
http://d3s.mff.cuni.czhttp://d3s.mff.cuni.cz/teaching/nswi143

Lubomír Bulej 

bulej@d3s.mff.cuni.cz 

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physicsfaculty of mathematics and physics

Computer Architecture
Processor implementation
Computer Architecture
Processor implementation

http://d3s.mff.cuni.cz/teaching/nswi143


2/70Computer Architecture, Processor implementation, summer 2019/2020

Implementing simplified MIPS ISAImplementing simplified MIPS ISA

Basic characteristics

Simplified to demonstrate key concepts

Registers

32 general-purpose 32-bit registers: R0 – R31

PC registers with address of instruction to execute

Special control registers

Exception address, etc.



3/70Computer Architecture, Processor implementation, summer 2019/2020

Implementing simplified MIPS ISA (2)Implementing simplified MIPS ISA (2)

Memory

Access to 4-byte aligned addresses only

Corresponds to 32-bit word length of the processor

Indirect addressing with immediate displacement

Load: R2 := mem[R1 + immediate]

Store: mem[R1 + immediate] := R2



4/70Computer Architecture, Processor implementation, summer 2019/2020

Implementing simplified MIPS ISA (3)Implementing simplified MIPS ISA (3)

Operations

Arithmetic and logic

Fully orthogonal, three-operand instructions

Source operands: register/register, register/immediate

Target operand: register

Includes data movement between registers

Load/store operations

Move data between registers and memory (load/store architecture)

Conditional branch

Tests equality/inequality of two registers

Unconditional jumps

Including jumps to subroutine and indirect jumps (return from a 
subroutine)

Special instructions



5/70Computer Architecture, Processor implementation, summer 2019/2020

Implementing simplified MIPS ISA (4)Implementing simplified MIPS ISA (4)

Single-cycle datapath

Basic organization of data path elements

Combinational and sequential blocks

Operations executed in one long cycle

Suitable for operations of similar complexity

Writes to memory elements synchronized by clock
Clock signal is implicit, will not be shown

Simplification: separate instruction memory 
(Harvard architecture)



6/70Computer Architecture, Processor implementation, summer 2019/2020

Implementing simplified MIPS ISA (5)Implementing simplified MIPS ISA (5)

Steps to execute an instruction

1. Fetch instruction from memory

Read from an address supplied by the PC register

2. Decode instruction and fetch instruction operands

3. Execute operation corresponding to the opcode

Register operations, computing address for accessing 
memory, comparing operands for conditional branch.

4. Store the result of the operation

Write data to register or memory

5. Adjust PC to point at next instruction

One that immediately follows the current

One that is a target of a jump or branch



7/70Computer Architecture, Processor implementation, summer 2019/2020

Reading an instruction (fetch)Reading an instruction (fetch)

PC register

Address of instruction 
in memory

Not directly accessible 
to a programmer

Adder

Increment PC by 4

Advance to next 
instruction by default

PC
Fetch
address

Instruction

Instruction
Memory

4

opcode

ad
d



8/70Computer Architecture, Processor implementation, summer 2019/2020

Register operations (add, sub, ...)Register operations (add, sub, ...)

op (6) rs (5) rt (5) rd (5) sa (5) funct (6)

Read
register 1

Read
register 2

Write
register

Write
data

Register
File

Register
data 1

Register
data 2

rs

rt

rd

result

funct

ALUOp

RegWrite

5

5

5

32

32

32 A
LU



9/70Computer Architecture, Processor implementation, summer 2019/2020

Support for register operationsSupport for register operations

RS

RT

RD

WD

RF

A

B

result

ALUOpRegWrite

I[25:21]

I[20:16]

I[15:11]

32

32

32

PC Addr

Insn

IM

4

A
LU

ad
d



10/70Computer Architecture, Processor implementation, summer 2019/2020

Immediate operand operations (addi, ...)Immediate operand operations (addi, ...)

op (6) rs (5) rt (5) immediate (16)

Read
register 1

Write
register

Write
data

Register
File

Register
data 1

rs

rt

result

ALUOpRegWrite

5

5

32

32

32
immediate

Sign
ext.

