
http://d3s.mff.cuni.czhttp://d3s.mff.cuni.cz/teaching/nswi143

Lubomír Bulej

bulej@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physicsfaculty of mathematics and physics

Computer Architecture
Improving performance

Computer Architecture
Improving performance

http://d3s.mff.cuni.cz/teaching/nswi143

2/74Computer Architecture, Improving performance, summer 2023/2024

Factors limiting CPU performanceFactors limiting CPU performance

Clock cycle length
Limited by the most complex step of the most
complex instruction
Speedup: moving from single-cycle to multi-cycle
datapath

Simple instructions can be executed faster

insn0.fetch, dec, exec

insn1.fetch, dec, exec

insn1.fetch insn1.dec insn1.exec0 insn1.exec1

insn0.fetch insn0.dec insn0.exec0 insn0.exec1

insn1.exec2

3/74Computer Architecture, Improving performance, summer 2023/2024

Factors limiting CPU performance (2)Factors limiting CPU performance (2)

Clocks per instruction (CPI)
Limited by the number of instructions executed at
the same time

Even a multi-cycle datapath executes only a single
instruction at a time

Latency vs. throughput
Latency of a single instruction is determined by clock
cycle length (we cannot keep shortening it forever)
Throughput of a sequence of instructions (whole
program) can be improved by executing multiple
instructions at the same time

4/74Computer Architecture, Improving performance, summer 2023/2024

Pipelined instruction executionPipelined instruction execution

Hiding instruction latencies
The datapath starts the 1st step of the next instruction while
executing the 2nd step of the previous one

Instruction-level parallelism (preserves sequential execution
model)

Latency (execution time) of individual instructions remains
unchanged, but overall throughput increases

insn1.fetch insn1.dec insn1.exec0 insn1.exec1

insn0.fetch insn0.dec insn0.exec0 insn0.exec1

insn1.exec2

insn1.fetch insn1.dec insn1.exec0 insn1.exec1

insn0.fetch insn0.dec insn0.exec0 insn0.exec1

insn1.exec2

5/74Computer Architecture, Improving performance, summer 2023/2024

Pipelined processor performancePipelined processor performance

Rough estimate
Executing n instructions, clock cycle t, k steps per instruction

Pipelined execution in k-stage pipeline
The first instruction leaves the pipeline after k clocks, all other after 1 clock

Speedup

Speedup for n >> k

T=n⋅(k⋅t)

T p=k⋅t+(n−1)⋅t

Speedup= T
T p

=
n⋅(k⋅t)

k⋅t+(n−1)⋅t
= n⋅k
k +(n−1)

k+(n−1)≈n
Speedup→k

6/74Computer Architecture, Improving performance, summer 2023/2024

Datapath for pipelined executionDatapath for pipelined execution

Basic idea
Single-cycle datapath as a foundation

Separate instruction and data memories
Additional adders (ALU cannot be shared)

Elements of the multi-cycle datapath
Executing instructions in multiple steps
Latch registers to retain the results of the previous step
(memory, register, and ALU outputs)

7/74Computer Architecture, Improving performance, summer 2023/2024

Recall: single-cycle datapathRecall: single-cycle datapath

x1 MemToReg

U
X

M1

0

x7Funct7

x1 RegWrite

Zero

R

A

B

Op

Data

Read

Address

Write Data

Write

Memory
Data

Instruction
Memory

Instruction
AddressPC

00000000

x4ALUControl

+

U
X

M 0

1

x3Funct3
x1 ALUSrc

Register
File

Reg1_Data

Reg2_DataRD_Reg2

WR_Reg

WR_Data

RD_Reg1

Write

+

U
X

M

0

1

rd

rs1

funct3

rs2

Insn

funct7

opcodex7Opcode

00000004

x
1

MemWrite

x1 Branch

Immediate
Insn Imm
Generator

x
1

MemRead

8/74Computer Architecture, Improving performance, summer 2023/2024

Recall: multi-cycle datapathRecall: multi-cycle datapath

x1 PCWrite

R

x1MemRead

x
1

MemWrite

x
1

IRWrite

x2 WDataSrc

x1 RegWrite

x1 IorD

x1 PCWriteCond

00000004

x1ALUSrcA

x2ALUSrcB

A

B

x4ALUControl

Immediate
Insn Imm
Generator

Register
File

Reg1_Data

Reg2_DataRD_Reg2

WR_Reg

WR_Data

RD_Reg1

Write

2

0

M
1

X
U

U
X

M0

1
U
X

M0

1

1
X

0
M

2

U

Zero

R

A

B

Op

Out
ALU

Memory

Data

Write Data

Address

Read Write

Insn
Write

Data

rd
Insn

rs2

OP

F3

rs1

F7

PC
Write

A

B

x3 Funct3

x7 Opcode
x7 Funct7

9/74Computer Architecture, Improving performance, summer 2023/2024

Datapath for pipelined execution (2)Datapath for pipelined execution (2)

x7Funct7

U
X

M1

0

x1ALUSrc

Register
File

Reg1_Data

Reg2_DataRD_Reg2

WR_Reg

WR_Data

RD_Reg1

Write

x1MemWrite

U
X

M

0

1

U
X

M0

1Data

Read

Address

Write Data

Write

Memory
Data

+

Zero

R

A

B

Op

x1MemRead

Instruction
Memory

Instruction
Address

00000004

x3Funct3

x7Opcode

+

x1Branch

x1MemToReg

rs2

funct7

rd

Insn

rs1

funct3

opcode

insn

x1RegWrite

PC

00000000

x4ALUControl

Immediate
Insn Imm
Generator

Start with single-cycle...

