
http://d3s.mff.cuni.czhttp://d3s.mff.cuni.cz/teaching/computer_architecture/

Lubomír Bulej

bulej@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physicsfaculty of mathematics and physics

Computer architecture
Introduction

Computer architecture
Introduction

http://d3s.mff.cuni.cz/teaching/computer_architecture/

2/43Computer Architecture, Introduction, summer 2019/2020

What is interesting on computers?What is interesting on computers?

Very dynamic field

First electronic computers around 1940

60 years later: pervasive

New technologies replaced before they become old

Tremendous impact on everyday life

Internet, embedded computers, human genome,
computational chemistry, ...

New possibilities with every new order of magnitude in
cost reduction, performance increase, size reduction

3/43Computer Architecture, Introduction, summer 2019/2020

What is a computer?What is a computer?

A broad term

Many common technologies

Different architecture to match different requirements

Main classes

Personal computers

Optimal price/performance ratio (drives development)

Servers, mainframes, supercomputers

Higher throughput, reliability, computing power

Scientific calculations, serving high number of users

Embedded computers

The most repidly growing market (not only mobile devices)

Limited resources (memory, performance, energy, cost), special requirements
(sturdiness)

5/43Computer Architecture, Introduction, summer 2019/2020

Mainframe (1964)Mainframe (1964)

[1]

IBM System 360

Integrated circuits

Revolutionary elements

Modular constructions

Unified data and instructions

Unified interface for
peripheral devices

Memory protection

Architectural elements kept
even in today‘s mainframes

6/43Computer Architecture, Introduction, summer 2019/2020

Mainframe (2005)Mainframe (2005)

IBM System Z9-109
model S54

60 configurable LPARS

Special-purpose
processors

512 GB of memory

1 740 kg, 2,49 m2, 18.3
kW input power

Availability/reliability,
throughput, security [2]

7/43Computer Architecture, Introduction, summer 2019/2020

Less common personal computerLess common personal computer

[3]

8/43Computer Architecture, Introduction, summer 2019/2020

Typical personal computerTypical personal computer

[4]

9/43Computer Architecture, Introduction, summer 2019/2020

What’s in the box?What’s in the box?

[4]

Motherboard
Processor
Memory (RAM, ROM)
Chipset
Basic I/O devices

10/43Computer Architecture, Introduction, summer 2019/2020

What’s in the box?What’s in the box?

[4]

Motherboard
Processor
Memory (RAM, ROM)
Chipset
Basic I/O devices

Optical drive

Hard drive

11/43Computer Architecture, Introduction, summer 2019/2020

What’s in the box?What’s in the box?

[4]

Motherboard
Processor
Memory (RAM, ROM)
Chipset
Basic I/O devices

Optical drive

Hard drive

Expansion cards
Video card

12/43Computer Architecture, Introduction, summer 2019/2020

What’s in the box?What’s in the box?

[4]

Motherboard
Processor
Memory (RAM, ROM)
Chipset
Basic I/O devices

Optical drive

Hard drive

Expansion cards
Video card

Power supply

13/43Computer Architecture, Introduction, summer 2019/2020

MotherboardMotherboard

[5]

14/43Computer Architecture, Introduction, summer 2019/2020

Motherboard (2)Motherboard (2)

CPU

North Bridge
(memory controller)

Front-side
Bus

Memory Bus

RAMHigh-Speed Peripherals

High-Speed
Bus

Clock
Generator

South Bridge
(I/O controller)

SATA
USB

Ethernet
Audio

CMOS memory

Internal
Bus

Peripheral
Bus

Peripherals

Flash
ROM

Legacy Bus Super I/O
Serial

Parallel
Floppy

Keyboard
Mouse

15/43Computer Architecture, Introduction, summer 2019/2020

ProcessorProcessor

Key elements

Data path
(operates on data)

Control
(controls data path)

Memory elements
(registers and cache)

Intel Core i7-980X

6 cores, 12 MB L3 cache, clock
frequency 3.33 GHz

32 nm technology, 248 mm2,
1.2 billion transistors

Source: intel.com

16/43Computer Architecture, Introduction, summer 2019/2020

Operating memoryOperating memory

Volatile

Running programs and data

Directly addressed by the processor

Dynamic Random-Access Memory (DRAM)

Constant access time (tens of nanoseconds)

Bits stored as charge in capacitors
Needs periodic refresh (16 Hz typical)