16

A
LU



11/70Computer Architecture, Processor implementation, summer 2019/2020

Implementing sign extensionImplementing sign extension

Sign Extend
16 to 32 bits

x
0

y
0

⁞ ⁞

x
15

y
15

y
16

⁞

y
31



12/70Computer Architecture, Processor implementation, summer 2019/2020

Support for immediate operandsSupport for immediate operands

RS

RT

RD

WD

RF

A

B

result

ALUOpRegWrite

I[25:21]

I[20:16]

I[15:11]

32

32PC Addr

Insn

IM

4

Sign
ext.

I[15:0]

M
U

X

ALUSrc

M
U

X

RegDst

A
LU

ad
d



13/70Computer Architecture, Processor implementation, summer 2019/2020

Multiplexer (mux)Multiplexer (mux)

Selects one of several inputs

Selector: n-bit number S {0, ..., 2∈ n–1}

Data input: N=2n m-bit values x0, x1, ..., xN–1

Data output: m-bit value y=xS

0

1

⁞

N–1 

x
1

⁞

x
0

x
N–1

S

y
s



14/70Computer Architecture, Processor implementation, summer 2019/2020

Implementing a multiplexerImplementing a multiplexer

Binary to “1-hot” decoder

Activates 1 (selected output) of N outputs

Input: n-bit number B {0, ..., 2∈ n–1}

N=2n outputs: B-th output logical 1 (hot), other 
outputs logical 0

1
-h

o
t

B

h
0

h
1

h
2

h
3



15/70Computer Architecture, Processor implementation, summer 2019/2020

Binary to 1-hot for N=4 outputsBinary to 1-hot for N=4 outputs

1-hot

B
0

B
1

h
0

h
1

h
2

h
3

Inputs Outputs

0 0 0 0 0 1

0 1 0 0 1 0

1 0 0 1 0 0

1 1 1 0 0 0

B
1

B
0

h
3

h
2

h
1

h
0



16/70Computer Architecture, Processor implementation, summer 2019/2020

Implementing a multiplexer (4x 1-bit)Implementing a multiplexer (4x 1-bit)

Mux

S

y

x
0

x
1

x
0

x
2

x
3

1-hot



17/70Computer Architecture, Processor implementation, summer 2019/2020

Loading words from memory (lw)Loading words from memory (lw)

op (6) rs (5) rt (5) displacement (16)

Read
register 1

Write
register

Write
data

Register
File

Register
data 1

rs

rt

ALUOpRegWrite

5

5

32

32

32
displacement

Sign
ext.

16

A
LU

Address

Data

Data
Memory



18/70Computer Architecture, Processor implementation, summer 2019/2020

Storing words to memory (sw)Storing words to memory (sw)

op (6) rs (5) rt (5) displacement (16)

Read
register 1

Read
register 2

Register
File

Register
data 1

Register
data 2

rs

rt

ALUOpRegWrite

5

5 32

32

32
displacement

Sign
ext.

16

A
LU

Address

Data

Data
Memory

MemWrite



19/70Computer Architecture, Processor implementation, summer 2019/2020

Support for memory access (load/store)Support for memory access (load/store)

RS

RT

RT/RD

WD

RF

A

B

ALUOpRegWrite

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4

Sign
ext.

I[15:0]

M
U

X

ALUSrc

M
U

X

RegDst

A
LU

ad
d

Addr

Data

DM

M
U

X

MemToReg

32

32

MemWrite



20/70Computer Architecture, Processor implementation, summer 2019/2020

Conditional branch relative to PC (beq)Conditional branch relative to PC (beq)

op (6) rs (5) rt (5) offset (16)

Read
register 1

Read
register 2

Register
File

Register
data 1

Register
data 2

rs

rt

zero?

ALUOpRegWrite

5

5

32

32

A
LU

PC

4

ad
d

32
offset

Sign
ext.

16
Shl 2

M
U

X

ad
d

Branch



21/70Computer Architecture, Processor implementation, summer 2019/2020

Implementing logical shiftImplementing logical shift

32-bit shift
left logical 2

x
0

y
0

x
1

y
1

y
2

y
3

⁞

y
31

0

0

⁞

x
29

x
30

x
31



22/70Computer Architecture, Processor implementation, summer 2019/2020

Support for conditional branchSupport for conditional branch

RS

RT

RT/RD

WD

RF

A

B

ALUOp

RegWrite

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4

Sign
ext.

