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Factors limiting CPU performance

e Clock cycle length
= Limited by the most complex step of the most
complex instruction

= Speedup: moving from single-cycle to multi-cycle
datapath
e Simple instructions can be executed faster

‘ insn0.fetch, dec, exec

insnl.fetch, dec, exec ‘

‘ insnO.fetch| insn0.dec ‘ insnO.execO‘ insn0.execl

insn1.fetch| insnl.dec ‘ insnl.execo‘ insnl.execl‘ insnl.execz‘
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Factors limiting CPU performance (2)

e Clocks per instruction (CPI)

= Limited by the number of instructions executed at
the same time

e Even a multi-cycle datapath executes only a single
instruction at a time

= Latency vs. throughput

e Latency of a single instruction is determined by clock
cycle length (we cannot keep shortening it forever)

e Throughput of a sequence of instructions (whole
program) can be improved by executing multiple
instructions at the same time
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Pipelined instruction execution

® Hiding instruction latencies

® The datapath starts the 1 step of the next instruction while
executing the 2" step of the previous one

® Instruction-level parallelism (preserves sequential execution
model)

® Latency (execution time) of individual instructions remains
unchanged, but overall throughput increases

‘ insnO.fetch| insn0.dec ‘ insnO.execO‘ insn0.execl

insn1.fetch| insnl.dec ‘ insnl.execo‘ insnl.execl‘ insnl.execz‘

‘ insn0.fetch | insn0.dec insnO.execOI insnO.execl‘

insnl.fetch | insnl.dec insn1.exec0‘ insn1.exec1‘ insn1.exec2‘
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Pipelined processor performance

e Rough estimate
m Executing n instructions, clock cycle t, k steps per instruction
T=n-(k-t)
m Pipelined execution in k-stage pipeline
e The first instruction leaves the pipeline after k clocks, all other after 1 clock
szk-t+(n—1)-t
m Speedup
T nlkt) _ nk
T kt+(n—1)t k+(n—1)

p

Speedup =

m Speedup forn>>k
k+(n—1)~n
Speedup - k | i
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Datapath for pipelined execution

® Basic idea

= Single-cycle datapath as a foundation

® Separate instruction and data memories
®* Additional adders (ALU cannot be shared)

= Elements of the multi-cycle datapath

® Executing instructions in multiple steps

® Latch registers to retain the results of the previous step
(memory, register, and ALU outputs)
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Recall: single-cycle datapath
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Recall: multi-cycle datapath
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Datapath for pipelined execution (2)

o Start with single-cycle...

RegWrite | x1
MemToReg | x1
MemWrite| x1
MemRead|x1
Branch|x1
ALUControl | x4
ALUSrc
I\+
— Immediate >
insny nsn Imm &
= PC Address Generator
—— Instruction
[00000000
Instruction
mory Write l\
D_Reg1 Regl_Data 0PN _D_
RD_Reg2 Reg2_Data Zero
_Re -
g " ®
RLREE f M B Read Write
t\\V\R_Data Register )%
File bt A eSS "
Opcode x7 - buto X
Funct?7 x7 o ite Data
Funct3<x3 =t onct: .
Memory
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Datapath for pipelined execution (3)

e ... and just add pipeline registers.

J
RegWrite | x1 RegWite RegWite RegWite
MemToReg | x1 erToReg] e
MemWrite| x1
MemRead| x1 v emRead
Branch|x1 Branch Branch e
ALUControl | x4 ALUCont
IF/ID ALUSrc | x1 ALUSre
PC PC '\
+
— Immediate ?/ Target
insnj nsn Imm imm *
= PC Address Generator
e Instruction
[00000000
Instruction
mory Write l\
s D_Reg1 Regl_Data A 0PN _D_
RD_Reg2 Reg2_Data Zero Zero
s _Re -
E R Result : 4 Result
R_Reg . M B Read Write
mt\\\R_Data Register B 0 X
Obcod File bt AdldresS M
:>: U
peode - Data Data 1 X,
Funct?7 x7 7 et e Dete
ne
Funct3<{x3
Data
Memory
d il d rd
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[00000000 [00000000
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Datapath for pipelined execution (4)

o Datapath split into k stages

= Each stage is processing different instruction

e The slowest stage determines the pipeline speed

e Latches to hold results between successive stages

= |nstruction state, operands, results, control signals
= |nstructions in the datapath are in different state of execution

