
http://d3s.mff.cuni.czhttp://d3s.mff.cuni.cz/teaching/computer_architecture/

Lubomír Bulej 

bulej@d3s.mff.cuni.cz 

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physicsfaculty of mathematics and physics

Computer architecture
Computer performance

Computer architecture
Computer performance

http://d3s.mff.cuni.cz/teaching/computer_architecture/


2/43Computer Architecture,, Computer Performance, summer 2019/2020

Relative performance per unit costRelative performance per unit cost

Year Technology Relative performance / unit cost

1951 Vacuum tube 1

1965 Transistor 35

1975 Integrated circuit (low integration) 900

1995 Integrated circuit (very large scale integration, VLSI) 2 400 000

2013 Integrated circuit (ultra large scale integration, ULSI) 250 000 000 000



3/43Computer Architecture,, Computer Performance, summer 2019/2020

Growth of capacity per DRAM chipGrowth of capacity per DRAM chip

Source: P&H

Year of introduction

C
ap

ac
it

y 
[k

b
it

/c
h

ip
]



4/43Computer Architecture,, Computer Performance, summer 2019/2020

Great ideas in computer architectureGreat ideas in computer architecture

Design for Moore‘s law

Use abstraction to simplify design

Make the common cast fast

Performance via parallelism

Performance via pipelining

Performance via prediction

Hierarchy of memories

Dependability via redundancy



5/43Computer Architecture,, Computer Performance, summer 2019/2020

Moore’s “law”Moore’s “law”

Gordon Moore (*1929)

On of the founders of Intel

Prediction: The number of transistors integrated 
on a single chip will double every 18 – 24 months

1960s

Smaller transistors allow higher speeds and capacities

Often applied to other domains
Storage capacity, network bandwidth



6/43Computer Architecture,, Computer Performance, summer 2019/2020

Moore’s “law” (2)Moore’s “law” (2)

Exponential growth in the last 40 years!

Keeping Moore’s “law” valid requires tremendous 
and continuous advances in technology

So far in a single domain (semiconductor transistors)

There are hard physical limits (quantum tunnel effect, 
waste heat, quantum noise)

Compromises needed

Number of transistors does not correspond to 
computational power for sequential algorithms



7/43Computer Architecture,, Computer Performance, summer 2019/2020

Program performanceProgram performance

HW or SW component Impact on performance

Algorithm

Processor, memory

Number of source-level 
statements and of I/O 
operations executed

Programming language, 
compiler, computer 
architecture

Number of instructions for 
each source-level statement

How fast instructions can be 
executed

I/O system (hardware, 
operating system)

How fast I/O operations can 
be executed



8/43Computer Architecture,, Computer Performance, summer 2019/2020

Why care about performance?Why care about performance?

Comparing/ranking computers

Cheaper and/or better product wins

Personal computers: fierce performance competition

Embedded computers: optimize price of final product

Important for buyers → important for designers 
and producers

Performance impact of architectural changes

Systematic assessment is the only indication 
whether some progress is really a progress



9/43Computer Architecture,, Computer Performance, summer 2019/2020

How to define computer performance?How to define computer performance?

Computer A is “better” than computer B

What does it mean? Better in what?

Is a truck “better” car than a sports car?

Is a Concorde “better” plane than a Boeing 747?

Airplane

Boeing 777 375 9000 905 339375

Boeing 747 470 7700 905 425350

Concorde 132 7400 2158 284856

Douglas DC-8-50 146 16000 810 118260

Capacity
[persons]

Range
[km]

Cruising speed
[km/h]

Throughput
[pers·km/h]



10/43Computer Architecture,, Computer Performance, summer 2019/2020

How to define computer performance?How to define computer performance?

Basic criteria

What do we need?

What do we compare?

Basic metrics

Execution time (response time)

Time to complete a particular task

Important for users

Throughput

Amount of work completed in unit time

Important for server or data center operators



11/43Computer Architecture,, Computer Performance, summer 2019/2020

How to define computer performance?How to define computer performance?