I[15:0]

M
U

X

ALUSrc

M
U

X

RegDst

A
LU

ad
d

Addr

Data

DM

M
U

X

MemToReg

32

32

MemWrite

Shl 2

Branch

M
U

X

ad
d



23/70Computer Architecture, Processor implementation, summer 2019/2020

Unconditional jump (j)Unconditional jump (j)

op (6) target (26)

PC

4

ad
d

28

target
26

Sxl 2

32

4PC+4[31:28]

Shift (and extend) left by 2



24/70Computer Architecture, Processor implementation, summer 2019/2020

Support for unconditional jumpSupport for unconditional jump

RS

RT

RT/RD

WD

RF

A

B

ALUOp

RegWrite

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4

Sign
ext.

I[15:0]

M
U

X

ALUSrc

M
U

X

RegDst

A
LU

ad
d

Addr

Data

DM

M
U

X

MemToReg

32

32

MemWrite

Shl 2

Branch

M
U

X

ad
d

M
U

X

P
C

+
4

[3
1

:2
8

]

Shl 2
I[25:0]

Jump



25/70Computer Architecture, Processor implementation, summer 2019/2020

Single-cycle datapath controlSingle-cycle datapath control

RS

RT

RT/RD

WD

RF

A

B

ALUOp

RegWrite

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4

Sign
ext.

I[15:0]

M
U

X

ALUSrc

M
U

X

RegDst

A
LU

ad
d

Addr

Data

DM

M
U

X

MemToReg

32

32

MemWrite

Shl 2

Branch

M
U

X

ad
d

M
U

X

P
C

+
4

[3
1

:2
8

]

Shl 2
I[25:0]

Jump



26/70Computer Architecture, Processor implementation, summer 2019/2020

Single-cycle datapath control (2)Single-cycle datapath control (2)

Controls the flow of data

Depending on the type of operation

Responsible for control signals

Source of the next value of PC

Write to registers

Write to memory

ALU operations

Mux configuration



27/70Computer Architecture, Processor implementation, summer 2019/2020

Example: datapath control for addExample: datapath control for add

RS

RT

RT/RD

WD

RF

A

B

ALUOp=add

RegWrite=1

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4

Sign
ext.

I[15:0]

1
   

  0

ALUSrc=1

1
   

  0

RegDst=1

A
LU

ad
d

Addr

Data

DM

0
     1

MemToReg=0

32

32

MemWrite=0

Shl 2

Branch=0

1
     0

ad
d

0
     1

P
C

+
4

[3
1

:2
8

]

Shl 2
I[25:0]

Jump=0



28/70Computer Architecture, Processor implementation, summer 2019/2020

Example: datapath control for swExample: datapath control for sw

RS

RT

RT/RD

WD

RF

A

B

ALUOp=add

RegWrite=0

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4

Sign
ext.

I[15:0]

1
   

  0

ALUSrc=0

1
   

  0

RegDst=?

A
LU

ad
d

Addr

Data

DM

0
     1

MemToReg=?

32

32

MemWrite=1

Shl 2

Branch=0

1
     0

ad
d

0
     1

P
C

+
4

[3
1

:2
8

]

Shl 2
I[25:0]

Jump=0



29/70Computer Architecture, Processor implementation, summer 2019/2020

Example: datapath control for beqExample: datapath control for beq

RS

RT

RT/RD

WD

RF

A

B

ALUOp=sub

RegWrite=0

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4

Sign
ext.

I[15:0]

1
   

  0

ALUSrc=1

1
   

  0

RegDst=?

A
LU

ad
d

Addr

Data

DM

0
     1

MemToReg=?