Capacity in gigabytes

Source: slashgear.com

17/43Computer Architecture, Introduction, summer 2019/2020

Operating memory (2)Operating memory (2)

Volatile

Static Random-Access Memory (SRAM)

Implemented using two-state flip flops (requires 4 to 6
transistors per bit)

No need of periodic refresh

Significantly faster (units of nanoseconds), significantly lower
density, significantly higher cost

Processor caches and register

Other kinds of processor-internal memory

18/43Computer Architecture, Introduction, summer 2019/2020

Processor and memory technologyProcessor and memory technology

Transistor

Basic building block

Discrete (a controllable switch) instead of analog (amplifier)
application

Integrated circuit

Multiple transistors on a single chip

Additional parts (capacitors, resistors, etc.)

Better technology → smaller dimensions → higher level
of integration → higher processor speed and higher
memory capacity

19/43Computer Architecture, Introduction, summer 2019/2020

Processor and memory technology (2)Processor and memory technology (2)

[7][6]

20/43Computer Architecture, Introduction, summer 2019/2020

Processor and memory technology (3)Processor and memory technology (3)

Source: P&H

21/43Computer Architecture, Introduction, summer 2019/2020

Secondary storageSecondary storage

Persistent

Data retained without power

Data files and executables

Not directly addressable by CPU
(I/O devices, controlled by a program –
operating system)

Hard drive

Magnetic rotational medium

Sector-based addressing (chunks of 512 B or
4 KB), access times in tens of milliseconds
(not constant)

Solid-State Drive (SSD), flash memory

Solid (non-moving), transistor-based
persistent storage (floating-gate MOSFET)

Asymmetric read/write operations (read
individual bits, write large blocks), constant
access time in tens to hundreds of
microseconds

22/43Computer Architecture, Introduction, summer 2019/2020

Basic computer organizationBasic computer organization

Source: P&H

Computer

input

output

memory

processor

data path

control

Technology
independent

First both today‘s and
past computers

23/43Computer Architecture, Introduction, summer 2019/2020

Inputs and outputsInputs and outputs

Input devices

Keyboard, mouse, tablet, fingerprint reader,
joystick, camera, ...

Output devices

CRT display, LCD panel, graphic card, printer

Input/output devies

Network interface card, hard drive, sound card,
camera, force-feedback steering wheel, ...

24/43Computer Architecture, Introduction, summer 2019/2020

Graphical screen outputGraphical screen output

Framebuffer (memory on the graphic card)

Every place in memory (or a group of places)
corresponds to a pixel on the screen

Contents of the place determines color

Size of the place determines color resolution

Source: P&H

25/43Computer Architecture, Introduction, summer 2019/2020

Below your
program

26/43Computer Architecture, Introduction, summer 2019/2020

From power-on to running applicationsFrom power-on to running applications

Firmware

BIOS (Basic Input/Output System)

Operating system loader

Boot sector

Boot loader

Operating system

User interface/desktop environment

Application

27/43Computer Architecture, Introduction, summer 2019/2020

100s of 1000s of lines of code100s of 1000s of lines of code

Application software

Text editor, spread sheet, ...

User interface libraries

System software

Operating system

Input/output operations

Memory and storage management

Resource sharing

Firmware

Hardware

Processor, memory, I/O devices

Hardware

28/43Computer Architecture, Introduction, summer 2019/2020

100s of 1000s of lines of code100s of 1000s of lines of code

Hardware

Ford F150 Pickup (2016)

Modern High-End Car (2013)

Mac OS X "Tiger"

Large Hadron Collider

Microsoft Office 2013

Windows 7

Mozilla Firefox

Linux Kernel 4.1

Android

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

150

100

86

50

45

40

36.8

19.5

12

Millions of Lines of Code (MLOC)

Source: https://informationisbeautiful.net/visualizations/million-lines-of-code (data as of 2016)

https://informationisbeautiful.net/visualizations/million-lines-of-code

29/43Computer Architecture, Introduction, summer 2019/2020

Basic concept of computer architectureBasic concept of computer architecture

Abstraction

30/43Computer Architecture, Introduction, summer 2019/2020

AbstractionAbstraction

Required to bridge semantic gaps

From a concrete (technical) language to an
abstract (general) language

Expressing the same using more general terms
while encapsulating internal details and preserving
accuracy

More concise and compact expression

„An abstraction is one thing that represents
several real things equally well.“ (Edsger Dijkstra)

31/43Computer Architecture, Introduction, summer 2019/2020

From a user to an algorithmFrom a user to an algorithm

User

Delete paragraph
Set font

....