10/74Computer Architecture, Improving performance, summer 2023/2024

Datapath for pipelined execution (3)Datapath for pipelined execution (3)

… and just add pipeline registers.

00000004

+

x1RegWrite

Data

Read

Address

Write Data

Write

Memory
Data

x1MemToReg

x3Funct3

Immediate
Insn Imm
Generator

x1ALUSrc

+
imm

ALUSrc

B

PC

MemWrite

MemToReg

RegWrite

ALUControl

A

rd

Branch

ID/EX

MemRead

00000000

x1MemWrite

Result

RegWrite

MA/WB

MemToReg

rd

Data

00000000

Instruction

Address
Instruction

Memory

x7Opcode U
X

M0

1

Zero

R

A

B

Op

U
X

M1

0Register
File

Reg1_Data

Reg2_DataRD_Reg2

WR_Reg

WR_Data

RD_Reg1

Write

x4ALUControl

x1MemRead

PC

00000000

RegWrite

EX/MA

rd

MemToReg

Data

MemWrite

Result

Branch

Zero

MemRead

Target

00000000

x7Funct7

x1Branch

IF/ID

Insn

funct7

PC

rs1

rs2

rd

funct3

opcode

insn

insn

00000000

U
X

M

0

1

11/74Computer Architecture, Improving performance, summer 2023/2024

Datapath for pipelined execution (4)Datapath for pipelined execution (4)

Datapath split into k stages
Each stage is processing different instruction

The slowest stage determines the pipeline speed
Latches to hold results between successive stages

Instruction state, operands, results, control signals
Instructions in the datapath are in different state of execution

Ideal case: CPI = 1
The pipeline completes one instruction in each cycle

Instruction latency increases overhead, not throughput

Realistic case: CPI > 1
Pipeline delay and overhead

12/74Computer Architecture, Improving performance, summer 2023/2024

Memory
Access

Write
BackExecuteDecodeFetch

Datapath for pipelined execution (5)Datapath for pipelined execution (5)

00000004

+

x1RegWrite

Data

Read

Address

Write Data

Write

Memory
Data

x1MemToReg

x3Funct3

Immediate
Insn Imm
Generator

x1ALUSrc

+
imm

ALUSrc

B

PC

MemWrite

MemToReg

RegWrite

ALUControl

A

rd

Branch

ID/EX

MemRead

00000000

x1MemWrite

Result

RegWrite

MA/WB

MemToReg

rd

Data

00000000

Instruction

Address
Instruction

Memory

x7Opcode U
X

M0

1

Zero

R

A

B

Op

U
X

M1

0Register
File

Reg1_Data

Reg2_DataRD_Reg2

WR_Reg

WR_Data

RD_Reg1

Write

x4ALUControl

x1MemRead

PC

00000000

RegWrite

EX/MA

rd

MemToReg

Data

MemWrite

Result

Branch

Zero

MemRead

Target

00000000

x7Funct7

x1Branch

IF/ID

Insn

funct7

PC

rs1

rs2

rd

funct3

opcode

insn

insn

00000000

U
X

M

0

1

13/74Computer Architecture, Improving performance, summer 2023/2024

Memory
Access

Write
BackExecuteDecodeFetch

Executing 3 instructions, cycle 1Executing 3 instructions, cycle 1

00000004

+

x1RegWrite

Data

Read

Address

Write Data

Write

Memory
Data

x1MemToReg

x3Funct3

Immediate
Insn Imm
Generator

x1ALUSrc

+
imm

ALUSrc

B

PC

MemWrite

MemToReg

RegWrite

ALUControl

A

rd

Branch

ID/EX

MemRead

00000000

x1MemWrite

Result

RegWrite

MA/WB

MemToReg

rd

Data

00000000

Instruction

Address
Instruction

Memory

x7Opcode U
X

M0

1

Zero

R

A

B

Op

U
X

M1

0Register
File

Reg1_Data

Reg2_DataRD_Reg2

WR_Reg

WR_Data

RD_Reg1

Write

x4ALUControl

x1MemRead

PC

00000000

RegWrite

EX/MA

rd

MemToReg

Data

MemWrite

Result

Branch

Zero

MemRead

Target

00000000

x7Funct7

x1Branch

IF/ID

Insn

funct7

PC

rs1

rs2

rd

funct3

opcode

insn

insn

00000000

U
X

M

0

1

add x3, x2, x1

14/74Computer Architecture, Improving performance, summer 2023/2024

Memory
Access

Write
BackExecuteDecodeFetch

Executing 3 instructions, cycle 2Executing 3 instructions, cycle 2

00000004

+

x1RegWrite

Data

Read

Address

Write Data

Write

Memory
Data

x1MemToReg

x3Funct3

Immediate
Insn Imm
Generator

x1ALUSrc

+
imm

ALUSrc

B

PC

MemWrite

MemToReg

RegWrite

ALUControl

A

rd

Branch

ID/EX

MemRead

00000000

x1MemWrite

Result

RegWrite

MA/WB

MemToReg

rd

Data

00000000

Instruction

Address
Instruction

Memory

x7Opcode U
X

M0

1

Zero

R

A

B

Op

U
X

M1

0Register
File

Reg1_Data

Reg2_DataRD_Reg2

WR_Reg

WR_Data

RD_Reg1

Write

x4ALUControl

x1MemRead

PC

00000000

RegWrite

EX/MA

rd

MemToReg

Data

MemWrite

Result

Branch

Zero

MemRead

Target

00000000

x7Funct7

x1Branch

IF/ID

Insn

funct7

PC

rs1

rs2

rd

funct3

opcode

insn

insn

00000000

U
X

M

0

1

add x3, x2, x1lw x4, 0(x5)