32

32

MemWrite=0

Shl 2

Branch=1

1     0

ad
d

0
     1

P
C

+
4

[3
1

:2
8

]

Shl 2
I[25:0]

Jump=0



30/70Computer Architecture, Processor implementation, summer 2019/2020

Datapath controllerDatapath controller

Responsible for generating control signals

Signal values determined by instruction opcode

Some control signals can be directly embedded in 
the instruction word

MIPS: ALUOp signals correspond to the bits in the 
funct field of the R-type instruction format

Simplifies controller implementation



31/70Computer Architecture, Processor implementation, summer 2019/2020

ROM-based controllerROM-based controller

Signal values stored in read-only memory

Each word contains the values of all control signals

Words addressed by the opcode

opcode Jump Branch RegDst RegWrite MemWrite MemToReg ALUOp ALUSrc

add 0 0 1 1 0 0 add 1

addi 0 0 0 1 0 0 add 0

lw 0 0 0 1 0 1 add 0

sw 0 0 ? 0 1 ? add 0

beq 0 1 ? 0 0 ? sub 1

j 1 ? ? 0 0 ? ? ?



32/70Computer Architecture, Processor implementation, summer 2019/2020

ROM-based controller (2)ROM-based controller (2)

Real MIPS implementation

Approx. 100 instructions and 300 control signals

Control ROM capacity needed: 30000 bits (~ 4 KB)

Implementation issues

Making ROM faster than the datapath



33/70Computer Architecture, Processor implementation, summer 2019/2020

Logic-based controller (combinational)Logic-based controller (combinational)

Faster alternative to ROM

Observation: only a few control signals need to be 
set to one (zero) at the same time

Contents of ROM can be efficiently expressed 
using logic functions

O
p
co
d
e

Jump

j

MemWrite

sw

Branch MemToReg RegDst RegWrite ALUSrc

beq

ALUOp

lw

addi

add



34/70Computer Architecture, Processor implementation, summer 2019/2020

Instruction cycleInstruction cycle

Datapath with continuous read

No problem in our design

Writes (PC, RF, DM) are independent

No read follows write in the instruction cycle

Instruction fetch does not need control
After instruction is read, the controller decodes instruction 
opcode into control signals for the rest of the datapath

When PC changes, datapath starts processing another instruction

Read from
insn memory

Read registers
(Read control ROM)

Read from
data memory

Write to data memory
Write to registers
Write to PC



35/70Computer Architecture, Processor implementation, summer 2019/2020

Single-cycle processor performanceSingle-cycle processor performance

Each instruction executed in 1 cycle (CPI=1)

Single-cycle controller (control ROM or a 
combinational logic block)

Generally lower clock frequency

Clock period respects the “longest” instruction

Load Word (lw) in our case

Usually multiplication, division, or floating point ops

Datapath contains duplicate elements

Instruction and data memory, two extra adders



36/70Computer Architecture, Processor implementation, summer 2019/2020

Multi-cycle datapathMulti-cycle datapath

Basic idea

Simple instructions should not take as much time 
to execute as the complex ones

Variable instruction execution time

Clock period is constant (cannot be changed 
dynamically), we need a „digital“ solution

We can make clock faster (shorter period) and split 
instruction execution into multiple stages

Clock period corresponds to one execution stage

Fixed machine cycle (clock period)

Variable instruction cycle



37/70Computer Architecture, Processor implementation, summer 2019/2020

Example: multi-cycle CPU performanceExample: multi-cycle CPU performance

Rough estimate, assuming the following

Simple instructions take 10 ns to execute

Multiplication takes 40 ns

Instruction mix with 10% of multiplications

Single-cycle datapath

Clock period 40 ns, CPI=1 → 25 MIPS

Multi-cycle datapath

Clock period 10 ns, 13 ns per instruction (average)

CPI=1.3 → 77 MIPS (3x improvement)



38/70Computer Architecture, Processor implementation, summer 2019/2020

Multi-cycle datapath (2)Multi-cycle datapath (2)

Instruction cycle

1. Read instruction from memory

2. Decode instruction, read registers, compute 
branch target address

3. Execute register operation / compute address for 
memory access / finish branch or jump

4. Write register operation results / access memory

5. Finish load from memory



39/70Computer Architecture, Processor implementation, summer 2019/2020

Multi-cycle datapath (3)Multi-cycle datapath (3)

Implementation issues

Instruction execution split to stages

Need to isolate stages using latch registers to 
“remember” results from previous stage

Need to keep track of stages

Different sequences for different instruction types

Some instructions may skip stages and finish early

Controller needs to remember state → sequential logic



40/70Computer Architecture, Processor implementation, summer 2019/2020

Multi-cycle datapath (4)Multi-cycle datapath (4)

