
 DEVELOPING A MISSION-CRITICAL & 
SAFETY-CRITICAL OPERATING SYSTEM

Martin Děcký



 

INTRODUCTION

000



 3

About the Speaker

+ Charles University in Prague, Faculty of Mathematics and Physics

– MSc. (2005), Ph.D. (2015)

– Researcher at the Department of Distributed and Dependable Systems (2008 – 2017)

– Co-author of the HelenOS microkernel multiserver operating system (since 2004)

+ Huawei Technologies

– Senior Research Engineer at the Munich Research Center (2017 – 2019)

– Principal Research Engineer and co-founder of the Dresden Research Center (2019 – 2021)

– Contributing to the HarmonyOS NEXT microkernel-based operating system

+ Kernkonzept GmbH

– Senior Software Engineer (since 2021)

– Contributing to the L4Re microkernel-based operating system framework

https://d3s.mff.cuni.cz/
http://www.helenos.org/
https://en.wikipedia.org/wiki/HarmonyOS#HarmonyOS_NEXT
https://www.kernkonzept.com/
https://l4re.org/


 4

About the Speaker

+ Invitation: Advanced Operating Systems

– NSWI161

– Summer semester course

∞ Originally since 2017

∞ New form since 2022

– Continuation of the Operating Systems winter semester course

∞ Advanced algorithms and techniques

∞ Focus on challenges and trade-offs of real-world operating systems

– Lectures by yours truly and other invited speakers

https://d3s.mff.cuni.cz/teaching/nswi161/
https://d3s.mff.cuni.cz/teaching/nswi004/


 5

About Kernkonzept

Owner-
managed 

Founded 
2012 

Spin-off from 
TU Dresden 

International 
team of 35 

Wide 
experience 
since 1996 

Continuously 
growing 

Close to 
research and 

innovative

Operating 
system 

specialists  

Located in 
Dresden, 
Germany



 

Kernkonzept Markets



 

Kernkonzept Customers



 8

Kernkonzept Customers

+ infodas

– SDoT Security Gateway and other products

∞ German & NATO SECRET classification

+ genua

– Secure laptop, Cyber data diode

∞ BSI approval for NATO SECRET & EU SECRET

+ Elektrobit

– Wholly-owned subsidiary of Continental

– EB Corbos Hypervisor

∞ Bare-metal mixed-criticality hypervisor for automotive systems (targeting Adaptive AUTOSAR)

∞ Actually running in Volkswagen ID.3 and other cars

+ Electrolux, Airbus, IABG, etc.

40

https://www.infodas.com/en/
https://www.genua.eu/
https://www.elektrobit.com/
https://www.continental.com/en/


 

MISSION-CRITICAL
SAFETY-CRITICAL

001



Critical Systems

+ Mission-critical systems

– Essential to business/organization survival

∞ E.g. on-line banking, state secrets, transport operation, electric grid

– Usually associated with security properties (protecting computers against humans)

∞ Fail-safe design

+ Safety-critical systems

– Essential to human well-being and survival

∞ E.g. medical devices, transport control, nuclear power plant control

– Usually associated with safety properties (protecting humans against computers)

∞ Fail-operational design



 



Operating System Reliability

+ Necessary* condition for general reliability

– Ability to perform its intended function without failure

∞ Probability function depending on assumptions

∞ “An operating system is said to be reliable when a 
typical user has never experienced even a single 
failure in his or her lifetime and does not know 
anybody who has ever experienced a failure.” 
[Tanenbaum 2014]

– Dependability

∞ “Dependability is a measurable and provable degree of 
system's availability, reliability and its maintenance 
support” [IEEE 2004]

Andy Tanenbaum at EuroBSDcon 2014, Sofia, Bulgaria
Photo by Ollivier Robert

* Unfortunately, not a satisfying condition.



 



 



 

FUNDAMENTALLY 
RELIABLE
OPERATING SYSTEMS

010



 16

Motivation

+ Avoiding fundamentally unreliable software architecture

– “To me, writing a monolithic system in 1991 is a truly poor idea.” [Tanenbaum 1991]

– “There are no demonstrated examples of highly secure or highly robust unstructured 
(monolithic) systems in the history of computing.” [Shapiro 2006]

– Biggs S., Lee D., Heiser G.: The Jury Is In: Monolithic OS Design Is Flawed: Microkernel-
based Designs Improve Security, ACM 9th Asia-Pacific Workshop on Systems (APSys), 
2018

∞ “While intuitive, the benefits of the small TCB have not been quantified to date. We 
address this by a study of critical Linux CVEs, where we examine whether they 
would be prevented or mitigated by a microkernel-based design. We find that 
almost all exploits are at least mitigated to less than critical severity, and 40 % 
completely eliminated by an OS design based on a verified microkernel, such as 
seL4.”