15/74Computer Architecture, Improving performance, summer 2023/2024

Memory
Access

Write
BackExecuteDecodeFetch

Executing 3 instructions, cycle 3Executing 3 instructions, cycle 3

00000004

+

x1RegWrite

Data

Read

Address

Write Data

Write

Memory
Data

x1MemToReg

x3Funct3

Immediate
Insn Imm
Generator

x1ALUSrc

+
imm

ALUSrc

B

PC

MemWrite

MemToReg

RegWrite

ALUControl

A

rd

Branch

ID/EX

MemRead

00000000

x1MemWrite

Result

RegWrite

MA/WB

MemToReg

rd

Data

00000000

Instruction

Address
Instruction

Memory

x7Opcode U
X

M0

1

Zero

R

A

B

Op

U
X

M1

0Register
File

Reg1_Data

Reg2_DataRD_Reg2

WR_Reg

WR_Data

RD_Reg1

Write

x4ALUControl

x1MemRead

PC

00000000

RegWrite

EX/MA

rd

MemToReg

Data

MemWrite

Result

Branch

Zero

MemRead

Target

00000000

x7Funct7

x1Branch

IF/ID

Insn

funct7

PC

rs1

rs2

rd

funct3

opcode

insn

insn

00000000

U
X

M

0

1

add x3, x2, x1lw x4, 0(x5)sw x6, 0(x7)

16/74Computer Architecture, Improving performance, summer 2023/2024

Memory
Access

Write
BackExecuteDecodeFetch

Executing 3 instructions, cycle 4Executing 3 instructions, cycle 4

00000004

+

x1RegWrite

Data

Read

Address

Write Data

Write

Memory
Data

x1MemToReg

x3Funct3

Immediate
Insn Imm
Generator

x1ALUSrc

+
imm

ALUSrc

B

PC

MemWrite

MemToReg

RegWrite

ALUControl

A

rd

Branch

ID/EX

MemRead

00000000

x1MemWrite

Result

RegWrite

MA/WB

MemToReg

rd

Data

00000000

Instruction

Address
Instruction

Memory

x7Opcode U
X

M0

1

Zero

R

A

B

Op

U
X

M1

0Register
File

Reg1_Data

Reg2_DataRD_Reg2

WR_Reg

WR_Data

RD_Reg1

Write

x4ALUControl

x1MemRead

PC

00000000

RegWrite

EX/MA

rd

MemToReg

Data

MemWrite

Result

Branch

Zero

MemRead

Target

00000000

x7Funct7

x1Branch

IF/ID

Insn

funct7

PC

rs1

rs2

rd

funct3

opcode

insn

insn

00000000

U
X

M

0

1

add x3, x2, x1lw x4, 0(x5)sw x6, 0(x7)

17/74Computer Architecture, Improving performance, summer 2023/2024

Memory
Access

Write
BackExecuteDecodeFetch

Executing 3 instructions, cycle 5Executing 3 instructions, cycle 5

00000004

+

x1RegWrite

Data

Read

Address

Write Data

Write

Memory
Data

x1MemToReg

x3Funct3

Immediate
Insn Imm
Generator

x1ALUSrc

+
imm

ALUSrc

B

PC

MemWrite

MemToReg

RegWrite

ALUControl

A

rd

Branch

ID/EX

MemRead

00000000

x1MemWrite

Result

RegWrite

MA/WB

MemToReg

rd

Data

00000000

Instruction

Address
Instruction

Memory

x7Opcode U
X

M0

1

Zero

R

A

B

Op

U
X

M1

0Register
File

Reg1_Data

Reg2_DataRD_Reg2

WR_Reg

WR_Data

RD_Reg1

Write

x4ALUControl

x1MemRead

PC

00000000

RegWrite

EX/MA

rd

MemToReg

Data

MemWrite

Result

Branch

Zero

MemRead

Target

00000000

x7Funct7

x1Branch

IF/ID

Insn

funct7

PC

rs1

rs2

rd

funct3

opcode

insn

insn

00000000

U
X

M

0

1

add ...lw x4, 0(x5)sw x6, 0(x7)

18/74Computer Architecture, Improving performance, summer 2023/2024

Memory
Access

Write
BackExecuteDecodeFetch

Executing 3 instructions, cycle 6Executing 3 instructions, cycle 6

00000004

+

x1RegWrite

Data

Read

Address

Write Data

Write

Memory
Data

x1MemToReg

x3Funct3

Immediate
Insn Imm
Generator

x1ALUSrc

+
imm

ALUSrc

B

PC

MemWrite

MemToReg

RegWrite

ALUControl

A

rd

Branch

ID/EX

MemRead

00000000

x1MemWrite

Result

RegWrite

MA/WB

MemToReg

rd

Data

00000000

Instruction

Address
Instruction

Memory

x7Opcode U
X

M0

1

Zero

R

A

B

Op

U
X

M1

0Register
File

Reg1_Data

Reg2_DataRD_Reg2

WR_Reg

WR_Data

RD_Reg1

Write

x4ALUControl

x1MemRead

PC

00000000

RegWrite

EX/MA

rd

MemToReg

Data

MemWrite

Result

Branch

Zero

MemRead

Target

00000000

x7Funct7

x1Branch

IF/ID

Insn

funct7

PC

rs1

rs2

rd

funct3

opcode

insn

insn

00000000

U
X

M

0

1

lw ...sw x6, 0(x7)