= ldeal case: CPlI =1

e The pipeline completes one instruction in each cycle
= |nstruction latency increases overhead, not throughput

= Realistic case: CPI > 1
e Pipeline delay and overhead

Computer Architecture, Improving performance, summer 2023/2024



Datapath for pipelined execution (5)
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Executing 3 instructions, cycle 1

add x3, x2, x1

ID/EX EX/MA MA, WBJ
RegWrite | x1 Regtrite RegWiite RegWiite
MemToReg | x1 e
MemWrite| x1 Memi
MemRead|x1 i
Branch|x1 Branch Branch g
ALUControl | x4 ALUContro
IF/ID ALUSrc |x1 ALUSre
PC PC '\
+
Immediate > Target
insn nsn Imm imm ¢
Address Generator
Instruction
[00000000
Instruction
mory

Write

s D_Reg1 Regl_Data A I\O}S\ _D_
Zero Zero
Lt RD_Reg2 Reg2_Data

R Result > 4 Result
R_Reg . {1 B Read Write
mt\\\R_Data Register B 0 X
Obcod File bt Adldress M
de U
unc x7 uncty
Data ite Data
Funct3<{x3 £
Data
Memory
rd rd rd
insn |
[00000000 [00000000

Memaoery Wirite
Eeticli Decode Execute A\ecess Back
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Executing 3 instructions, cycle 2

Iw x4, 0(x5) add x3, x2, x1

ID/EX EX/MA A WBJ
RegWrite | x1 RegWite e AW
MemToReg [x1 R
MemWrite| x1 e —
MemRead| x1_p== Ve S
Branch|x1 Branch e I
ALUControl | x4 ALUControl —
IE/D ALUSrc [xa e
PC = ,\
+
Immediate > Target
insn| nsn Imm i
Address Generator -
ST Instruction
[00000000
Instruction
— Write

s D_Reg1 Regl_Data A I\OJ\ _D_
@ Zero Zero

Lt D_Reg2 Reg2_Data
. g R Result & Result
R_Reg . {1 B Read Write
m—t\\\R_Data Register B 0 X
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X de
Dat: D X
Funct7 x7 rtfunct? 5 o - \
Data ite Data
Funct3< x3 funct3 Data
Memory
rd rd rd
insn|
[00000000 [00000000

Memaoery Wirite
Feteh Decode Execute A\ecess Back
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Executing 3 instructions, cycle 3

sw x6, 0(x7) Iw x4, 0(x5) add x3, x2, x1

ID/EX EX/MA A, WBJ
RegWrite [ X3 D=t recrice RegWite RegWite
MemToReq [x1 D=venoey
MemWrite|x1 De=fueniie emite
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1 X
Funct?7 x7 p—funct? Data ite Data h
Funct3<{x3 funct3 e
Memory
d d d
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[00000000 [00000000 [00000000 [00000000

Memaoery Wirite
Eeticl Decode Bxecute A\ecess Back
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Executing 3 instructions, cycle 4

sw x6, 0(x7) Iw x4, 0(x5) add x3, x2, x1

ID/EX EX/MA MA, WBJ
RegWrite m Regtrite RegWiite Reghiite
MemToReg [x1 D==eno
MemWrite|x1 De=fieniie emite
MemRead|x1 D= v ehea
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Executing 3 instructions, cycle 5

sw x6, 0(x7) Iw x4, 0(x5) add ...

