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Implementing simplified MIPS ISAImplementing simplified MIPS ISA

Basic characteristics

Simplified to demonstrate key concepts

Registers

32 general-purpose 32-bit registers: R0 – R31

PC registers with address of instruction to execute

Special control registers

Exception address, etc.
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Implementing simplified MIPS ISA (2)Implementing simplified MIPS ISA (2)

Memory

Access to 4-byte aligned addresses only

Corresponds to 32-bit word length of the processor

Indirect addressing with immediate displacement

Load: R2 := mem[R1 + immediate]

Store: mem[R1 + immediate] := R2
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Implementing simplified MIPS ISA (3)Implementing simplified MIPS ISA (3)

Operations

Arithmetic and logic

Fully orthogonal, three-operand instructions

Source operands: register/register, register/immediate

Target operand: register

Includes data movement between registers

Load/store operations

Move data between registers and memory (load/store architecture)

Conditional branch

Tests equality/inequality of two registers

Unconditional jumps

Including jumps to subroutine and indirect jumps (return from a 
subroutine)

Special instructions
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Implementing simplified MIPS ISA (4)Implementing simplified MIPS ISA (4)

Single-cycle datapath

Basic organization of data path elements

Combinational and sequential blocks

Operations executed in one long cycle

Suitable for operations of similar complexity

Writes to memory elements synchronized by clock
Clock signal is implicit, will not be shown

Simplification: separate instruction memory 
(Harvard architecture)
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Implementing simplified MIPS ISA (5)Implementing simplified MIPS ISA (5)

Steps to execute an instruction

1. Fetch instruction from memory

Read from an address supplied by the PC register

2. Decode instruction and fetch instruction operands

3. Execute operation corresponding to the opcode

Register operations, computing address for accessing 
memory, comparing operands for conditional branch.

4. Store the result of the operation

Write data to register or memory

5. Adjust PC to point at next instruction

One that immediately follows the current

One that is a target of a jump or branch
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Reading an instruction (fetch)Reading an instruction (fetch)

PC register

Address of instruction 
in memory

Not directly accessible 
to a programmer

Adder

Increment PC by 4

Advance to next 
instruction by default
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Fetch
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Instruction
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opcode
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Register operations (add, sub, ...)Register operations (add, sub, ...)
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Support for register operationsSupport for register operations
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Immediate operand operations (addi, ...)Immediate operand operations (addi, ...)
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Implementing sign extensionImplementing sign extension
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Support for immediate operandsSupport for immediate operands
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Multiplexer (mux)Multiplexer (mux)

Selects one of several inputs

Selector: n-bit number S {0, ..., 2∈ n–1}

Data input: N=2n m-bit values x0, x1, ..., xN–1

Data output: m-bit value y=xS
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Implementing a multiplexerImplementing a multiplexer

Binary to “1-hot” decoder

Activates 1 (selected output) of N outputs

Input: n-bit number B {0, ..., 2∈ n–1}

N=2n outputs: B-th output logical 1 (hot), other 
outputs logical 0
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Binary to 1-hot for N=4 outputsBinary to 1-hot for N=4 outputs
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Implementing a multiplexer (4x 1-bit)Implementing a multiplexer (4x 1-bit)
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Loading words from memory (lw)Loading words from memory (lw)
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Storing words to memory (sw)Storing words to memory (sw)
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Support for memory access (load/store)Support for memory access (load/store)
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Conditional branch relative to PC (beq)Conditional branch relative to PC (beq)
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Implementing logical shiftImplementing logical shift
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Support for conditional branchSupport for conditional branch
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Unconditional jump (j)Unconditional jump (j)

op (6) target (26)
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Support for unconditional jumpSupport for unconditional jump
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Single-cycle datapath controlSingle-cycle datapath control
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Single-cycle datapath control (2)Single-cycle datapath control (2)

Controls the flow of data

Depending on the type of operation

Responsible for control signals

Source of the next value of PC

Write to registers

Write to memory

ALU operations

Mux configuration
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Example: datapath control for addExample: datapath control for add

RS

RT

RT/RD

WD

RF

A

B

ALUOp=add

RegWrite=1

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4

Sign
ext.