19/74Computer Architecture, Improving performance, summer 2023/2024

Memory
Access

Write
BackExecuteDecodeFetch

Executing 3 instructions, cycle 7Executing 3 instructions, cycle 7

00000004

+

x1RegWrite

Data

Read

Address

Write Data

Write

Memory
Data

x1MemToReg

x3Funct3

Immediate
Insn Imm
Generator

x1ALUSrc

+
imm

ALUSrc

B

PC

MemWrite

MemToReg

RegWrite

ALUControl

A

rd

Branch

ID/EX

MemRead

00000000

x1MemWrite

Result

RegWrite

MA/WB

MemToReg

rd

Data

00000000

Instruction

Address
Instruction

Memory

x7Opcode U
X

M0

1

Zero

R

A

B

Op

U
X

M1

0Register
File

Reg1_Data

Reg2_DataRD_Reg2

WR_Reg

WR_Data

RD_Reg1

Write

x4ALUControl

x1MemRead

PC

00000000

RegWrite

EX/MA

rd

MemToReg

Data

MemWrite

Result

Branch

Zero

MemRead

Target

00000000

x7Funct7

x1Branch

IF/ID

Insn

funct7

PC

rs1

rs2

rd

funct3

opcode

insn

insn

00000000

U
X

M

0

1

sw ...

20/74Computer Architecture, Improving performance, summer 2023/2024

Pipeline controlPipeline control

Based on single-cycle control
Control signals need to be activated in stages
Combinational logic or ROM decodes opcode
Signal path for control signals is pipelined, with
latch registers between stages

Each instructions “carries” its own control signals with it
after it has been decoded

Based on multi-cycle control
Mostly complex solutions

A single finite-state automaton
Hierarchy of automatons, one for each stage

21/74Computer Architecture, Improving performance, summer 2023/2024

Pipeline control (2)Pipeline control (2)

IF/ID ID/EX EX/MA MA/WB

Control

RegWrite

EX
ALUOp

ALUSrc

MemWrite

EX

MA

MemRead

MA

WB

WB

Branch

MemToReg

WBMA WB

22/74Computer Architecture, Improving performance, summer 2023/2024

Pipelined datapath performancePipelined datapath performance

Single-cycle datapath
Clock = 50ns, CPI=1 ⇒ 50ns per instruction

Multi-cycle datapath
20% branch (3T), 20% load (5T), 60% ALU (4T)
Clock = 11ns, CPI≈ (20% × 3) + (20% × 5) + (60% × 4) =
4
44ns per instruction

Pipelined datapath
Clock = 12ns (approx. 50ns/5 stages + latch overhead)
CPI = 1 (one instruction retired in each cycle)

But in reality CPI = 1 + stall penalty > 1
CPI = 1.5 ⇒ 18ns per instruction

26/74Computer Architecture, Improving performance, summer 2023/2024

Designing ISA for pipeliningDesigning ISA for pipelining

Equal-length instructions
Easy to fetch instructions in stage 1 and decode them in stage 2

Multi-byte instructions considerably more complex to fetch/decode

Few instruction formats, fixed position of source register fields
Stage 2 can start reading register file while the instruction is being
decoded

Asymmetric instruction format would require splitting stage 2 to first decode an
instruction and then to read the registers

Memory operands only appear in loads or stores
Stage 3 (execute) can be used to calculate memory address for accessing
memory in the subsequent stage

Operating directly on memory operands would require expanding stages 3 and 4
into address stage, memory stage, and execute stage

Operands must be aligned in memory
Single data transfer instruction requires only one memory access

Data can be transferred in a single pipeline stage

27/74Computer Architecture, Improving performance, summer 2023/2024

Why is CPI = 1 unachievable?Why is CPI = 1 unachievable?

Realistic pipeline
CPI = 1 + stall penalty

Penalty corresponds to frequency and duration of
pipeline stalls

Big penalties not an issue, if they are very rare
Penalties impact the optimal number of pipeline stages

Stall is a cycle in which pipeline does not retire an
instruction

One stage must wait for another to complete
Inserted to prevent a pipeline hazard

Hazard
A situation when the next instruction cannot execute in
the following clock cycle

28/74Computer Architecture, Improving performance, summer 2023/2024

Pipeline hazardsPipeline hazards

Structural hazard
A datapath does not support a specific
combination of instructions
Concurrent use of a shared resource from multiple
pipeline stages
Example: shared instruction and data memory

Load instructions in 4th stage of execution would
interfere with instruction fetch
Solution: separate instruction and data memories

Real CPU: separate instruction and data cache

29/74Computer Architecture, Improving performance, summer 2023/2024

Pipeline hazards (2)Pipeline hazards (2)

Data hazard
Instruction does not have data for execution

Operand values are the results of an instruction that is
still in the pipeline
Needs to wait for the preceding instructions to finish

Control hazard
Pipeline needs to make a decision before executing
an instruction
Branch instruction finished in the 4th stage (MA)

By that time, the pipeline will have fetched 3 other
instructions

30/74Computer Architecture, Improving performance, summer 2023/2024

Pipeline diagramsPipeline diagrams

Simplified pipeline representation
Each stage takes 1 cycle to execute
Discrete time in clock cycles

Order of
instruction
execution

lw x10, 20(x1)

sub x11, x2, x3

add x13, x3, x4

lw x13, 24(x1)

add x14, x5, x6

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Time [cycles]