https://dl.acm.org/doi/10.1145/3265723.3265733


 17

Microkernel-Based Operating Systems

+ Built according to coherent design principles

– Component-based architecture
∞ Operating system composed of isolated components that communicate via well-

defined interfaces

– Separation of concerns
∞ Each component takes care of a specific well-defined functionality and implements 

it well

– Split of mechanism and policy
∞ Components implement generic mechanisms without implicitly imposing a specific 

policy on the client components

– Least privilege
∞ Components have a minimal set of privileges required to do their job



 18

Microkernel-Based Operating Systems

+ Typical emerging properties

– Fine-grained components

∞ As opposed to monolithic components

– Minimality of the kernel & trusted computing base

∞ Most mechanisms do not require the privileged CPU mode

∞ File systems, most device drivers, security policies, etc., run as user mode components

– Modularity

∞ Replacing component implementation while keeping the interface

– Seamless virtualization

∞ VMs and tasks are essentially similar entities



 19

Microkernel-Based Operating Systems

+ Typical emerging properties

– Loose module coupling

∞ Configurability via different composition of modules

∞ Policies in user space and distributed

– Architectural safety, security, reliability and dependability guarantees

∞ Limiting the “blast radius” of faults at run time

– Architectural enabler for advanced reasoning about correctness

∞ Certification

∞ Real-time guarantees

∞ Formal verification



 



 21

Abridged History of Microkernels

+ 1969

– RC 4000 Multiprogramming System
∞ Per Brinch Hansen (Regnecentralen)
∞ Separation of mechanism and policy, modularity via isolated concurrently running 

processes, message passing
∞ Same year as Multics

+ 1971

– HYDRA
∞ William Wulf (Carnegie Mellon University)
∞ Capability-based, object-oriented kernel
∞ Around the same time as UNIX



 22

Abridged History of Microkernels

+ 1979
– EUMEL / L2

∞ Jochen Liedtke (University of Bielefeld)
∞ Microkernel running bitcode virtual machines

+ 1982
– QNX

∞ Gordon Bell, Dan Dodge (University of Waterloo, later Quantum 
Software Systems)

∞ Earliest commercially successful microkernel-based OS (still in active 
development and use today, owned by BlackBerry)



 23

Abridged History of Microkernels

+ 1985

– CMU Mach

∞ Richard Rashid, Avie Tevanian (Carnegie Mellon University)

∞ Arguably the most widespread microkernel code base

– Core part of the operating systems by Apple (no longer following the 
original design principles) and GNU/Hurd

∞ Highly influential

– Affected the design of Windows NT

– Establishing the usual terminology and conventions

∞ Well-publicized shortcomings



 24

Abridged History of Microkernels

+ 1988
– L3

∞ Jochen Liedtke (Gesellschaft für Mathematik und Datenverarbeitung, later known as Fraunhofer)
∞ Addressing the main performance issues of CMU Mach

– Synchronous rendezvous-style remote calls instead of asynchronous in-kernel buffered 
message passing

+ 1993
– L4

∞ Order of magnitude performance improvement compared to CMU Mach
– Small and cache-friendly kernel working set, fast-path IPC without complex processing (access 

rights, data interpretation, etc.)
∞ User mode pagers and recursive address spaces
∞ Non-portable hand-written assembly implementation (for 486 and Pentium)
∞ Liedtke J.: Improving IPC by Kernel Design, ACM SIGOPS Operating Systems Review, Volume 27, 

Issue 5, 1993

https://dl.acm.org/doi/10.1145/173668.168633


 

011



 26

L4Re in a Nutshell

L4Re Microkernel / Hypervisor

Hardware

L4Re Run-time Environment

Native driver Native task

uvmm

L4Linux

Non-critical 
VM

Critical
VM

Privileged
mode

Non-privileged
mode

RTOSfr
ee

uvmm ...



 27

L4Re in a Nutshell



 28

L4Re

+ Microkernel

– Designed at TU Dresden, follows the historical lineage from L4/x86

∞ Continuity in design, not in code, API or ABI

– Direct predecessor: L4/Fiasco

∞ Original implementation by Michael Hohmuth and others

∞ Fully preemptive kernel targeting real-time workloads

∞ Portable C++ with a custom preprocessor

∞ The name refers to the legal struggles of releasing the original L4/x86 code as open source

– Current: L4Re Microkernel (previously known as Fiasco.OC)

∞ Original implementation by Alexander Warg and others

∞ Object capabilities (popularized by Jonathan S. Shapiro)

∞ Support for x86, x86-64, ARM (32/64), MIPS (32/64) and RISC-V



 29

L4Re

+ User space

– Original implementation by Alexander Warg and others

– Follows the historical lineage from L4Env

– Specifically targets the object capability API of the L4Re Microkernel

– L4Re-core
∞ User space run-time environment (primarily C and C++)
∞ sigma0 (default pager)
∞ Moe (root task)
∞ Ned (initialization task)

– Catalogue of other user space components / packages / libraries
∞ IO, uvmm, L4Linux, device drivers, file system drivers, etc.