AD/EX EX/MA MA, WEJ
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Executing 3 instructions, cycle 6

sw x6, 0(x7) Iw ...
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Executing 3 instructions, cycle 7

sw see

ID/EX EX/MA VIA[WEJ
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Pipeline control

e Based on single-cycle control

= Control signals need to be activated in stages
= Combinational logic or ROM decodes opcode

= Signal path for control signals is pipelined, with
latch registers between stages

e Each instructions “carries” its own control signals with it
after it has been decoded

e Based on multi-cycle control

= Mostly complex solutions

e A single finite-state automaton
e Hierarchy of automatons, one for each stage
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Pipeline control (2)

\RegWrite
MemToReg

Branch
MemRead

Control

MemWrite
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Pipelined datapath performance

e Single-cycle datapath
s Clock = 50ns, CPI=1 = 50ns per instruction

e Multi-cycle datapath

m 20% branch (3T), 20% load (5T), 60% ALU (4T)

= Clock = 11ns, CPI=~ (20% X 3) + (20% X 5) + (60% X 4) =
4

= 44ns per instruction
e Pipelined datapath

s Clock = 12ns (approx. 50ns/5 stages + latch overhead)

m CPI =1 (one instruction retired in each cycle)
e Butin reality CPI = 1 + stall penalty > 1
m CPI=1.5 = 18ns per instruction
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Designing ISA for pipelining

@ Equal-length instructions

m Easy to fetch instructions in stage 1 and decode them in stage 2
@ Multi-byte instructions considerably more complex to fetch/decode
@ Few instruction formats, fixed position of source register fields
m Stage 2 can start reading register file while the instruction is being
decoded

® Asymmetric instruction format would require splitting stage 2 to first decode an
instruction and then to read the registers

@ Memory operands only appear in loads or stores

m Stage 3 (execute) can be used to calculate memory address for accessing
memory in the subsequent stage

@ Operating directly on memory operands would require expanding stages 3 and 4
into address stage, memory stage, and execute stage

@ Operands must be aligned in memory

m Single data transfer instruction requires only one memory access

@ Data can be transferred in a single pipeline stage
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Why is CPI = 1 unachievable?

o Realistic pipeline

= CPl =1+ stall penalty

e Penalty corresponds to frequency and duration of
pipeline stalls

= Big penalties not an issue, if they are very rare
= Penalties impact the optimal number of pipeline stages

= Stall is a cycle in which pipeline does not retire an
Instruction

e One stage must wait for another to complete
e Inserted to prevent a pipeline hazard
= Hazard

e A situation when the next instruction cannot execute
the following clock cycle
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Pipeline hazards

e Structural hazard

= A datapath does not support a specific
combination of instructions

= Concurrent use of a shared resource from multiple
pipeline stages

= Example: shared instruction and data memory

e Load instructions in 4t stage of execution would
interfere with instruction fetch

e Solution: separate instruction and data memories
= Real CPU: separate instruction and data cache
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Pipeline hazards (2)

e Data hazard

= |nstruction does not have data for execution

e Operand values are the results of an instruction that is
still in the pipeline

e Needs to wait for the preceding instructions to finish
e Control hazard

= Pipeline needs to make a decision before executing
an instruction

= Branch instruction finished in the 4t stage (MA)

e By that time, the pipeline will have fetched 3 other
instructions
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Pipeline diagrams
s ® 5 © 5. ® me
o Simplified pipeline representation
= Each stage takes 1 cycle to execute
= Discrete time in clock cycles

Order of 121213141516 1718]1°9]
instruction | | | | | | | | | | V_

' Time [cycles]
execution

lw x10, 20(x1) ‘ IF | ID | EX | MAJWB

sub x11, x2, x3 IF ] ID | EX | MAJWB

add x13, x3, x4 IF ] ID | EX | MAJWB

lw x13, 24(x1) IF ] ID | EX | MAJWB

add x14, x5, x6 IF ] ID | EX | MAJWB
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Data hazard

e Dependencies between instruction operands

= Operand is a result of a preceding instruction

= Operand is the content of memory read by preceding
instruction

e Finding dependencies during design

= Graph of dependencies

e Nodes = pipeline elements active at given time
e Edges = control or data signals
e Dependencies = edges pointing to “future time”

e Detecting dependencies in hardware

= Compare source and destination register numbers in a,
instructions present in the pipeline
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Data hazard (2)