Performance based on execution time

We desire: higher number = higher performance

Execution time is the opposite → needs fixing

Now we can compare performance

Performance X=
1

Executiontime X

Performance X>PerformanceY

1
Executiontime X

>
1

Execution timeY

Execution timeY>Executiontime X



12/43Computer Architecture,, Computer Performance, summer 2019/2020

Relative performanceRelative performance

Relating performance of two computers

X is n-times faster than Y

If X is n-times faster than Y, then execution time on 
Y is n-times as long as on X

Performance X
PerformanceY

=n

Performance X
PerformanceY

=
Execution time Y
Execution time X

=n



13/43Computer Architecture,, Computer Performance, summer 2019/2020

Performance: user perspectivePerformance: user perspective

Total execution time

Wall-clock time, response time, elapsed time

Includes waiting for I/O operations, OS overhead, etc.

Including sharing resources (CPU) with other users

Reflects whole-system performance

Processor time

CPU execution time, CPU time

Time when the program was actually executing

Does not include waiting for I/O operations

Does not include time when to program was not running

Includes OS overhead (user vs system CPU time)

Reflects processor performance



14/43Computer Architecture,, Computer Performance, summer 2019/2020

Performance: CPU designer perspectivePerformance: CPU designer perspective

Speed for executing instructions

Clock rate

Clock cycle length

CPU execution time=
CPU clock cycles
CPU clock rate

CPU execution time=CPU clock cycles×CPU clock cycle time



15/43Computer Architecture,, Computer Performance, summer 2019/2020

Performance: compiler perspectivePerformance: compiler perspective

Average number of cycles per instruction

Clock cycles per instruction (CPI)

Specific to a particular program or its part

Allows comparing different implementations of the 
same architecture

Given a fixed number of instructions

CPU clock cycles=CPI×Number of instructions



16/43Computer Architecture,, Computer Performance, summer 2019/2020

Classic processor performance equationClassic processor performance equation

Relates number of instructions,
CPI and clock cycle length

3 different factors influencing performance

Allows comparing different implementations

Allows assessing alternative architectures

CPU execution time=CPI×Number of instructions×CPU clock cycle time

CPU executiontime=
CPI×Number of instructions

CPU clock rate



17/43Computer Architecture,, Computer Performance, summer 2019/2020

Alternative view of program performanceAlternative view of program performance

Component Affects what? Affects how?

Algorithm

Compiler

Instruction count
CPI

Number and kind of source program 
statements and operations, data types 
(integer vs. floating point)

Programming
Language

Instruction count 
CPI

Kind of source program statements, 
abstractions used to express the algorithm.

Instruction count 
CPI

How program statements are translated to 
machine code, choice and layout of 
instructions.

Instruction set 
architecture

Instruction count 
CPI
Clock rate

Instructions available to compiler, cost in 
cycles for each instruction, overall clock rate.



18/43Computer Architecture,, Computer Performance, summer 2019/2020

Pitfall: Unrealistic expectationsPitfall: Unrealistic expectations

Expecting the improvement of one aspect of a 
computer to increase overall performance by 
an amount proportional to the size of the 
improvement.

Total execution time: 100 s

Out of which multiplication operations: 80 s

How much do we need to improve multiplication 
to make the program run 5× faster? 



19/43Computer Architecture,, Computer Performance, summer 2019/2020

Pitfall: Unrealistic expectations (2)Pitfall: Unrealistic expectations (2)

Some „back of the envelope“ calculations

Execution fast=
Execution slow

5

Executionslow=80+20

Execution fast=
80
n

+20
80
n

+20=
80+20
5

80
n

+20=20

80
n

=0

80≠0



20/43Computer Architecture,, Computer Performance, summer 2019/2020

Pitfall: Wrong performance metricsPitfall: Wrong performance metrics

Using a subset of the performance equation 
as a performance metric

Using a single factor is almost always wrong

Using two factors may be valid in limited context

Easily misused: dependencies between factors

Other metrics dressing up other known factors



21/43Computer Architecture,, Computer Performance, summer 2019/2020

Pitfall: Wrong performance metrics (2)Pitfall: Wrong performance metrics (2)

MIPS (Million Instructions Per Second)

Instruction execution rate

Intuitive (higher number → faster computer)

Problems

Ignores instruction capabilities, execution time of individual 
instructions, different number of instructions for different 
ISAs

Impossible to compare computers with different ISA

Depends on the instruction mix of a particular program (a 
single value to not represent the performance of a computer)

