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What is interesting on computers?

¢ Very dynamic field

= First electronic computers around 1940

= 60 years later: pervasive

= New technologies replaced before they become old
e Tremendous impact on everyday life

= |nternet, embedded computers, human genome,
computational chemistry, ...

= New possibilities with every new order of magnitude in
cost reduction, performance increase, size reduction
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What is a computer?

® A broad term

m Many common technologies
m Different architecture to match different requirements

® Main classes

m Personal computers
@ Optimal price/performance ratio (drives development)
m Servers, mainframes, supercomputers

@ Higher throughput, reliability, computing power
@ Scientific calculations, serving high number of users

m Embedded computers

® The most repidly growing market (not only mobile devices)

@ Limited resources (memory, performance, energy, cost), special requirements
(sturdiness)
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Global Internet Device Installed Base Forecast
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Mainframe (1964)

e |IBM System 360

m Integrated circuits

m Revolutionary elements

e Modular constructions
e Unified data and instructions

e Unified interface for
peripheral devices

e Memory protection

m Architectural elements kept
even in today’s mainframes
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Mainframe (2005)

e IBM System Z29-109
model S54
= 60 configurable LPARS

m Special-purpose
processors

= 512 GB of memory

= 1740kg, 2,49 m?, 18.3
kW input power

= Availability/reliability,
throughput, security

[2]
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Less common personal computer

"® -®m -B —W —@ —m —§ —h —A —A —8 ~H—E-ER—R-A—R—A— A Ay ¢

~Ruspberry Pi 2 Model B
o (©) Raspberry, —4=

S sssRsvIvAIIINEL. ©

s T LR EXESEETC
( Ol¢ ‘u" ‘:“

L

by ot (A

A

o
RTIrTS

= o i -
SC6 = =~ T2 U8 1 0% 3N 7Y U6
O wey 6 —— atfnenatRastnniigiit— 4

{

CAMERA

=
~N

HOMIR - 28

Computer hitecture, | ction, summer 2019/20



Typical personal computer
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What'’s in the box?

Motherboard
Processor

Memory (RAM, ROM)
Chipset

Basic I/O devices
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What'’s in the box?

Motherboard
Processor

Memory (RAM, ROM)
Chipset

Basic I/O devices

Optical drive

Hard drive
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What'’s in the box?

Motherboard
Processor

Memory (RAM, ROM)
Chipset

Basic I/O devices

Optical drive

Hard drive

Expansion cards
Video card
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What'’s in the box?

Motherboard
Processor

Memory (RAM, ROM)
Chipset

Basic I/O devices

Optical drive

Hard drive

Expansion cards
Video card

Power supply
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Motherboard
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Motherboard (2)

High-Speed Peripherals Front-st;'de RAM
us
High-Speed
Bus North Bridge Memory Bus

(memory controller)

. Internal
Peripherals Bus
Peripheral South Bridge
Bus (1/O controller)
SATA -
uUSB
Ethernet =
Audio
CMOS memory

Legacy Bus

Flash
ROM
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Processor
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e Key elements

m Data path
(operates on data)

m Control
(controls data path)

® Memory elements
(registers and cache)

@ Intel Core i7-980X

m 6 cores, 12 MB L3 cache, clock
frequency 3.33 GHz

m 32 nm technology, 248 mm?2,
1.2 billion transistors
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Operating memory

e Volatile

= Running programs and data
= Directly addressed by the processor
= Dynamic Random-Access Memory (DRAM)

e Constant access time (tens of nanoseconds)

e Bits stored as charge in capacitors
= Needs periodic refresh (16 Hz typical)
e Capacity in gigabytes
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Operating memory (2)

o Volatile
= Static Random-Access Memory (SRAM)

e Implemented using two-state flip flops (requires 4 to 6
transistors per bit)

= No need of periodic refresh

= Significantly faster (units of nanoseconds), significantly lower
density, significantly higher cost

e Processor caches and register
e Other kinds of processor-internal memory
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Processor and memory technology

e Transistor
= Basic building block

e Discrete (a controllable switch) instead of analog (amplifier)
application

¢ Integrated circuit

= Multiple transistors on a single chip
e Additional parts (capacitors, resistors, etc.)

= Better technology - smaller dimensions = higher level
of integration - higher processor speed and higher
memory capacity
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Processor and memory technology (2
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Processor and memory technology (3)
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Secondary storage

® Persistent

m Data retained without power
m Data files and executables

® Not directly addressable by CPU £
(1/0 devices, controlled by a program —
operating system)

m Hard drive

® Magnetic rotational medium

@ Sector-based addressing (chunks of 512 B or
4 KB), access times in tens of milliseconds
(not constant)

m Solid-State Drive (SSD), flash memory

@ Solid (non-moving), transistor-based
persistent storage (floating-gate MOSFET)

@ Asymmetric read/write operations (read
individual bits, write large blocks), constant
access time in tens to hundreds of
microseconds
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Basic computer organization