Order of I I I S AT I A I I
instruction | | | | | | | | | |
execution Time [cycles]

subs2, a3 | IF {10 |- EX[-{mAl-{ws
and x12, x2, x5 n

or x13, x6, x2

and x14, x2, x2

sw x15, 64(x2)
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Dealing with data hazards

o Compiler level (software interlock)

= Ordering instructions so that they reach pipeline
only when all the operands are available
e Need to insert other (independent) instructions
between mutually dependent instructions

e Using a no-operation (nop) instruction in the worst case

= Theoretically possible, practically infeasible

e Leaks CPU implementation details across the hardware-
software interface (ISA)

e MIPS = Microprocessor without Interlocked Pipeline
Stages
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Dealing with data hazards (2)

® Forwarding/bypassing

® Use the intermediate values (not yet written to registers) as
operands for dependent instructions

® Fetch operand from pipeline registers of the preceding instructions.
" forwarding unit

® Control circuitry to detect dependencies and enable forwarding of
values

® Checks if source operand of an instruction is a destination operand
of any of the preceding instructions

= EX/MA.RD := ID/EX.RS1
® EX/MA.RD := ID/EX.RS2
= MA/WB.RD := ID/EX.RS1
MA/WB.RD := ID/EX.RS2
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Data hazard - forwarding/bypassing

Order of I I I S T I A I I
instruction I I I I | | | | | |
execution Time [cycles]

sub x2, x1, x3 n n m m m
1 ‘ M A
and x12, x2, x5 7
ED
or x13, x6, x2 n n m m
and x14, x2, x2 n n m m m
sw x15, 64(x2) n ﬂ m m
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Dealing with data hazards (3)

® Delay instruction execution (pipeline stall)

= Pipeline executes an “empty” operation

= Necessary in case of load/use dependency

® An instruction immediately following a load instruction uses
the result of the load

® Hazard detection unit

® Control circuitry to detect dependency and cause pipeline
stall

® Checks if the source operand of an instruction is the target
operand of the earlier memory load instruction

= |ID/EX.MemRead && ID/EX.RD !=0 &&
(IF/ID.RS1 = ID/EX.RD || IF/ID.RS2 == ID/EX.RD)
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Data hazard - load/use dependency

Order of I I I S T I A I I
instruction I I I I | | | | | |
execution Time [cycles]

lw x2, 20(x1)

and x4, x2, x5

or X8, x2, x6

and x9, x4, x2

slt x1, x6, x7
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Data hazard - load/use & forwarding

Order of I I I S T I A I I
instruction I I I I | | | | | |
execution Time [cycles]

lw x2, 20(x1)

and x4, x2, x5

or X8, x2, x6

and x9, x4, x2

slt x1, x6, x7
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Data hazard — pipeline stall

1 2 3

Order of I I A I B I A I I
instruction I I I I | | | | | |

execution Time [cycles]

lw x2, 20(x1) n n m m m
srct 245 A H AL

%nop; .
and 2,6 E 0 X wa e

or X8, x2, x6

and x9, x4, x2
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Data hazard - pipeline stall (2)

Order of I I I S T I A I I
instruction I I I I | | | | | |

execution Time [cycles]

lw x2, 20(x1) n ﬂ m m m
- nop
and x4, x2, x5 n n EI m m
/|
or x8, x2, x6 n I EV m m

and 9,4, 12 Il 5 g 3 E0 g 10
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Data hazard - pipeline stall (3)

Order of I I I S T I A I I

instruction I I I I | | | | | |

execution Time [cycles]
w2, 200a) [ IF | 1 - EX [-{mAlr{ws

et
- nop

and x4, x2, x5

or X8, x2, x6

and x9, x4, x2
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Control hazard

e Which address to read the next instruction
from?