1 2 3 4 5 6 7 8 9

31/74Computer Architecture, Improving performance, summer 2023/2024

Data hazardData hazard

Dependencies between instruction operands
Operand is a result of a preceding instruction
Operand is the content of memory read by preceding
instruction

Finding dependencies during design
Graph of dependencies

Nodes = pipeline elements active at given time
Edges = control or data signals
Dependencies = edges pointing to “future time”

Detecting dependencies in hardware
Compare source and destination register numbers in all
instructions present in the pipeline

32/74Computer Architecture, Improving performance, summer 2023/2024

Data hazard (2)Data hazard (2)

Order of
instruction
execution

sub x2, x1, x3 IF

and x12, x2, x5

or x13, x6, x2

and x14, x2, x2

sw x15, 64(x2)

Time [cycles]

1 2 3 4 5 6 7 8 9

ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

33/74Computer Architecture, Improving performance, summer 2023/2024

Dealing with data hazardsDealing with data hazards

Compiler level (software interlock)
Ordering instructions so that they reach pipeline
only when all the operands are available

Need to insert other (independent) instructions
between mutually dependent instructions
Using a no-operation (nop) instruction in the worst case

Theoretically possible, practically infeasible
Leaks CPU implementation details across the hardware-
software interface (ISA)
MIPS = Microprocessor without Interlocked Pipeline
Stages

34/74Computer Architecture, Improving performance, summer 2023/2024

Dealing with data hazards (2)Dealing with data hazards (2)

Forwarding/bypassing
Use the intermediate values (not yet written to registers) as
operands for dependent instructions

Fetch operand from pipeline registers of the preceding instructions.

Forwarding unit
Control circuitry to detect dependencies and enable forwarding of
values
Checks if source operand of an instruction is a destination operand
of any of the preceding instructions

EX/MA.RD := ID/EX.RS1
EX/MA.RD := ID/EX.RS2
MA/WB.RD := ID/EX.RS1
MA/WB.RD := ID/EX.RS2

35/74Computer Architecture, Improving performance, summer 2023/2024

Data hazard – forwarding/bypassingData hazard – forwarding/bypassing

sub x2, x1, x3 IF

and x12, x2, x5

or x13, x6, x2

and x14, x2, x2

sw x15, 64(x2)

ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Order of
instruction
execution Time [cycles]

1 2 3 4 5 6 7 8 9

36/74Computer Architecture, Improving performance, summer 2023/2024

Dealing with data hazards (3)Dealing with data hazards (3)

Delay instruction execution (pipeline stall)
Pipeline executes an “empty” operation

Necessary in case of load/use dependency
An instruction immediately following a load instruction uses
the result of the load

Hazard detection unit
Control circuitry to detect dependency and cause pipeline
stall
Checks if the source operand of an instruction is the target
operand of the earlier memory load instruction

ID/EX.MemRead && ID/EX.RD != 0 &&
(IF/ID.RS1 = ID/EX.RD || IF/ID.RS2 == ID/EX.RD)

37/74Computer Architecture, Improving performance, summer 2023/2024

Data hazard – load/use dependencyData hazard – load/use dependency

lw x2, 20(x1) IF

and x4, x2, x5

or x8, x2, x6

and x9, x4, x2

slt x1, x6, x7

ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Order of
instruction
execution Time [cycles]

1 2 3 4 5 6 7 8 9

38/74Computer Architecture, Improving performance, summer 2023/2024

Data hazard – load/use & forwardingData hazard – load/use & forwarding

lw x2, 20(x1) IF

and x4, x2, x5

or x8, x2, x6

and x9, x4, x2

slt x1, x6, x7

ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Order of
instruction
execution Time [cycles]

1 2 3 4 5 6 7 8 9

39/74Computer Architecture, Improving performance, summer 2023/2024

Data hazard – pipeline stallData hazard – pipeline stall

lw x2, 20(x1) IF

and x4, x2, x5
 → nop

and x4, x2, x5

or x8, x2, x6

and x9, x4, x2

ID EX MA WB

IF ID

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Order of
instruction
execution Time [cycles]

1 2 3 4 5 6 7 8 9

40/74Computer Architecture, Improving performance, summer 2023/2024

Data hazard – pipeline stall (2)Data hazard – pipeline stall (2)

lw x2, 20(x1) IF

and x4, x2, x5
 → nop

and x4, x2, x5

or x8, x2, x6

and x9, x4, x2

ID EX MA WB

IF ID

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Order of
instruction
execution Time [cycles]

1 2 3 4 5 6 7 8 9

41/74Computer Architecture, Improving performance, summer 2023/2024

Data hazard – pipeline stall (3)Data hazard – pipeline stall (3)

lw x2, 20(x1) IF

and x4, x2, x5
 → nop

and x4, x2, x5

or x8, x2, x6

and x9, x4, x2

ID EX MA WB

IF ID

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

Order of
instruction
execution Time [cycles]

1 2 3 4 5 6 7 8 9

42/74Computer Architecture, Improving performance, summer 2023/2024

Control hazardControl hazard

Which address to read the next instruction
from?