 

KERNKONZEPT

100



 31

Academic Roots

+ Vastly different (even conflicting) criteria of success

– Academia: publications, citations
∞ Software project as a vehicle for hosting the research on novel radical ideas

– Publications are the actual products
– Only needs to be sufficiently usable and practical for the evaluation and 

benchmarking
∞ No need to cover all real-world corner cases

– Industry: revenue
∞ Software project as a vehicle for customer satisfaction

– The actual product itself
– Usable and practical for all real-world corner cases

∞ Pragmatism and down-to-earth approaches might win over novel radical ideas



 32

Commercial Environment

+ Reliably fulfilling the specific needs of (our) customers

+ Better customizability and less unnecessary baggage than the competition

– Modularity helps by itself, but sometimes individual product lines are needed

+ Balance between principled and pragmatic design decisions

– Design principles are the means, not the ends

– Perfection is the enemy of the good

+ State-of-the-art software engineering is at least as important as state-of-the-art 
software architecture

– Work efficiency via processes and tooling

– Avoiding technical debt



 33

Commercial Environment

+ Stronger safety/security guarantees than the competition

– Already academically demonstrated, but the guarantees need to be practically attested and certified

– Hard to convince an average vendor that more security/safety is needed than Linux can ever provide

∞ Very few companies actually paid a fine* because of a software safety failure or a security vulnerability

– But that day will come as more and more critical infrastructure relies on software

– No-brainer in mission-critical and safety-critical domains

∞ But traditional reliance on hardware solutions

+ Cultivation of research projects

– Infineon, Bosch, Continental, Siemens, Airbus, Fraunhofer, etc.

– ETH KIT, FZI, TU Munich, TU Dresden, University of Postdam, University of Leipzig, University of Bologna, Barcelona 
Supercomputing Center, etc.

* Very few people actually went to jail, too.



 34

Commercial Environment

+ Interacting with the community

– Dresden has been the hub for operating systems research and development for decades

∞ TU Dresden, Barkhausen Institut, Genode Labs, Cyberus Technology, Huawei DRC, etc.

– Universally adopted the open source development model

– Participating both in academic and community events (OSDI, FOSDEM, etc.)

+ Reaching out to customers

– Somewhat traditional means of increasing visibility

∞ Trade fairs (Embedded World, etc.)

∞ Industry events (Omnisecure, Bitkom Forum, SOAFEE, etc.)

∞ Industrial partnerships (ST, NXP, ARM, etc.)



 



 36

Open Source

+ Double-edged sword

– Openness

∞ Enabling community contributions

– Although not that frequent and requiring additional effort

∞ Enabling research without centralized coordination

– Transparency

∞ Actual selling point (no security by obscurity)

∞ Often expected in the operating systems domain (but not universally)

– Sometimes seen as an undesired liability

∞ Some people do not fully understand the GPL license and it might scare them

– Thus moving towards the MIT license



 37

Certification

+ Independently reviewing compliance to requirements
– State-of-the-art software engineering practices

∞ Similar to other engineering fields (e.g. rolling stock certification)

– External audit of code, documentation, development processes, test coverage, 
etc.

– Requirements defined by a specific standard document
∞ Usually informal and semi-formal qualitative and quantitative requirements

– Formal methods only part of the highest levels of certification (and 
never the sole part)

∞ Adherence to coding standards and best practices



 38

Certification

+ L4Re Separation Kernel accreditation (BSI)
– Requirements for a microkernel-based OS for processing classified data 

up to a level secret
∞ Specifically a scenario with at most one untrusted partition on x86-64

– Accreditation artifacts
∞ Security target, platform specification, secure boot documentation, 

high-level design, low-level design, functional specification, 
configuration specification, secure operations, vulnerability analysis, 
etc.