= PCvalue influenced by jump and branch instructions

e Depends on the result of an instruction executed several
cycles later than required: we need to read an instruction
in every cycle

= Exceptions and interrupts
e Handling control hazard

= Forwarding not possible

e Target address may be known, but the branch condition
is evaluated later

= Goal: minimize pipeline stalls
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Control hazard - branching

Order of | i I L A I L
instruction |

execution Time [cycles]

40: beq $1, S3, 72 n

44: and $12, S2, S5

48: or $13, S6, S2

52:and S14, S2,S2

Y

72: lw $4, 50($7)
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Dealing with control hazards

e Stall until branch outcome is known
e Try to keep the pipeline full

= Assume branch not taken (until proven otherwise)
= Reduce the delay of branches

e So far PC for next cycle selected in MA stage

e Execute branch earlier = less instructions to flush

= Branch target: PC and immediate value already in IF/ID pipeline
register - move branch adder from EX to ID stage

= Branch condition: compare registers during ID stage, requires extra
circuitry and forwarding/hazard detection logic

= Requires simple test condition
= Reduces branch penalty to 1 cycle if branch is taken

e MIPS (but not RISC-V): Branch delay slot

= Always execute 1 more instruction after branch
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Dealing with control hazards (2)

e Trying to keep the pipeline full

= Where to read next instruction from?

e Branch target buffer
= Cache target addresses of branch instructions
e Execute instructions speculatively

= Keep executing instructions regardless of branch condition

= |f we later find that we should execute instructions on another
path, just flush the pipeline and start over

= May require partial virtualization of register file and store
buffers
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Branch prediction

e Static prediction

= |gnores history of branch outcomes
= Without hints

e Heuristics determined by hardware
e Generally assume branch not taken
e Complex heuristics (e.g., branch distance) uncommon

= With hint

e The more likely outcome determined by the instruction
opcode
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Branch prediction (2)

e Dynamic prediction
m Takes past branch outcomes into account

m Branch prediction buffer (history table)
e Keeps the state of a predictor for a particular instruction
m 1-bit predictor (2 states)

e State reflects the previous outcome
e Predicts the same behavior as in the past

m Problem with loops: branch back except on last iteration

e 2 mispredictions for simple loops
e Multiplied in nested loops

m 2-bit predictor (4 states)

e General approach: count prediction success/failure, middle of range
break point between predictions

e Reduces mispredictions for cases strongly favoring certain outcom
(typical for many branches)
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Branch history table

e Basic (1-bit) predictor

m Table of prediction bits indexed by (part of) PC

m Extensions
e Multi-bit predictor

prediction

e Correlating predictor

e Tournament predictor / *

e Branch target buffer >I TorNT I
= Conditional instruction : :
m Does aliasing hurt? > >I Tor NT I

e Different PC values with identical

bits used for indexing BHT >| Tor NT I

m What about nested loops? \,

PC [31:10] ‘ [9:2] ‘[1:0]‘
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2-bit branch predictor (saturated counter)

taken
taken
10 11
predict: predict:
taken not taken taken
taken not taken
not taken
not taken

taken
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Pipelined datapath and exceptions

o Pipeline contains k instructions

= Which instruction caused an exception?
e Needs to be propagated through pipeline registers

= On multiple exceptions, which one to handle first?
e The one that is the earliest

= Exception handling

o Keep the processor state consistent

= Data from pipeline registers are not written back (register file
and memory contain values before the exception occurred)

e Flush the pipeline before handling the exception
= Similar logic to speculative handling of branch instructions o
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Increasing pipeline length

o Trend: pipelines getting longer
= 486 (5 stages), Pentium (7 stages)
= Pentium Il (12 stages), Pentium 4 (20 — 31 stages)
= Core (14 stages)