MIPS=
Instructioncount

106×Executiontime



22/43Computer Architecture,, Computer Performance, summer 2019/2020

Processor performanceProcessor performance

Performance while executing a particular program

Depends on the number of instructions, average 
number of cycles per instructions (CPI), clock cycle 
length (or clock rate)

No single factor can completely express performance 
Reducing number of instructions → architecture with lower 
clock frequency or higher CPI

CPI depends on the instruction mix (frequency and type of 
executed instructions) of a given program

Code with the lowest number of instructions is not necessarily the 
fastest



23/43Computer Architecture,, Computer Performance, summer 2019/2020

Processor performance (2)Processor performance (2)

Performance while executing a particular 
program

The only complete and reliable metrics is 
processor time

Does not tell anything about processor time for other 
programs



24/43Computer Architecture,, Computer Performance, summer 2019/2020

Performance evaluationPerformance evaluation

Comparing performance of different 
computers

Easy for one specific program (processor execution 
time)

Comparing isolated components (clock rate, CPI, 
number of instructions) not indicative for other 
programs

How to approximate performance with respect to 
a set of programs?



25/43Computer Architecture,, Computer Performance, summer 2019/2020

Performance evaluation (2)Performance evaluation (2)

Workload

A set of programs and tasks capturing a user’s workload

Compare execution time of the workload on different 
computers

Difficult to define (domain specific)

Difficult to automate (repeated execution)

Benchmark

Program specifically made to measure performance

Set of benchmarks

Statistically relevant representative of a typical workload

Hoping that benchmark results will reflect how well a computer 
will perform with the user’s workload



26/43Computer Architecture,, Computer Performance, summer 2019/2020

Performance evaluation (3)Performance evaluation (3)

SPEC (Standard Performance Evaluation 
Corporation)

Funded by commercial and non-commercial entities

Manufacturers of processors and computers

Producers of compilers, operating systems

Research institutes

Goal: Define a standard set of benchmarks to enable 
comparison of computer systems’ performance

Different benchmarks for different workloads

Primarily focusing on CPU performance

Now CPU power, GPU performance & power, compilers, 
databases, e-mail systems, transaction processing, etc.



27/43Computer Architecture,, Computer Performance, summer 2019/2020

SPEC CPU 2006SPEC CPU 2006

Processor performance

CINT2006 (integer computation)

12 benchmarks (C compiler, chess algorith, quantum 
computer simulation, etc.)

CFP2006 (floating point computation)

17 benchmarks (finite elements, molecular dynamics, etc.)

SPECratio

Ratio of reference vs. measured benchmark execution time

Summary score (single number): geometric mean

n√∏i=1
n

SPECratioi



28/43Computer Architecture,, Computer Performance, summer 2019/2020

SPEC CINT2006 on AMD Opteron X4SPEC CINT2006 on AMD Opteron X4

Source: P&H



29/43Computer Architecture,, Computer Performance, summer 2019/2020

SPEC CINT2006 on Intel Core i7 920SPEC CINT2006 on Intel Core i7 920

Source: P&H



30/43Computer Architecture,, Computer Performance, summer 2019/2020

Program performance (3)Program performance (3)

End of the 
golden era



31/43Computer Architecture,, Computer Performance, summer 2019/2020

The Power WallThe Power Wall

Source: P&H

C
lo

ck
 r

at
e

 [
M

H
z]

P
o

w
e

r 
[W

]



32/43Computer Architecture,, Computer Performance, summer 2019/2020

The Power Wall (2)The Power Wall (2)

Complementary Metal Oxide Semiconductor 
(CMOS)

Dominant technology for integrated circuits

Very low static consumption

Dynamic power consumption

Capacitive load (conductors, transistors, output load)

Operating voltage (affects switching speed)

Switching frequency (function of clock rate)

Power≈
1
2
×Capacitive load×Voltage2×Frequency switched



33/43Computer Architecture,, Computer Performance, summer 2019/2020

The Power Wall (3)The Power Wall (3)

Real-world impact

In the last 20 years

Clock rate growth by factor of 1000

Power growth (only) by factor of 30

How: voltage dropped from 5 V to 1 V
15% reduction with each generation

Example

New technology results in 85% capacitive load of old 
technology. Also, the operating voltage and switching 
frequency can be reduced by 15% to save power.

