untrusted partition on x86-64

– Accreditation artifacts
∞ Security target, platform specification, secure boot documentation, 

high-level design, low-level design, functional specification, 
configuration specification, secure operations, vulnerability analysis, 
etc.

∞ Tests covering the functional specification

– Completed
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Certification

+ L4Re Common Criteria EAL4+ certification

– Requirements for strong security and capability separation

– Security target similar to the BSI accreditation

– Many (but not all) artifacts shared with the BSI accreditation

∞ x86-64 and ARM, but no secure boot

– Close to being completed
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Certification

+ L4Re ISO 26262 ASIL-B certification

– Safety requirements for automotive safety

∞ Relying on informal requirements

∞ Sufficient for controlling less critical systems (e.g. headlights, brake lights)

– Requirements to follow a quality-managed development process (such as ASPICE) and to follow 
a coding standard (such as MISRA)

– Certification artifacts

∞ Safety case, high-level design, low-level design, 4 levels of functional requirements, safety 
analysis, hazard and operability study, dependency failure analysis, safety test specification

– 100% line, function and branch coverage using unit tests

– Completed via the EB Corbos Hypervisor (Elektrobit/Continental)
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Formal Methods

+ Double-edged sword

– Mathematically-strong guarantees of the formally-verified properties under formally-specified 
proof assumptions

∞ Much stronger than any degree of testing can ever provide

∞ Highly appreciated by critical use cases

– Although their integration into existing certification processes might not be so 
straightforward

– False sense of guarantees when the proof assumptions cannot be always made to hold

∞ Unless the proof assumptions are completely incorrect, the formal proofs still provide some 
conditional assurances

∞ But the price might be unfavorable compared to informal methods

– Tests, although non-exhaustive, actually inherently verify their own assumptions
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Formal Methods

+ Current Kernkonzept approach

– Incremental steps

∞ Specifying an abstract model and a meaningful separation property

∞ Verifying compliance between the abstract model and the implementation

– Model-based testing

– Exhaustive comparison

∞ Improving baseline guarantees (e.g. switching from C++ to Rust)

– Proactive approach, but further steps to be determined by customer needs

∞ Currently there seems to be more supply than demand

– Extremely costly and time-consuming

– Lack of automation in tooling
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Kernkonzept Practically

+ SME in the traditional sense
– Not a start-up, but a long-term sustainable business

∞ Organic growth, no external investors
– Almost flat hierarchy

∞ Everybody has a reasonable awareness of what everybody else is doing
– Pleasant working environment

∞ No “big corporate BS”
– No processes for the sake of processes
– Do whatever it takes to get the job done

∞ Meritocracy, technical challenges and self-learning
– Budget for training, annual hackathon

∞ Work/life balance



 



Working Remotely Practically

+ Great option, but not a silver bullet

– Ideal for certain life periods (e.g. having small children, requiring time flexibility)

– Less ideal for other life periods (e.g. junior positions, developing a fast career)

– Some job agenda more suitable than other

∞ Works well for tasks with longer stretches of individual work and less frequent 
coordination (researching, coding, etc.)

∞ Works less well for tasks with frequent and irregular coordination (people 
management, intense teamwork, etc.)

– Modern technologies help

– Face-to-face interaction still more efficient, with less friction and overhead



Working Remotely Practically

+ Personal tips

– Define and respect physical, temporal and virtual boundaries

∞ Imagine actually going to/from the office every day (despite the commute time in seconds)

∞ Procrastinating is easy, but working long after the “business hours” is even easier (workaholism 
is not uncommon)

∞ Use separate user accounts (or even physical machines) for work and non-work

– Make conscious decisions regarding the flexibility

∞ Except for emergencies, always plan your “away from keyboard” moments ahead of time

∞ Let everyone (especially children) understand that time borrowed during “business hours” 
needs to be repaid during “free hours”

– Work/life balance should not turn into work/life inbalance
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Outro

+ Kernkonzept is successful in ...

– … developing the microkernel-based L4Re in the mission-critical & safety-critical industrial context

– … balancing pragmatic use cases and research

– … achieving certification goals

– … supporting formal verification efforts

– … being a significant part of the community

– … improving the state-of-the-art via proper software architecture and engineering

+ Kernkonzept is open for collaboration

– Assignments, theses, internships, jobs

– Research, EU projects



 THANK YOU
Questions?



 CONTACT US
www.kernkonzept.com
info@kernkonzept.com

https://www.kernkonzept.com/
mailto:info@kernkonzept.com
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Microkernel Overhead

+ A.k.a. the unfounded anxiety that refuses to die

– Liedtke has shown 29 years ago that the overhead is negligeable (assuming proper microkernel design)

– Bershad has argued 32 years ago that the IPC overhead is increasingly irrelevant (since the real-world 
performance of computer systems is dominated by other factors)

– The market share of monolithic operating systems is hardly caused by the lack of IPC overhead alone

∞ The market share of Coca Cola is hardly caused by the taste alone

+ Our customers simply “do not care about the overhead”

– The overall performance of L4Re is satisfactory to them

– Whatever measurable overhead is there, it is considered a reasonable price for the run-time component 
isolation and the safety/security guarantees that are fundamentally not available in monolithic operating 
systems

– The typical deployment of L4Re does not need extremely fine-grained components

https://dl.acm.org/doi/10.1145/224056.224075
https://dl.acm.org/doi/10.5555/646405.692226
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