= Consequences

e Higher clock rate
= Not linear with pipeline length, causes performance
drop starting at certain pipeline lengths
— Pentium 4 at 1 GHz slower than Pentium Il at 800 MHz
e Generally higher CPI

= More costly penalties for mispredicted branches

= Delays due to hazards that cannot be handled using
forwarding/bypassing
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Increasing the number of pipelines

e Flynn bottleneck

= Theoretical limitation of a scalar pipeline

e 1 instruction in each stage - CPI=IPC=1
e Impossible to reach in practice (hazards)
e Diminishing returns from increasing pipeline length

e Superscalar (multiple issue) pipeline

= |nstructions scheduled to multiple pipelines

e 4 or more pipelines in modern processors

= Exploiting instruction-level parallelism
e Independent instructions can be executed in parallel
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Instruction-level parallelism

o Compiler schedules instructions

= Necessary even for scalar pipeline (reduce
potential hazards)

= More complex for superscalar pipeline

e How many independent instructions streams can we
find in a program?
= |deal case: copying a block of memory (unrolling the loop
creates many independent instructions)
= Normal programs contain significantly less opportunities

e An alternative: Simultaneous multi-threading (SMT)
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Simultaneous multi-threading

e Execute instructions from more threads

= At the level of superscalar pipeline

e Instructions from independent threads are independent
by definition - more efficient use of superscalar pipeline

e More energy efficient than implementing multiple cores

= Additional register file and instruction reading logic
= The rest of the CPU remains unchanged

e The operating system “sees” multiple logical CPUs
e Problem: Shared resources (cache, memory bandwidth)
e Intel Hyper-Threading Technology
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Temporal multi-threading

o SMT adapted to a single pipeline

= Technically: thread switching on the CPU
= Fine-grained

e Switch thread with each instruction

e Niagara (Sun UltraSPARC T1)
= Coarse-grained

e Switch when an instruction causes a delay (pipeline
stall, cache miss, page fault)

e Montecito (Intel Itanium 2)
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Common superscalar pipeline

e Reading instructions

= A block of memory (16, 32 or 64 bytes), 4 — 16
instructions

= Predicting one conditional branch in each cycle
e Parallel instruction decoding

= Detecting dependencies and hazards
e Multi-port register array with additional registers
e Multiple execution units

= Different ALUs, forwarding/bypassing logic
e Access to memory
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Static multiple issue

¢ Instruction schedule determined by compiler

= Pipeline executes instruction packets in-order

= [ssue packet

e A group of instructions to execute in parallel

e Slots in the issue packet not necessarily orthogonal

= Very Long Instruction Word (VLIW)
= Explicit Parallel Instruction Computer (EPIC)

= Performance strongly depends on compiler

e |dentify instruction-level parallelism in code

e Instruction scheduling (issuing instructions to slots)

e Some data and control hazards handled by compiler
e Static branch prediction
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Example: static multiple issue RISC-V

Order of |1|2|3|4|5|6|7|8|9|)
instruction execution | | | | | | | | | | Time [cycles]

ALU / branch IF | ID | EX |MA|WB

load / store IF | ID | EX |MA|WB

ALU / branch IF | ID | EX |MA|WB

load / store IF | ID | EX |MA|WB

ALU / branch IF | ID | EX |MA|WB

load / store IF | ID | EX |MA|WB

ALU / branch IF | ID | EX |MA|WB

load / store IF | ID | EX |MA|WB

ALU / branch IF | ID | EX |MA|WB

load / store IF | ID | EX |MA|WB
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Example: static multiple issue RISC-V (2)

® Changes wrt. single issue

= Reading 64bit instructions - 8-byte alignment
® Unused slot can contain NOP instruction

= Register file: support access from both slots

= Additional adder to compute memory addresses
® Problems

= Longer latency to use results

® Register operations 1 instruction, load 2 instructions

® More complex instruction scheduling for compiler

" Penalties due to hazards are more costly
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Example: static multiple issue RISC-V (3)

® How to schedule this code?

