Computer architecture
Introduction

http://d3s.mff.cuni.cz/teaching/computer_architecture/

Lubomir Bulej
bulej@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

http://d3s.mff.cuni.cz/teaching/computer_architecture/

What is interesting on computers?

¢ Very dynamic field

= First electronic computers around 1940

= 60 years later: pervasive

= New technologies replaced before they become old
e Tremendous impact on everyday life

= |nternet, embedded computers, human genome,
computational chemistry, ...

= New possibilities with every new order of magnitude in
cost reduction, performance increase, size reduction

Computer Architecture, Introduction, summer 2019/2020

What is a computer?

® A broad term

m Many common technologies
m Different architecture to match different requirements

® Main classes

m Personal computers
@ Optimal price/performance ratio (drives development)
m Servers, mainframes, supercomputers

@ Higher throughput, reliability, computing power
@ Scientific calculations, serving high number of users

m Embedded computers

® The most repidly growing market (not only mobile devices)

@ Limited resources (memory, performance, energy, cost), special requirements
(sturdiness)

Computer Architecture, Introduction, summer 2019/2020

Global Internet Device Installed Base Forecast
20,000,000 -

18,000,000 -

16,000,000

Wearables

14,000,000

12,000,000

10,000,000 -

8,000,000

6,000,000

Number Of Devices In Use (In Thousands)

4,000,000

2,000,000

0 . .
2004 2005 2006 2007 2008 2009 2010 2011 2012 2013E 2014E 2015E 2016E 2017E 2018E

Source: Gartner, IDC, Strategy Analytics, Machina Research, company filings, Bll estimates

Mainframe (1964)

e |IBM System 360

m Integrated circuits

m Revolutionary elements

e Modular constructions
e Unified data and instructions

e Unified interface for
peripheral devices

e Memory protection

m Architectural elements kept
even in today’s mainframes

Computer Architecture, Introduction, summer 2019/2020

Mainframe (2005)

e IBM System Z29-109
model S54
= 60 configurable LPARS

m Special-purpose
processors

= 512 GB of memory

= 1740kg, 2,49 m?, 18.3
kW input power

= Availability/reliability,
throughput, security

[2]

Computer Architecture, Introduction, summer 2019/2020

Less common personal computer

"® -®m -B —W —@ —m —§ —h —A —A —8 ~H—E-ER—R-A—R—A— A Ay ¢

~Ruspberry Pi 2 Model B
o (©) Raspberry, —4=

S sssRsvIvAIIINEL. ©

s T LR EXESEETC
(Ol¢ ‘u" ‘:“

L

by ot (A

A

o
RTIrTS

= o i -
SC6 = =~ T2 U8 1 0% 3N 7Y U6
O wey 6 —— atfnenatRastnniigiit— 4

{

CAMERA

=
~N

HOMIR - 28

Computer hitecture, | ction, summer 2019/20

Typical personal computer

=
-

) © 9 ¢
o)
D>

3

y
v =
i
i
iy
—
—_—
—_— -

=

“ oamerr e

T Z@cw o |

- [4]

What'’s in the box?

Motherboard
Processor

Memory (RAM, ROM)
Chipset

Basic I/O devices

Computer Architecture, Introduction, summer 2019/2020

What'’s in the box?

Motherboard
Processor

Memory (RAM, ROM)
Chipset

Basic I/O devices

Optical drive

Hard drive

Computer Architecture, Introduction, summer 2019/2020

What'’s in the box?

Motherboard
Processor

Memory (RAM, ROM)
Chipset

Basic I/O devices

Optical drive

Hard drive

Expansion cards
Video card

Computer Architecture, Introduction, summer 2019/2020

What'’s in the box?

Motherboard
Processor

Memory (RAM, ROM)
Chipset

Basic I/O devices

Optical drive

Hard drive

Expansion cards
Video card

Power supply

Computer Architecture, Introduction, summer 2019/2020

Motherboard

———

]

| i,
-l 000076309079 | Fei
(0T T Ig_i 4
@ =T

=

=t H
ASSEMBLED IN ks
MALAYSIA

Computer Architecture, In

Motherboard (2)

High-Speed Peripherals Front-st;'de RAM
us
High-Speed
Bus North Bridge Memory Bus

(memory controller)

. Internal
Peripherals Bus
Peripheral South Bridge
Bus (1/O controller)
SATA -
uUSB
Ethernet =
Audio
CMOS memory

Legacy Bus

Flash
ROM

Computer Architecture, Introduction, summer 2019/2020

Processor

== | (EEH
ERa

e Key elements

m Data path
(operates on data)

m Control
(controls data path)

® Memory elements
(registers and cache)