PC value influenced by jump and branch instructions
Depends on the result of an instruction executed several
cycles later than required: we need to read an instruction
in every cycle

Exceptions and interrupts
Handling control hazard

Forwarding not possible
Target address may be known, but the branch condition
is evaluated later

Goal: minimize pipeline stalls

43/74Computer Architecture, Improving performance, summer 2023/2024

Control hazard – branchingControl hazard – branching

40: beq $1, $3, 72 IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

44: and $12, $2, $5

48: or $13, $6, $2

52: and $14, $2, $2

72: lw $4, 50($7)

Order of
instruction
execution Time [cycles]

1 2 3 4 5 6 7 8 9

44/74Computer Architecture, Improving performance, summer 2023/2024

Dealing with control hazardsDealing with control hazards

Stall until branch outcome is known
Try to keep the pipeline full

Assume branch not taken (until proven otherwise)
Reduce the delay of branches

So far PC for next cycle selected in MA stage
Execute branch earlier → less instructions to flush

Branch target: PC and immediate value already in IF/ID pipeline
register → move branch adder from EX to ID stage
Branch condition: compare registers during ID stage, requires extra
circuitry and forwarding/hazard detection logic
Requires simple test condition
Reduces branch penalty to 1 cycle if branch is taken

MIPS (but not RISC-V): Branch delay slot
Always execute 1 more instruction after branch

45/74Computer Architecture, Improving performance, summer 2023/2024

Dealing with control hazards (2)Dealing with control hazards (2)

Trying to keep the pipeline full
Where to read next instruction from?

Branch target buffer
Cache target addresses of branch instructions

Execute instructions speculatively
Keep executing instructions regardless of branch condition
If we later find that we should execute instructions on another
path, just flush the pipeline and start over
May require partial virtualization of register file and store
buffers

46/74Computer Architecture, Improving performance, summer 2023/2024

Branch predictionBranch prediction

Static prediction
Ignores history of branch outcomes
Without hints

Heuristics determined by hardware
Generally assume branch not taken
Complex heuristics (e.g., branch distance) uncommon

With hint
The more likely outcome determined by the instruction
opcode

47/74Computer Architecture, Improving performance, summer 2023/2024

Branch prediction (2)Branch prediction (2)

Dynamic prediction
Takes past branch outcomes into account
Branch prediction buffer (history table)

Keeps the state of a predictor for a particular instruction
1-bit predictor (2 states)

State reflects the previous outcome
Predicts the same behavior as in the past

Problem with loops: branch back except on last iteration
2 mispredictions for simple loops
Multiplied in nested loops

2-bit predictor (4 states)
General approach: count prediction success/failure, middle of range
break point between predictions
Reduces mispredictions for cases strongly favoring certain outcome
(typical for many branches)

48/74Computer Architecture, Improving performance, summer 2023/2024

Branch history tableBranch history table

Basic (1-bit) predictor
Table of prediction bits indexed by (part of) PC
 Extensions

Multi-bit predictor
Correlating predictor
Tournament predictor
Branch target buffer

Conditional instruction
Does aliasing hurt?

Different PC values with identical
bits used for indexing BHT

What about nested loops?

[31:10] [9:2] [1:0]PC

⁞

h2

T or NT

T or NT

T or NT

⁞

prediction

49/74Computer Architecture, Improving performance, summer 2023/2024

2-bit branch predictor (saturated counter)2-bit branch predictor (saturated counter)

taken not taken

taken

not taken

not taken

not taken

taken

taken

00

predict:
not taken

01

predict:
not taken

10

predict:
taken

11

predict:
taken

50/74Computer Architecture, Improving performance, summer 2023/2024

Pipelined datapath and exceptionsPipelined datapath and exceptions

Pipeline contains k instructions
Which instruction caused an exception?

Needs to be propagated through pipeline registers
On multiple exceptions, which one to handle first?

The one that is the earliest
Exception handling

Keep the processor state consistent
Data from pipeline registers are not written back (register file
and memory contain values before the exception occurred)

Flush the pipeline before handling the exception
Similar logic to speculative handling of branch instructions

51/74Computer Architecture, Improving performance, summer 2023/2024

Increasing pipeline lengthIncreasing pipeline length

Trend: pipelines getting longer
486 (5 stages), Pentium (7 stages)
Pentium III (12 stages), Pentium 4 (20 – 31 stages)
Core (14 stages)
Consequences

Higher clock rate
Not linear with pipeline length, causes performance
drop starting at certain pipeline lengths

– Pentium 4 at 1 GHz slower than Pentium III at 800 MHz
Generally higher CPI

More costly penalties for mispredicted branches
Delays due to hazards that cannot be handled using
forwarding/bypassing

52/74Computer Architecture, Improving performance, summer 2023/2024

Increasing the number of pipelinesIncreasing the number of pipelines

Flynn bottleneck
Theoretical limitation of a scalar pipeline

1 instruction in each stage → CPI = IPC = 1
Impossible to reach in practice (hazards)
Diminishing returns from increasing pipeline length

Superscalar (multiple issue) pipeline
Instructions scheduled to multiple pipelines

4 or more pipelines in modern processors

Exploiting instruction-level parallelism
Independent instructions can be executed in parallel

53/74Computer Architecture, Improving performance, summer 2023/2024

Instruction-level parallelismInstruction-level parallelism

Compiler schedules instructions
Necessary even for scalar pipeline (reduce
potential hazards)
More complex for superscalar pipeline

How many independent instructions streams can we
find in a program?