Loop: 1w to, 0(sl)
addu to, to, s2
SwW to, 9(sl1)
addi sl1, s1, -4
bne sl, zero, Loop

ALU or branch insn Data transfer insn Clock cycle
Loop: lw tO, 0(sl) 1

addi s1, s1, -4 2

addu to, to, s2 3

bne s1, zero, Loop sw to, 4(sl) 4

® Performance?

® 4 cycles, 5 instructions - CPIl = 0.8 (instead of 0.5)
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Example: static multiple issue RISC-V (4)

e Unrolling 4 loop iterations...

ALU or branch insn Data transfer insn Clock cycle
Loop: addi s1, s1, -16 lw tO, 0(sl) 1
1w t1, 12(sl) 2
addu to, t@, s2 1w t2, 8(s1) 3
addu t1, t1, s2 Iw t3, 4(s1) 4
addu t2, t2, s2 sw t0, 16(sl) 5
addu t3, t3, s2 sw tl, 12(sl1) 6
sw t2, 8(s1) 7
bne sl1, zero, Loop sw t3, 4(s1) 8

® Register renaming (here done by the compiler)

Use a different register (instead of t0) for each iteration :
= Necessary to eliminate false dependencies due to loop unrolling:
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Example: Itanium (1A-64)

e Key features

= Many registers

e 128 general purpose, 128 floating point, 8 branch, 64 condition
e Register windows with support for spilling into memory

m EPIC instruction bundle

e Bundle of instructions executed in parallel

e Fixed format, explicit dependencies
m Stop bit: Indicates if the next bundle depends on the actual bundle

m Support for speculation and branch elimination

e Instructions executed, but whether their effects will be
permanent is decided later (if not, software needs to rollback)
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Example: Iltanium (1A-64) (2)

e Other notable features

= [nstruction group

e Group of instructions without data dependencies

e Separated by an instruction with a stop-bit
= For forward compatibility (increasing the number of pipelines)

= |nstruction bundle structure

e 5 bits template (execution units used)
e 3 x 41 bits instructions

e Most instructions can be conditional, depending on a
chosen bit in a predicate register
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Dynamic multiple issue

¢ Instructions scheduled by pipeline

= Exploit instruction-level parallelism, eliminate
hazards and stalls

= |Instructions executed out-of-order

e Results committed in-order to maintain programming
model

= Compiler can try to make scheduling easier for the
CPU

e Speculative execution

= Execute operation with potentially wrong operands
or without guaranteed that the result will be used

= Rollback mechanism similar to branch prediction
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Example: dynamic instruction scheduling

LOAD R4,B -

05 BNEG R4,LAB2




Out-of-order execution

e Execution driven by data dependencies

= Colliding register names in independent instructions
e RAW (Read After Write, true data dependency)

= |nstruction result used as operand in subsequent instruction
o WAW (Write After Write, output dependency)

= Two instructions writing in the same register
= Result correspond to that caused by the instruction executed later

e WAR (Write After Read, anti-dependency)

= |nstruction is changing a register while another instruction is
reading it

= WAW and WAR can be dealt with using register
renaming

e Processor has more physical registers than what is
mandated by ISA
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Example: WAW elimination

e Code after e Code after
reordering register renaming
move r3, r7/ move r3, r7/
add r3, r4, r5 add fr8, r4, r5

move rl, r3 move rl, fr8
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Dynamic multiple issue (2)

In-order Instruction fetch
issue . Instruction decode

'Yy

Instruction scheduler

v v v v

Reservation Reservation Reservation Reservation
station station station station
Integer ALU Integer ALU FP ALU Load/Store