Algorithm

document.par[i].value = ...;
document.set_font(...);
...

Semantic gap

32/43Computer Architecture, Introduction, summer 2019/2020

From an algorithm to a programFrom an algorithm to a program

Algorithm

document.par[i].value = ...;
document.set_font(...);
...

Semantic gap Program

MULI $2, $5, 4
ADD $2, $4, $2
LW $16, 0($2)
...

33/43Computer Architecture, Introduction, summer 2019/2020

From a program to machine codeFrom a program to machine code

Semantic gapProgram

MULI $2, $5, 4
ADD $2, $4, $2
LW $16, 0($2)
...

Processor

0101001010010
0110101001101
0111010110101
...

34/43Computer Architecture, Introduction, summer 2019/2020

Example: Swap k-th and (k+1)-th elementExample: Swap k-th and (k+1)-th element

High-level programming language

void swap(unsigned int array[], unsigned int k) {
unsigned int old = array[k];
array[k] = array[k + 1];
array[k + 1] = old;

}

35/43Computer Architecture, Introduction, summer 2019/2020

Example: Swap k-th and (k+1)-th elementExample: Swap k-th and (k+1)-th element

Assembler representation for MIPS

swap:
sll $a1, $a1, 2
addu $a1, $a1, $a0
lw $v0, 0($a1)
lw $v1, 4($a1)
sw $v1, 0($a1)
sw $v0, 4($a1)
jr $ra

36/43Computer Architecture, Introduction, summer 2019/2020

Example: Swap k-th and (k+1)-th elementExample: Swap k-th and (k+1)-th element

Assembler representation for SuperH

swap:
 shll2 r5
 mov r4,r1
 add r5,r1
 mov.l @r1,r2
 add #4,r5
 add r5,r4
 mov.l @r4,r3
 mov.l r3,@r1
 rts
 mov.l r2,@r4

37/43Computer Architecture, Introduction, summer 2019/2020

Example: Swap k-th and (k+1)-th elementExample: Swap k-th and (k+1)-th element

Assembler representation for x86-64

swap:
movslq %esi, %rsi
leaq (%rdi, %rsi, 4), %rdx
leaq 4(%rdi, %rsi, 4), %rax
movl (%rdx), %ecx
movl (%rax), %esi
movl %esi, (%rdx)
movl %ecx, (%rax)
retq

38/43Computer Architecture, Introduction, summer 2019/2020

Example: Swap k-th and (k+1)-th elementExample: Swap k-th and (k+1)-th element

Machine code for MIPS

00000000000001010010100010000000
00000000101001000010100000100001
10001100101000100000000000000000
10001100101000110000000000000100
10101100101000100000000000000100
10101100101000110000000000000000
00000011111000000000000000001000

39/43Computer Architecture, Introduction, summer 2019/2020

Example: Swap k-th and (k+1)-th elementExample: Swap k-th and (k+1)-th element

Machine code for SuperH

0000100001000101
0100001101100001
0101110000110001
0001001001100010
0000010001110101
0101110000110100
0100001001100011
0011001000100001
0000101100000000
0010001000100100

40/43Computer Architecture, Introduction, summer 2019/2020

Example: Swap k-th and (k+1)-th elementExample: Swap k-th and (k+1)-th element

Machine code for x86-64

010010000110011111110110
01001000100011010001010010110111
0100100010001101010001001011011100000100
1000101100001010
1000101101110000
1000100101110010
1000100100001000
11000111

41/43Computer Architecture, Introduction, summer 2019/2020

ImplementationImplementation

The opposite of abstraction

Concretization

From computer architecture to concrete computer

High-level language

Block diagrams, functional description of circuits

Low-level language

Circuit diagrams connecting electronic components, masks for
producing semiconductor elements in an integrated circuit

„Machine code“

Physical realization of a computer

42/43Computer Architecture, Introduction, summer 2019/2020

Abstraction layers in a computerAbstraction layers in a computer

User interface

Application engine

Application libraries/frameworks

Operating system

Instruction Set Architecture (ISA)

Data path, control

Logic circuits

Transistors

HW/SW interface

So
ft

w
ar

e

H
ard

w
are

A
p

p
lic

ati
o

n
s

A
b

st
ra

cti
o

n
 le

ve
l

43/43Computer Architecture, Introduction, summer 2019/2020

Beware: abstraction is (only) a tool!Beware: abstraction is (only) a tool!