Ideal case: copying a block of memory (unrolling the loop
creates many independent instructions)
Normal programs contain significantly less opportunities

An alternative: Simultaneous multi-threading (SMT)

54/74Computer Architecture, Improving performance, summer 2023/2024

Simultaneous multi-threadingSimultaneous multi-threading

Execute instructions from more threads
At the level of superscalar pipeline

Instructions from independent threads are independent
by definition → more efficient use of superscalar pipeline
More energy efficient than implementing multiple cores

Additional register file and instruction reading logic
The rest of the CPU remains unchanged

The operating system “sees” multiple logical CPUs
Problem: Shared resources (cache, memory bandwidth)
Intel Hyper-Threading Technology

55/74Computer Architecture, Improving performance, summer 2023/2024

Temporal multi-threadingTemporal multi-threading

SMT adapted to a single pipeline
Technically: thread switching on the CPU
Fine-grained

Switch thread with each instruction
Niagara (Sun UltraSPARC T1)

Coarse-grained
Switch when an instruction causes a delay (pipeline
stall, cache miss, page fault)
Montecito (Intel Itanium 2)

56/74Computer Architecture, Improving performance, summer 2023/2024

Common superscalar pipelineCommon superscalar pipeline

Reading instructions
A block of memory (16, 32 or 64 bytes), 4 – 16
instructions
Predicting one conditional branch in each cycle

Parallel instruction decoding
Detecting dependencies and hazards

Multi-port register array with additional registers
Multiple execution units

Different ALUs, forwarding/bypassing logic
Access to memory

57/74Computer Architecture, Improving performance, summer 2023/2024

Static multiple issueStatic multiple issue

Instruction schedule determined by compiler
Pipeline executes instruction packets in-order
Issue packet

A group of instructions to execute in parallel
Slots in the issue packet not necessarily orthogonal

Very Long Instruction Word (VLIW)
Explicit Parallel Instruction Computer (EPIC)

Performance strongly depends on compiler
Identify instruction-level parallelism in code
Instruction scheduling (issuing instructions to slots)
Some data and control hazards handled by compiler
Static branch prediction

58/74Computer Architecture, Improving performance, summer 2023/2024

Example: static multiple issue RISC-VExample: static multiple issue RISC-V

Order of
instruction execution

ALU / branch IF ID EX MA WB

Time [cycles]

1 2 3 4 5 6 7 8 9

load / store IF ID EX MA WB

ALU / branch

load / store

ALU / branch

load / store

ALU / branch

load / store

ALU / branch

load / store

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

IF ID EX MA WB

59/74Computer Architecture, Improving performance, summer 2023/2024

Example: static multiple issue RISC-V (2)Example: static multiple issue RISC-V (2)

Changes wrt. single issue
Reading 64bit instructions → 8-byte alignment

Unused slot can contain NOP instruction

Register file: support access from both slots

Additional adder to compute memory addresses

Problems
Longer latency to use results

Register operations 1 instruction, load 2 instructions
More complex instruction scheduling for compiler

Penalties due to hazards are more costly

60/74Computer Architecture, Improving performance, summer 2023/2024

Example: static multiple issue RISC-V (3)Example: static multiple issue RISC-V (3)

How to schedule this code?
Loop: lw t0, 0(s1)
 addu t0, t0, s2
 sw t0, 0(s1)
 addi s1, s1, -4
 bne s1, zero, Loop

Performance?
4 cycles, 5 instructions → CPI = 0.8 (instead of 0.5)

ALU or branch insn Data transfer insn Clock cycle

Loop: lw t0, 0(s1) 1

addi s1, s1, -4 2

addu t0, t0, s2 3

bne s1, zero, Loop sw t0, 4(s1) 4

61/74Computer Architecture, Improving performance, summer 2023/2024

Example: static multiple issue RISC-V (4)Example: static multiple issue RISC-V (4)

Unrolling 4 loop iterations...

Register renaming (here done by the compiler)
Use a different register (instead of t0) for each iteration
Necessary to eliminate false dependencies due to loop unrolling

ALU or branch insn Data transfer insn Clock cycle

Loop: addi s1, s1, -16 lw t0, 0(s1) 1

lw t1, 12(s1) 2

addu t0, t0, s2 lw t2, 8(s1) 3

addu t1, t1, s2 lw t3, 4(s1) 4

addu t2, t2, s2 sw t0, 16(s1) 5

addu t3, t3, s2 sw t1, 12(s1) 6

sw t2, 8(s1) 7

bne s1, zero, Loop sw t3, 4(s1) 8

62/74Computer Architecture, Improving performance, summer 2023/2024

Example: Itanium (IA-64)Example: Itanium (IA-64)

Key features
Many registers

128 general purpose, 128 floating point, 8 branch, 64 condition
Register windows with support for spilling into memory

EPIC instruction bundle
Bundle of instructions executed in parallel
Fixed format, explicit dependencies

Stop bit: Indicates if the next bundle depends on the actual bundle

Support for speculation and branch elimination
Instructions executed, but whether their effects will be
permanent is decided later (if not, software needs to rollback)

63/74Computer Architecture, Improving performance, summer 2023/2024

Example: Itanium (IA-64) (2)Example: Itanium (IA-64) (2)

Other notable features
Instruction group

Group of instructions without data dependencies
Separated by an instruction with a stop-bit

For forward compatibility (increasing the number of pipelines)

Instruction bundle structure
5 bits template (execution units used)
3 × 41 bits instructions
Most instructions can be conditional, depending on a
chosen bit in a predicate register

64/74Computer Architecture, Improving performance, summer 2023/2024

Dynamic multiple issueDynamic multiple issue

Instructions scheduled by pipeline
Exploit instruction-level parallelism, eliminate
hazards and stalls
Instructions executed out-of-order

Results committed in-order to maintain programming
model

Compiler can try to make scheduling easier for the
CPU

Speculative execution
Execute operation with potentially wrong operands
or without guaranteed that the result will be used
Rollback mechanism similar to branch prediction

65/74Computer Architecture, Improving performance, summer 2023/2024

Example: dynamic instruction schedulingExample: dynamic instruction scheduling

66/74Computer Architecture, Improving performance, summer 2023/2024

Out-of-order executionOut-of-order execution

Execution driven by data dependencies
Colliding register names in independent instructions