\ Compiler o COm pUter

9 m input
Interface @ u Output

= memory

Computer

m processor

e data path
e control

e Technology
independent

= First both today‘’sand
past computers

Source: P&H

Computer Architecture, Introduction, summer 2019/2020



Inputs and outputs

e ® s © 5 © s
e Input devices

= Keyboard, mouse, tablet, fingerprint reader,
joystick, camera, ...

e Output devices
= CRT display, LCD panel, graphic card, printer

e Input/output devies

= Network interface card, hard drive, sound card,
camera, force-feedback steering wheel, ...
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Graphical screen output

e Framebuffer (memory on the graphic card)

= Every place in memory (or a group of places)
corresponds to a pixel on the screen

= Contents of the place determines color
= Size of the place determines color resolution

Frame buffer

Raster scan CRT display

Xo Xi Xo X Source: P&H

Computer Architecture, Introduction, summer 2019/2020



Below your
program
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From power-on to running applications

e Firmware

= BIOS (Basic Input/Output System)
e Operating system loader

m Boot sector
= Boot loader

e Operating system
e User interface/desktop environment
e Application
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100s of 1000s of lines of code

e Application software

m Text editor, spread sheet, ...
m User interface libraries

@ System software

m Operating system
e Input/output operations
@ Memory and storage management
@ Resource sharing

m Firmware
e Hardware

m Processor, memory, /O devices
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100s of 1000s of lines of code
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Source: hitps.//informationisbeautiful net/visualizations/million-lines-of-code (data as of 2016)
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https://informationisbeautiful.net/visualizations/million-lines-of-code

Basic concept of computer architecture

Abstraction
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Abstraction

o Required to bridge semantic gaps

= From a concrete (technical) language to an
abstract (general) language

= Expressing the same using more general terms
while encapsulating internal details and preserving

accuracy
e More concise and compact expression

= ,An abstraction is one thing that represents
several real things equally well.” (Edsger Dijkstra)
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From a user to an algorithm

Delete paragraph
Set font

document.par[i].value = ...;
document.set_font(...);

O O

O >
O

User
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From an algorithm to a program

MULI $2, $5, 4
ADD $2, $4, $2
LW $16, 0($2)

document.par[i].value = ...;
document.set _font(...);

Algorithm Semantic gap Program
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From a program to machine code

MULI $2, $5, 4
ADD $2, $4, $2
LW $16, 0($2)

0101001010010
0110101001101

0111010110101

O
O

Semantic gap Processor
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Example: Swap k-th and (k+1)-th element

e ® s © 5 © s
o High-level programming language

void swap(unsigned int array[], unsigned int k) {
unsigned int old = array[k];
array[k] = array[k + 1];
array[k + 1] = old;

¥

Computer Architecture, Introduction, summer 2019/2020



Example: Swap k-th and (k+1)-th element

o Assembler representation for MIPS

swap:

sll $al, $al, 2
addu $al, $al, %$ao
lw  $vo, 0(%al)
lw  $v1, 4(%al)
sw $vi, 0(%al)
SW $vO, 4(%al)
jr $ra
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Example: Swap k-th and (k+1)-th element

o Assembler representation for SuperH

swap:
shll2 r5
mov r4,rl
add r5,rl
mov.l @rl,r2
add #4,r5
add r5,r4

mov.l @r4,r3
mov.l r3,@rl
rts

mov.l r2,@r4
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Example: Swap k-th and (k+1)-th element

o Assembler representation for x86-64

swap:

movslq %esi, %rsi

leag
leag
mov1l
mov 1
mov 1l
mov1l
retq

(%rdi, %rsi, 4), %rdx
4(%rdi, %rsi, 4), %rax
(%rdx), %ecx
(%rax), %esi
%esi, (%rdx)
%ecx, (%rax)
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Example: Swap k-th and (k+1)-th element

e Machine code for MIPS

00000000000001010010100010000000
00000000101001000010100000100001
10001100101000100000000000000000
10001100101000110000000000000100
10101100101000100000000000000100
10101100101000110000000000000000
00000011111000000000000000001000
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Example: Swap k-th and (k+1)-th element

e Machine code for SuperH

0000100001000101
0100001101100001
01011106000110001
00010010011000160
0000010001110101
0101110000110160
0100001001100011
0011001000100001
00001901100000000
0010001000100100
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Example: Swap k-th and (k+1)-th element

e Machine code for x86-64

010010000110011111110116
01001000100011010001010010110111
0100100010001101010001001011011100000100
1000101100001010

10001011011106000

1000100101110010

10001600100001000

11000111
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Implementation

e The opposite of abstraction

= Concretization
= From computer architecture to concrete computer
= High-level language
e Block diagrams, functional description of circuits
= Low-level language

e Circuit diagrams connecting electronic components, masks for
producing semiconductor elements in an integrated circuit

= ,Machine code”

e Physical realization of a computer
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Abstraction layers in a computer

.
.

User interface

Application engine

Applicatior‘

Software

Application libraries/frameworks

Abstraction level

aJempieH

-

HW/SW interface
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Beware: abstraction is (only) a tool!

Latency Numbers Every Programmer Should Know
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B Main memory reference: 188 ns
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Source; httpsiiAgist. github. coms 2891832