@ Intel Core i7-980X

m 6 cores, 12 MB L3 cache, clock
frequency 3.33 GHz

m 32 nm technology, 248 mm?2,
1.2 billion transistors

Gaches

EEE EITE A3Ed EEiE

Sharec (s

T o

rjr Cuhfroller

e
e

,_
|

iMem

Source: intel.com

Computer Architecture, Introduction, summer 2019/2020

Operating memory

e Volatile

= Running programs and data
= Directly addressed by the processor
= Dynamic Random-Access Memory (DRAM)

e Constant access time (tens of nanoseconds)

e Bits stored as charge in capacitors
= Needs periodic refresh (16 Hz typical)
e Capacity in gigabytes

Computer Architecture, Introduction, summer 2019/2020

Operating memory (2)

o Volatile
= Static Random-Access Memory (SRAM)

e Implemented using two-state flip flops (requires 4 to 6
transistors per bit)

= No need of periodic refresh

= Significantly faster (units of nanoseconds), significantly lower
density, significantly higher cost

e Processor caches and register
e Other kinds of processor-internal memory

Computer Architecture, Introduction, summer 2019/2020

Processor and memory technology

e Transistor
= Basic building block

e Discrete (a controllable switch) instead of analog (amplifier)
application

¢ Integrated circuit

= Multiple transistors on a single chip
e Additional parts (capacitors, resistors, etc.)

= Better technology - smaller dimensions = higher level
of integration - higher processor speed and higher
memory capacity

Computer Architecture, Introduction, summer 2019/2020

Processor and memory technology (2

Cre)

(0 U W ey h.~- ¥
:.I'F, ||i_ E-I || : |,!.| H:l 1‘1'-! l’* T
B T Bt v

I [R

=i
T
=
l -
=
et |
.
i
~
o
=
.l'
HIEJ
| s

Computer Architecture, Introduction, summer 2019/2020 19/43

Processor and memory technology (3)

Blank
Silicon ingot wafers

processing steps

|

Tested dies Tested Patterned wafers
00 wafer TN
Bond die t D%EDD[I&D] Waf : N
ond die to , afer [|7 \
package OO 10 DIEsl q‘;ﬂ tester TN)
o000 il .
l OO \ =
\“‘--_
Packaged dies Tested packaged dies

oie o MR« o S
tester o] o]] customers

Source: P&H

Computer Architecture, Introduction, summer 2019/2020

Secondary storage

® Persistent

m Data retained without power
m Data files and executables

® Not directly addressable by CPU £
(1/0 devices, controlled by a program —
operating system)

m Hard drive

® Magnetic rotational medium

@ Sector-based addressing (chunks of 512 B or
4 KB), access times in tens of milliseconds
(not constant)

m Solid-State Drive (SSD), flash memory

@ Solid (non-moving), transistor-based
persistent storage (floating-gate MOSFET)

@ Asymmetric read/write operations (read
individual bits, write large blocks), constant
access time in tens to hundreds of
microseconds

Computer Architecture, Introduction, summer 2019/2020

Basic computer organization

\ Compiler o COm pUter

9 m input
Interface @ u Output

= memory

Computer

m processor

e data path
e control

e Technology
independent

= First both today‘’sand
past computers

Source: P&H

Computer Architecture, Introduction, summer 2019/2020

Inputs and outputs

e ® s © 5 © s
e Input devices

= Keyboard, mouse, tablet, fingerprint reader,
joystick, camera, ...

e Output devices
= CRT display, LCD panel, graphic card, printer

e Input/output devies

= Network interface card, hard drive, sound card,
camera, force-feedback steering wheel, ...

Computer Architecture, Introduction, summer 2019/2020

Graphical screen output

e Framebuffer (memory on the graphic card)

= Every place in memory (or a group of places)
corresponds to a pixel on the screen

= Contents of the place determines color
= Size of the place determines color resolution

Frame buffer

Raster scan CRT display

Xo Xi Xo X Source: P&H

Computer Architecture, Introduction, summer 2019/2020

Below your
program

Computer Architecture, In uction, summer 2019/2020

From power-on to running applications

e Firmware

= BIOS (Basic Input/Output System)
e Operating system loader

m Boot sector
= Boot loader

e Operating system
e User interface/desktop environment
e Application

Computer Architecture, Introduction, summer 2019/2020

100s of 1000s of lines of code

e Application software

m Text editor, spread sheet, ...
m User interface libraries

@ System software

m Operating system
e Input/output operations
@ Memory and storage management
@ Resource sharing

m Firmware
e Hardware

m Processor, memory, /O devices

Computer Architecture, Introduction, summer 2019/2020

100s of 1000s of lines of code

Android [12
Linux Kernel 4.1 [N 105
Mozilla Firefox [36 S
windows 7 GGG /0
Microsoft Office 2013 I 5
Large Hadron Collider [50
Mac 0S X "Tiger" | <o
Modern High-End Car (2013) [— 100
Ford F150 Pickup (20:6) |1 50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Millions of Lines of Code (MLOC)

Source: hitps.//informationisbeautiful net/visualizations/million-lines-of-code (data as of 2016)