I[15:0]

1
   

  0

ALUSrc=1

1
   

  0

RegDst=1

A
LU

ad
d

Addr

Data

DM

0
     1

MemToReg=0

32

32

MemWrite=0

Shl 2

Branch=0

1
     0

ad
d

0
     1

P
C

+
4

[3
1

:2
8

]

Shl 2
I[25:0]

Jump=0



28/70Computer Architecture, Processor implementation, summer 2019/2020

Example: datapath control for swExample: datapath control for sw
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Example: datapath control for beqExample: datapath control for beq
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Datapath controllerDatapath controller

Responsible for generating control signals

Signal values determined by instruction opcode

Some control signals can be directly embedded in 
the instruction word

MIPS: ALUOp signals correspond to the bits in the 
funct field of the R-type instruction format

Simplifies controller implementation
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ROM-based controllerROM-based controller

Signal values stored in read-only memory

Each word contains the values of all control signals

Words addressed by the opcode

opcode Jump Branch RegDst RegWrite MemWrite MemToReg ALUOp ALUSrc

add 0 0 1 1 0 0 add 1

addi 0 0 0 1 0 0 add 0

lw 0 0 0 1 0 1 add 0

sw 0 0 ? 0 1 ? add 0

beq 0 1 ? 0 0 ? sub 1

j 1 ? ? 0 0 ? ? ?
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ROM-based controller (2)ROM-based controller (2)

Real MIPS implementation

Approx. 100 instructions and 300 control signals

Control ROM capacity needed: 30000 bits (~ 4 KB)

Implementation issues

Making ROM faster than the datapath
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Logic-based controller (combinational)Logic-based controller (combinational)

Faster alternative to ROM

Observation: only a few control signals need to be 
set to one (zero) at the same time

Contents of ROM can be efficiently expressed 
using logic functions

O
p
co
d
e

Jump

j

MemWrite

sw

Branch MemToReg RegDst RegWrite ALUSrc

beq

ALUOp

lw

addi

add
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Instruction cycleInstruction cycle

Datapath with continuous read

No problem in our design

Writes (PC, RF, DM) are independent

No read follows write in the instruction cycle

Instruction fetch does not need control
After instruction is read, the controller decodes instruction 
opcode into control signals for the rest of the datapath

When PC changes, datapath starts processing another instruction

Read from
insn memory

Read registers
(Read control ROM)

Read from
data memory

Write to data memory
Write to registers
Write to PC
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Single-cycle processor performanceSingle-cycle processor performance

Each instruction executed in 1 cycle (CPI=1)

Single-cycle controller (control ROM or a 
combinational logic block)

Generally lower clock frequency

Clock period respects the “longest” instruction

Load Word (lw) in our case

Usually multiplication, division, or floating point ops

Datapath contains duplicate elements

Instruction and data memory, two extra adders
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Multi-cycle datapathMulti-cycle datapath

Basic idea

Simple instructions should not take as much time 
to execute as the complex ones

Variable instruction execution time

Clock period is constant (cannot be changed 
dynamically), we need a „digital“ solution

We can make clock faster (shorter period) and split 
instruction execution into multiple stages

Clock period corresponds to one execution stage

Fixed machine cycle (clock period)

Variable instruction cycle
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Example: multi-cycle CPU performanceExample: multi-cycle CPU performance

Rough estimate, assuming the following

Simple instructions take 10 ns to execute

Multiplication takes 40 ns

Instruction mix with 10% of multiplications

Single-cycle datapath

Clock period 40 ns, CPI=1 → 25 MIPS

Multi-cycle datapath

Clock period 10 ns, 13 ns per instruction (average)

CPI=1.3 → 77 MIPS (3x improvement)
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Multi-cycle datapath (2)Multi-cycle datapath (2)

Instruction cycle

1. Read instruction from memory

2. Decode instruction, read registers, compute 
branch target address

3. Execute register operation / compute address for 
memory access / finish branch or jump

4. Write register operation results / access memory

5. Finish load from memory
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Multi-cycle datapath (3)Multi-cycle datapath (3)

Implementation issues

Instruction execution split to stages

Need to isolate stages using latch registers to 
“remember” results from previous stage

Need to keep track of stages

Different sequences for different instruction types

Some instructions may skip stages and finish early

Controller needs to remember state → sequential logic
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Multi-cycle datapath (4)Multi-cycle datapath (4)
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Stage 1: Instruction ReadStage 1: Instruction Read

Common for all instructions

IR ← Memory[PC]

Read instruction into Instruction Register

Memory is used for both instruction and data access

Need to “remember” the instruction being executed

PC ← PC + 4

Advance PC to point at next instruction in sequence

Changing the PC will not change the instruction being 
executed: it was stored in the Instruction Register
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Stage 2: Instruction Decode, Read Regs.Stage 2: Instruction Decode, Read Regs.