RAW (Read After Write, true data dependency)
Instruction result used as operand in subsequent instruction

WAW (Write After Write, output dependency)
Two instructions writing in the same register
Result correspond to that caused by the instruction executed later

WAR (Write After Read, anti-dependency)
Instruction is changing a register while another instruction is
reading it

WAW and WAR can be dealt with using register
renaming

Processor has more physical registers than what is
mandated by ISA

67/74Computer Architecture, Improving performance, summer 2023/2024

Example: WAW eliminationExample: WAW elimination

Code after
reordering

Code after
register renaming

move r3, r7
add r3, r4, r5
move r1, r3

move r3, r7
add fr8, r4, r5
move r1, fr8

68/74Computer Architecture, Improving performance, summer 2023/2024

Dynamic multiple issue (2)Dynamic multiple issue (2)
Instruction fetch

Instruction decode
In-order

issue

Instruction scheduler

Reservation
station

Integer ALU

Reservation
station

Integer ALU

Reservation
station

FP ALU

Reservation
station

Load/Store

Commit unit In-order
commit

69/74Computer Architecture, Improving performance, summer 2023/2024

Exceptions in out-of-order pipelineExceptions in out-of-order pipeline

More complicated compared to scalar pipeline
More difficult to pinpoint the exact place where to
interrupt program execution

Instructions following the instruction that caused an
exception must not change machine state

Some of those could have been already executed
There must be no earlier unfinished instructions
All exceptions caused by earlier instructions
must have been handled

Precise vs. imprecise exceptions
OOE + register renaming first implemented in IBM 360/91
(1969), widespread use in 1990s
Cause: imprecise exceptions + higher efficiency
only for a small class of programs

70/74Computer Architecture, Improving performance, summer 2023/2024

Speculative executionSpeculative execution

Predicting properties/outcome of instruction
Allows to start executing dependent instructions
Extra logic to handle bad speculation

In the compiler
Extra code generated to “repair” wrong speculations

In the processor
Speculative results not written back until confirmed
Speculatively executed instructions either don’t raise
exceptions, or raise special kinds of exceptions

71/74Computer Architecture, Improving performance, summer 2023/2024

Example: IA-32Example: IA-32

Intel Pentium Pro … Pentium 4
CISC instruction set implemented using micro-ops
on a post-RISC core

Instructions split into micro-ops
Pipeline executes micro-ops

Superscalar, out-of-order, speculative execution
(including branch/jump prediction and register
renaming)

Pentium 4
Trace cache to speed up instruction decoding

72/74Computer Architecture, Improving performance, summer 2023/2024

Example: SkylakeExample: Skylake

Simplified view of the Skylake
family microarchitecture

Instructions decoded into
micro-ops (μOPs)
μOPs executed out-of-order
by execution units in the
Execution Engine
Reorder Buffer responsible for
register allocation, register
renaming, and instruction
retirement

Also eliminates register moves and
zeroing idioms

Scheduler forwards μOPs to
execution units depending on
availability of data
Source: M. Lipp et al. Meltdown.

73/74Computer Architecture, Improving performance, summer 2023/2024

Core architecture in numbersCore architecture in numbers

Conroe Nehalem Sandy/Ivy
Bridge

Haswell
(Broadwell)

Skylake/
Kabylake

Allocation queue
(decoded insn queue)

?
56

(2x 28)
56

(2x 28)
56

128
(2x 64)

Out-of-order window
(reorder buffer)

96 128 168 192 224

Scheduler entries
(reservation station)

32 36 54
60

(64)
97

Execution ports ? 6 6 8 8

Integer register file N/A N/A 160 168 180

FP register file N/A N/A 144 168 168

In-flight loads 32 48 64 72 72

In-flight stores 20 32 36 42 56

74/74Computer Architecture, Improving performance, summer 2023/2024

Designing an optimal ISADesigning an optimal ISA

Relative frequency of instructions (IBM 360)
Group Fraction

data movement 45,28 %
control 28,73 %
arithmetics 10,75 %
comparisons 5,92 %
logic operations 3,91 %
shifts, rotations 2,93 %
bit operations 2,05 %
I/O operations 0,43 %

75/74Computer Architecture, Improving performance, summer 2023/2024

Designing an optimal ISA (2)Designing an optimal ISA (2)

Additional observations (IBM 360)
56 % immediates in the ±15 range (5 bits)
98 % immediates in the ±511 range (10 bits)
95 % subroutines can be passed arguments
in less than 24 bytes

Additional observations (DEC Alpha)
Typical program uses only 58 % of the available the
instruction set
98 % of instructions implemented in 15 % of
firmware (PAL)

76/74Computer Architecture, Improving performance, summer 2023/2024

Designing an optimal ISA (3)Designing an optimal ISA (3)

Historical focus
Large instruction set, complex instructions
Trying to bridge the gap between assembler and
higher-level programming language

Current focus
Small instruction set, simple instructions
Faster instruction execution, easier to optimize
(both at compile time and at runtime)
Special-purpose hardware (GPU, FPGA
accelerators)

77/74Computer Architecture, Improving performance, summer 2023/2024

Post-RISC processorPost-RISC processor

CISC and RISC architectures converging
Useful, complex (CISC-like) instructions added to
RISC instruction set
Superscalar execution
Aggressive instruction reordering

Out-of-order speculative execution
Avoid relying on compiler optimizations

New specialized execution units
Trying to exploit as much as possible ILP