Computer Architecture, Introduction, summer 2019/2020

https://informationisbeautiful.net/visualizations/million-lines-of-code

Basic concept of computer architecture

Abstraction

Computer Architecture, Introduction, summer

Abstraction

o Required to bridge semantic gaps

= From a concrete (technical) language to an
abstract (general) language

= Expressing the same using more general terms
while encapsulating internal details and preserving

accuracy
e More concise and compact expression

= ,An abstraction is one thing that represents
several real things equally well.” (Edsger Dijkstra)

Computer Architecture, Introduction, summer 2019/2020

From a user to an algorithm

Delete paragraph
Set font

document.par[i].value = ...;
document.set_font(...);

O O

O >
O

User

Computer Architecture, Introduction, summer 2019/2020

From an algorithm to a program

MULI $2, $5, 4
ADD $2, $4, $2
LW $16, 0($2)

document.par[i].value = ...;
document.set _font(...);

Algorithm Semantic gap Program

Computer Architecture, Introduction, summer 2019/2020

From a program to machine code

MULI $2, $5, 4
ADD $2, $4, $2
LW $16, 0($2)

0101001010010
0110101001101

0111010110101

O
O

Semantic gap Processor

Computer Architecture, Introduction, summer 2019/2020

Example: Swap k-th and (k+1)-th element

e ® s © 5 © s
o High-level programming language

void swap(unsigned int array[], unsigned int k) {
unsigned int old = array[k];
array[k] = array[k + 1];
array[k + 1] = old;

¥

Computer Architecture, Introduction, summer 2019/2020

Example: Swap k-th and (k+1)-th element

o Assembler representation for MIPS

swap:

sll $al, $al, 2
addu $al, $al, %$ao
lw $vo, 0(%al)
lw $v1, 4(%al)
sw $vi, 0(%al)
SW $vO, 4(%al)
jr $ra

Computer Architecture, Introduction, summer 2019/2020

Example: Swap k-th and (k+1)-th element

o Assembler representation for SuperH

swap:
shll2 r5
mov r4,rl
add r5,rl
mov.l @rl,r2
add #4,r5
add r5,r4

mov.l @r4,r3
mov.l r3,@rl
rts

mov.l r2,@r4

Computer Architecture, Introduction, summer 2019/2020

Example: Swap k-th and (k+1)-th element

o Assembler representation for x86-64

swap:

movslq %esi, %rsi

leag
leag
mov1l
mov 1
mov 1l
mov1l
retq

(%rdi, %rsi, 4), %rdx
4(%rdi, %rsi, 4), %rax
(%rdx), %ecx
(%rax), %esi
%esi, (%rdx)
%ecx, (%rax)

Computer Architecture, Introduction, summer 2019/2020

Example: Swap k-th and (k+1)-th element

e Machine code for MIPS

00000000000001010010100010000000
00000000101001000010100000100001
10001100101000100000000000000000
10001100101000110000000000000100
10101100101000100000000000000100
10101100101000110000000000000000
00000011111000000000000000001000

Computer Architecture, Introduction, summer 2019/2020

Example: Swap k-th and (k+1)-th element

e Machine code for SuperH

0000100001000101
0100001101100001
01011106000110001
00010010011000160
0000010001110101
0101110000110160
0100001001100011
0011001000100001
00001901100000000
0010001000100100

Computer Architecture, Introduction, summer 2019/2020

Example: Swap k-th and (k+1)-th element

e Machine code for x86-64

010010000110011111110116
01001000100011010001010010110111
0100100010001101010001001011011100000100
1000101100001010

10001011011106000

1000100101110010

10001600100001000

11000111

Computer Architecture, Introduction, summer 2019/2020

Implementation

e The opposite of abstraction

= Concretization
= From computer architecture to concrete computer
= High-level language
e Block diagrams, functional description of circuits
= Low-level language

e Circuit diagrams connecting electronic components, masks for
producing semiconductor elements in an integrated circuit

= ,Machine code”

e Physical realization of a computer

Computer Architecture, Introduction, summer 2019/2020

Abstraction layers in a computer

.
.

User interface

Application engine

Applicatior‘

Software

Application libraries/frameworks

Abstraction level

aJempieH

-

HW/SW interface

Computer Architecture, Introduction, summer 2019/2020

Beware: abstraction is (only) a tool!

Latency Numbers Every Programmer Should Know

Hin:
™ L1 cache reference: B8.5ns

HE
H H EBranch mispredict: Sns
|

[]]
Bl L2 cache reference: 7ns

=M 188 ns

Computer

itecture, In

B Main memory reference: 188 ns

M Send 1KB over 1Gbps netuork: 18ps

330 random read C1GkSs 35000
1568 p=

]
] Read 1HME sequentially
] from memoky: 238 ps

EEEEEEEEEN
1]
|
-
=
in

B Read 1ME seqguentially
from 3305 1L ms

Tisk sesk: 18 ms

Read 1HME sequentially
from disk: 28 ms

Source; httpsiiAgist. github. coms 2891832