Common for all instructions

A ← Reg[IR.rs]

Read contents of source register 1

Store value into latch A for next stage

B ← Reg[IR.rt]

Read contents of source register 2

Store value into latch B for next stage

ALUOut ← PC + (SignExtend(IR.addr) << 2)

Calculate branch target

Relative to (already updated) PC

Remains unused if not a branch
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Stage 3: Execute / address calc.Stage 3: Execute / address calc.

Branch instruction (finish)

(A == B)  PC ⇒ ← ALUOut

Branch target in ALUOut from previous stage

Jump instruction (finish)

PC ← PC[31:28] + (IR[25:0] << 2)

Register operation

ALUOut ← A funct B, or alternatively

ALUOut ← A funct SignExtend(IR[15:0])

Memory access

ALUOut ← A + SignExtend(IR[15:0])

Calculate address for memory access
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Stage 4: Write Results / memory accessStage 4: Write Results / memory access

Register operation (finish)

Reg[IR.rd] ← ALUOut

Result in ALUOut (from previous stage)

Write to memory (finish)

Memory[ALUOut] ← B

Address in ALUOut (from previous stage)

Read from memory

DR ← Memory[ALUOut]

Address in ALUOut (from previous stage)

Store data into latch DR for next stage
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Stage 5: Finish reading from memoryStage 5: Finish reading from memory

Read from memory (finish)

Reg[IR.rt] ← DR

Value stored in DR (from previous stage)
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Multi-cycle datapath implementationMulti-cycle datapath implementation
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Multi-cycle datapath controlMulti-cycle datapath control

Sequential process

Instructions executed in multiple cycles

Controller is a sequential circuit (automaton)

Current state stored in a state register

Combinational block determines next state
Depends on current state and instruction being executed

Updated on rising edge of the clock signal

Instruction fetch/decode
Register fetchSTART

Memory access
instructions

R-type
instructions

Branch
instruction

Jump
instruction

START
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Instruction fetch/decode, Register fetchInstruction fetch/decode, Register fetch

MemRead
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Memory access instructionsMemory access instructions
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ALUSrcA=1

ALUSrcB=10
ALUOp=00

Memory address computation

2

Op=='lw'

MemRead
IorD=1

Memory
access

3

RegWrite
MemToReg=1

RegDst=0

4
Memory read

completion step

MemWrite
IorD=1

Memory
access

5

Op=='sw'

To 0



50/70Computer Architecture, Processor implementation, summer 2019/2020

R-type instructionsR-type instructions
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Branch instructionBranch instruction
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Jump instructionJump instruction

From 1 PCWrite
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Jump execution
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To 0



53/70Computer Architecture, Processor implementation, summer 2019/2020

Multi-cycle datapath control (2)Multi-cycle datapath control (2)
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Addi instructionAddi instruction
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Multi-cycle datapath control (3)Multi-cycle datapath control (3)