Compared to a processor based on the previous 
technology,
a new processor would only consume 52% of the power.



34/43Computer Architecture,, Computer Performance, summer 2019/2020

The Power Wall (4)The Power Wall (4)

Further lowering of voltage difficult/impossible

Makes transistors too leaky

40% of power consumption in server chips is due to 
leakage

Low signal/noise ratio

Difficult to tell ones from zeroes reliably

Cooling cannot be easily improved

Power dissipated from a rather small area of the chip

Parts of chip not used in a clock cycle can be turned off

Water (and other) cooling techniques too 
complex/expensive

Not even an option for personal mobile devices



35/43Computer Architecture,, Computer Performance, summer 2019/2020

The Power Wall (5)The Power Wall (5)

New way to improve performance needed

Dramatic change in microprocessor design

The switch from
Uniprocessors to Multiprocessors



36/43Computer Architecture,, Computer Performance, summer 2019/2020

Growth in processor performanceGrowth in processor performance

Source: P&H



37/43Computer Architecture,, Computer Performance, summer 2019/2020

Multiprocessor systemsMultiprocessor systems

Then

Multiple physical processors (multiprocessor)

Where: Supercomputers, high-end servers

Rare in personal and embedded computers

Now

Multiple processor cores in a single microprocessor 
package

Post-Moore‘s „law“ world, shrinking transistors 
difficult/expensive,
but we can still put more of then on a single (bigger) chip

Where: everywhere



38/43Computer Architecture,, Computer Performance, summer 2019/2020

Multicore systemsMulticore systems

Impact on performance

Increased throughput

Processing more requests in parallel

Clock rate and CPI remain the same

Performance of sequential algorithms stays the same

Impact on programmers

Technology does not make programs faster (anymore)

Programs need to take advantage of multiple cores

Better APIs needed (executor frameworks, parallel collections, ...)

Programs need to be improved as number of cores increases

Increasing number of cores from 4 to 32 will not make a parallel 
program 8 times faster



39/43Computer Architecture,, Computer Performance, summer 2019/2020

Why is this such a big deal?Why is this such a big deal?

Fundamental change in HW/SW interface

Parallelism was always important, but used to be 
hidden

Instruction-level parallelism, pipelining, and other techniques

Programmer and compiler alike produced sequential code

Now parallelism needs to be explicit!

Parallel architectures known for 40 years...

… but whoever relied on explicit parallelism failed!

Programmers never accepted the new paradigm

Now the whole IT industry bets on programmers to 
switch to explicit parallelism



40/43Computer Architecture,, Computer Performance, summer 2019/2020

Why is parallel programming difficult?Why is parallel programming difficult?

Programming focused on performance

Increases difficult of programming

Not only does the program need to be correct, it also 
needs to be fast

If you don‘t need performance, just write a sequential 
program.

People think “sequentially” in a “single thread”

Problem: split work equally between processors

Ensure that the overhead of planning and 
coordinating the work does not take away the 
performance benefit



41/43Computer Architecture,, Computer Performance, summer 2019/2020

Why is parallel programming difficult? (2)Why is parallel programming difficult? (2)

Real-world analogy

1 reporter writes 1 article in 2 hours

Can we get 8 reporters to write 1 article in 15 minutes?

Actual problems

Scheduling
Who writes what?

Load balancing
No reporter is idle

Communication and synchronization overhead
How to put the final article together?



42/43Computer Architecture,, Computer Performance, summer 2019/2020

Amdahl’s lawAmdahl’s law

Gene Amdahl (* 1922)

Multiple variants

Most general for theoretical speed-up
of a sequential algorithm using
multiple threads (formulated in 1967)

A quantitative versions of the
law of diminishing returns

The performance enhancement possible with a given
improvement is limited by the amount that the
improved feature is used.

[1]

Speedup(n)=
1

B+
1
n
(1−B)

n∈ℕ

B∈⟨0,1⟩



43/43Computer Architecture,, Computer Performance, summer 2019/2020

Amdahl’s law (2)Amdahl’s law (2)

Practical impact

Make the common case fast
Optimize for the common case

Optimization impacts the common case the most

The common case is often much simpler than the 
special cases, and therefore easier to optimize

Even massive optimization of special cases often 
provide only very little benefit compared to 
modest optimization of the common cases