Y

Commit unit e

In-order
commit
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Exceptions in out-of-order pipeline

e More complicated compared to scalar pipeline

= More difficult to pinpoint the exact place where to
interrupt program execution

e Instructions following the instruction that caused an
exception must not change machine state
= Some of those could have been already executed
e There must be no earlier unfinished instructions

e All exceptions caused by earlier instructions
must have been handled

= Precise vs. imprecise exceptions

e OOE + register renaming first implemented in IBM 360/91
(1969), widespread use in 1990s

e Cause: imprecise exceptions + higher efficiency
only for a small class of programs
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Speculative execution

o Predicting properties/outcome of instruction

= Allows to start executing dependent instructions

= Extra logic to handle bad speculation

e In the compiler
= Extra code generated to “repair” wrong speculations
e In the processor

= Speculative results not written back until confirmed

= Speculatively executed instructions either don’t raise
exceptions, or raise special kinds of exceptions
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Example: IA-32

¢ Intel Pentium Pro ... Pentium 4
= CISC instruction set implemented using micro-ops
on a post-RISC core

e Instructions split into micro-ops
e Pipeline executes micro-ops

= Superscalar, out-of-order, speculative execution
(including branch/jump prediction and register
renaming)

e Pentium4

= Trace cache to speed up instruction decoding
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Example: Skylake

e @ Simplified view of the Skylake
] family microarchitecture

Branch Instruction Fetch & PreDecode
T T m Instructions decoded into
B +Way Decode micro-ops (LOPs)
= Joon Jwor Jwor Joor Joor

i m HOPs executed out-of-order
Allocation Queue by execution units in the
— Execution Engine
T lRldbff o [ Lo m Reorder Buffer responsible for

£ L Scheduler register allocation, register
LE L S“‘” :P reqaming, and instruction
£ 1-mE H 3 retirement
g = I e Also eliminates register moves and

Execution Units zeroing idioms

* m Scheduler forwards pOPs to
p 5 [Losimife] [Sor bt execution units depending on
é% Lt Data Cache P2 T availability of data

(73] L2 Cache
- m Source: M. Lipp et al. Meltdow
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Core architecture in numbers

Conroe Nehalem Sandyllvy Haswell Skylakel
Bridge (Broadwell) Kabylake

Allocation queue > 56 56 128

(decoded insn queue) ' (2x 28) (2x 28) 218 (2x 64)

Out-of-order window

(reorder buffer) 96 128 168 192 224
conedue enes 2w s &
Execution ports ? 6 6 8 8

Integer register file N/A N/A 160 168 180
FP register file N/A N/A 144 168 168
In-flight loads 32 48 64 72 72
In-flight stores 20 32 36 42 56
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Designing an optimal ISA

e Relative frequency of instructions (IBM 360)
Group Fraction

data movement 45,28 %
control 28,73 %
arithmetics 10,75 %
comparisons 5,92 %
logic operations 3,91 %
shifts, rotations 2,93 %
bit operations 2,05 %
|/O operations 0,43 %
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Designing an optimal ISA (2)

o Additional observations (IBM 360)

= 56 % immediates in the £15 range (5 bits)
= 98 % immediates in the £511 range (10 bits)

= 95 % subroutines can be passed arguments
in less than 24 bytes

o Additional observations (DEC Alpha)

= Typical program uses only 58 % of the available the
instruction set

= 98 % of instructions implemented in 15 % of
firmware (PAL)
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Designing an optimal ISA (3)

e Historical focus

= Large instruction set, complex instructions

= Trying to bridge the gap between assembler and
higher-level programming language

e Current focus

= Small instruction set, simple instructions

= Faster instruction execution, easier to optimize
(both at compile time and at runtime)

= Special-purpose hardware (GPU, FPGA
accelerators)
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Post-RISC processor

e CISC and RISC architectures converging

= Useful, complex (CISC-like) instructions added to
RISC instruction set

= Superscalar execution
= Aggressive instruction reordering

e Out-of-order speculative execution
e Avoid relying on compiler optimizations

= New specialized execution units
= Trying to exploit as much as possible ILP
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