MemRead
ALUSrcA=0

IorD=0
IRWrite

ALUSrcB=01
ALUOp=00

PCWrite
PCSource=00

START
ALUSrcA=0

ALUSrcB=11
ALUOp=00

Instruction fetch
PC update

Instruction decode
Register fetch
Branch target

ALUSrcA=1
ALUSrcB=10
ALUOp=00

Memory address
computation

Op==lw

MemRead
IorD=1

Memory
access

RegWrite
MemToReg=1

RegDst=0

Memory load
completion

MemWrite
IorD=1

ALUSrcA=1
ALUSrcB=00
ALUOp=10

R-type
execution

RegDst=1
MemToReg=0
RegWrite=1

R-type
completion

ALUSrcA=1
ALUSrcB=00
ALUOp=01

PCWriteCond
PCSource=01 Branch

completion

PCWrite
PCSource=10

Jump
execution

0 1

2

3

4

5

6

7
12

13ALUSrcA=1
ALUSrcB=10
ALUOp=00

Op==lw || Op==sw

O
p==sw

O
p=

=R
-t

yp
e

Op==beq

Op==j

O
p

==add
i

9

RegDst=0
MemToReg=0
RegWrite=1

I-type
completion

10

Addi
execution



56/70Computer Architecture, Processor implementation, summer 2019/2020

Flow of instructionsFlow of instructions

Normal/expected flow

Sequential: common code operating on data

Non-sequential: branches and jumps

Unexpected flow

Internal (Exception/Trap)

Arithmetic overflow

Undefined instruction

Unauthorized access to memory

Requesting service from operating system (system call)

Hardware failure

External (Interrupt)

Request for “attention” from an I/O device

Hardware failure
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Supporting exceptions and interruptsSupporting exceptions and interrupts

Hardware support (minimum necessary)

Stop executing an instruction

Maintain valid processor and computation state

Allow to identify cause

Flag bits in a special register

Identifier of exception type

Store address of instruction that caused exception

Allows re-executing or skipping an instruction on resume

Jump to exception/interrupt handler

Single address for all exceptions/interrupts

Multiple addresses corresponding to exception type
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Arithmetic overflow exceptionArithmetic overflow exception
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Undefined instruction exceptionUndefined instruction exception
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To 0
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Multi-cycle datapath control (4)Multi-cycle datapath control (4)
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Supporting exceptions and interrupts (2)Supporting exceptions and interrupts (2)

Software handler

Store the current state of computation

Save contents of CPU registers to memory

Determine the cause of exception/interrupt and
execute the corresponding handler routine

Deal with I/O device

Deal with memory management

Continue/terminate current process

Switch to another process

Restore state of current (next) process

Resume execution (jump into) of current (next) process

Restart instruction that caused an exception

Continue from next instruction
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Multi-cycle datapath performanceMulti-cycle datapath performance

Instruction mix

30% load (5ns), 10% store (5ns)

50% add (4ns), 10% mul (20ns)

Single-cycle datapath (clock period 20ns, CPI = 1)

20ns per instruction → 50 MIPS

Coarse-grained multi-cycle datapath (clock period 5ns)

CPI≈ (90% × 1) + (10% × 4) = 1.3

6.5ns per instruction → 153 MIPS

Fine-grained multi-cycle datapath (clock period 1ns)

CPI≈ (30% × 5) + (10% × 5) + (50% × 4) + (10% × 20) = 6

6ns per instruction → 166 MIPS
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Implementing a sequential controllerImplementing a sequential controller

Implementing a finite-state automaton

State + transition conditions = memory + 
combinational logic → sequential logic

Implementation depends on internal state 
representation

Sequential circuitry

1 flip-flop per state (only one active at a time), active 
state shifted through enabling gates between flip-flops

State register + combinational logic

Simple sequencer + control memory

Micro- and nano- programming
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Implementing a sequential controllerImplementing a sequential controller

Control
logic

State registerInstruction register
opcode field
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Next state is next control ROM addressNext state is next control ROM address
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Control memory address select logicControl memory address select logic
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Horizontal micro-instructionsHorizontal micro-instructions

Direct representation of control signals

Control memory contains raw control signals

Micro-instruction = set of control signal values

No need to decode (fast)

Any combination is possible (flexible)

Requires a lot of space
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Vertical micro-instructionsVertical micro-instructions

Encoded representation of control signals

Microinstructions identify valid combinations of 
control signals

Decoded intro actual control signals using a decoder

Reduces space at the cost of flexibility and latency
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Nano-programmingNano-programming

Combines horizontal & vertical encoding

Microprogram memory only contains numbers 
representing valid combinations of control signals 
(vertical format)

Decoding to horizontal format is realized using 
another memory (instead of a combinational 
circuit) which contains the control signal 
combination corresponding to microprogram code

Significantly reduces the amount of space required 
to store the microprogram, but increases decoding 
latency
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Micro- vs nano-programmingMicro- vs nano-programming