∞ Tests covering the functional specification

– Completed



 39

Certification

+ L4Re Common Criteria EAL4+ certification

– Requirements for strong security and capability separation

– Security target similar to the BSI accreditation

– Many (but not all) artifacts shared with the BSI accreditation

∞ x86-64 and ARM, but no secure boot

– Close to being completed



 40

Certification

+ L4Re ISO 26262 ASIL-B certification

– Safety requirements for automotive safety

∞ Relying on informal requirements

∞ Sufficient for controlling less critical systems (e.g. headlights, brake lights)

– Requirements to follow a quality-managed development process (such as ASPICE) and to follow 
a coding standard (such as MISRA)

– Certification artifacts

∞ Safety case, high-level design, low-level design, 4 levels of functional requirements, safety 
analysis, hazard and operability study, dependency failure analysis, safety test specification

– 100% line, function and branch coverage using unit tests

– Completed via the EB Corbos Hypervisor (Elektrobit/Continental)



 41

Formal Methods

+ Double-edged sword

– Mathematically-strong guarantees of the formally-verified properties under formally-specified 
proof assumptions

∞ Much stronger than any degree of testing can ever provide

∞ Highly appreciated by critical use cases

– Although their integration into existing certification processes might not be so 
straightforward

– False sense of guarantees when the proof assumptions cannot be always made to hold

∞ Unless the proof assumptions are completely incorrect, the formal proofs still provide some 
conditional assurances

∞ But the price might be unfavorable compared to informal methods

– Tests, although non-exhaustive, actually inherently verify their own assumptions



 42

Formal Methods

+ Current Kernkonzept approach

– Incremental steps

∞ Specifying an abstract model and a meaningful separation property

∞ Verifying compliance between the abstract model and the implementation

– Model-based testing

– Exhaustive comparison

∞ Improving baseline guarantees (e.g. switching from C++ to Rust)

– Proactive approach, but further steps to be determined by customer needs

∞ Currently there seems to be more supply than demand

– Extremely costly and time-consuming

– Lack of automation in tooling



 

PRACTICAL MATTERS

101



Kernkonzept Practically

+ SME in the traditional sense
– Not a start-up, but a long-term sustainable business

∞ Organic growth, no external investors
– Almost flat hierarchy

∞ Everybody has a reasonable awareness of what everybody else is doing
– Pleasant working environment

∞ No “big corporate BS”
– No processes for the sake of processes
– Do whatever it takes to get the job done

∞ Meritocracy, technical challenges and self-learning
– Budget for training, annual hackathon

∞ Work/life balance



 



Working Remotely Practically

+ Great option, but not a silver bullet

– Ideal for certain life periods (e.g. having small children, requiring time flexibility)

– Less ideal for other life periods (e.g. junior positions, developing a fast career)

– Some job agenda more suitable than other

∞ Works well for tasks with longer stretches of individual work and less frequent 
coordination (researching, coding, etc.)

∞ Works less well for tasks with frequent and irregular coordination (people 
management, intense teamwork, etc.)

– Modern technologies help

– Face-to-face interaction still more efficient, with less friction and overhead



Working Remotely Practically

+ Personal tips

– Define and respect physical, temporal and virtual boundaries

∞ Imagine actually going to/from the office every day (despite the commute time in seconds)

∞ Procrastinating is easy, but working long after the “business hours” is even easier (workaholism 
is not uncommon)

∞ Use separate user accounts (or even physical machines) for work and non-work

– Make conscious decisions regarding the flexibility

∞ Except for emergencies, always plan your “away from keyboard” moments ahead of time

∞ Let everyone (especially children) understand that time borrowed during “business hours” 
needs to be repaid during “free hours”

– Work/life balance should not turn into work/life inbalance



 

OUTRO

110



 49

Outro

+ Kernkonzept is successful in ...

– … developing the microkernel-based L4Re in the mission-critical & safety-critical industrial context

– … balancing pragmatic use cases and research

– … achieving certification goals

– … supporting formal verification efforts

– … being a significant part of the community

– … improving the state-of-the-art via proper software architecture and engineering

+ Kernkonzept is open for collaboration

– Assignments, theses, internships, jobs

– Research, EU projects



 THANK YOU
Questions?



 CONTACT US
www.kernkonzept.com
info@kernkonzept.com

https://www.kernkonzept.com/
mailto:info@kernkonzept.com


 

BACKUP SLIDES

111



 53

Microkernel Overhead

+ A.k.a. the unfounded anxiety that refuses to die

– Liedtke has shown 29 years ago that the overhead is negligeable (assuming proper microkernel design)

– Bershad has argued 32 years ago that the IPC overhead is increasingly irrelevant (since the real-world 
performance of computer systems is dominated by other factors)

– The market share of monolithic operating systems is hardly caused by the lack of IPC overhead alone

∞ The market share of Coca Cola is hardly caused by the taste alone

+ Our customers simply “do not care about the overhead”

– The overall performance of L4Re is satisfactory to them

– Whatever measurable overhead is there, it is considered a reasonable price for the run-time component 
isolation and the safety/security guarantees that are fundamentally not available in monolithic operating 
systems

– The typical deployment of L4Re does not need extremely fine-grained components

https://dl.acm.org/doi/10.1145/224056.224075
https://dl.acm.org/doi/10.5555/646405.692226

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