PC

Address

Instruction
or Data

Data

Memory

Insn
Register

Data
Register

Read
register 1

Read
register 2

Write
register

Write
data

Register File

Register
data 1

Register
data 2

A

B

A
LU ALU

Out



41/70Computer Architecture, Processor implementation, summer 2019/2020

Stage 1: Instruction ReadStage 1: Instruction Read

Common for all instructions

IR ← Memory[PC]

Read instruction into Instruction Register

Memory is used for both instruction and data access

Need to “remember” the instruction being executed

PC ← PC + 4

Advance PC to point at next instruction in sequence

Changing the PC will not change the instruction being 
executed: it was stored in the Instruction Register



42/70Computer Architecture, Processor implementation, summer 2019/2020

Stage 2: Instruction Decode, Read Regs.Stage 2: Instruction Decode, Read Regs.

Common for all instructions

A ← Reg[IR.rs]

Read contents of source register 1

Store value into latch A for next stage

B ← Reg[IR.rt]

Read contents of source register 2

Store value into latch B for next stage

ALUOut ← PC + (SignExtend(IR.addr) << 2)

Calculate branch target

Relative to (already updated) PC

Remains unused if not a branch



43/70Computer Architecture, Processor implementation, summer 2019/2020

Stage 3: Execute / address calc.Stage 3: Execute / address calc.

Branch instruction (finish)

(A == B)  PC ⇒ ← ALUOut

Branch target in ALUOut from previous stage

Jump instruction (finish)

PC ← PC[31:28] + (IR[25:0] << 2)

Register operation

ALUOut ← A funct B, or alternatively

ALUOut ← A funct SignExtend(IR[15:0])

Memory access

ALUOut ← A + SignExtend(IR[15:0])

Calculate address for memory access



44/70Computer Architecture, Processor implementation, summer 2019/2020

Stage 4: Write Results / memory accessStage 4: Write Results / memory access

Register operation (finish)

Reg[IR.rd] ← ALUOut

Result in ALUOut (from previous stage)

Write to memory (finish)

Memory[ALUOut] ← B

Address in ALUOut (from previous stage)

Read from memory

DR ← Memory[ALUOut]

Address in ALUOut (from previous stage)

Store data into latch DR for next stage



45/70Computer Architecture, Processor implementation, summer 2019/2020

Stage 5: Finish reading from memoryStage 5: Finish reading from memory

Read from memory (finish)

Reg[IR.rt] ← DR

Value stored in DR (from previous stage)



46/70Computer Architecture, Processor implementation, summer 2019/2020

Multi-cycle datapath implementationMulti-cycle datapath implementation

PC

Address

Data

Data

Memory

Insn
Register

[25:21]
[20:16]

[15:0]

Data
Register

Read
register 1

Read
register 2

Write
register

Write
data

Register File

Register
data 1

Register
data 2

A

A
LU ALU

Out

1
   

  0

IorD MemWrite

MemRead

1
   

  0

IRWrite RegDst

0
   

  1
B

RegWrite

1
   

  0

ALUSrcA

3
   

 2
   

 1
   

 0

4

Sign
ext.

16 32 Shl
2

ALUSrcB

ALU
Control

[5:0]

[15:0]

ALUOp[15:11]

MemToReg



47/70Computer Architecture, Processor implementation, summer 2019/2020

Multi-cycle datapath controlMulti-cycle datapath control

Sequential process

Instructions executed in multiple cycles

Controller is a sequential circuit (automaton)

Current state stored in a state register

Combinational block determines next state
Depends on current state and instruction being executed

Updated on rising edge of the clock signal

Instruction fetch/decode
Register fetchSTART

Memory access
instructions

R-type
instructions

Branch
instruction

Jump
instruction

START



48/70Computer Architecture, Processor implementation, summer 2019/2020

Instruction fetch/decode, Register fetchInstruction fetch/decode, Register fetch

MemRead
ALUSrcA=0

IorD=0
IRWrite

ALUSrcB=01
ALUOp=00

PCWrite
PCSource=00

START
ALUSrcA=0

ALUSrcB=11
ALUOp=00

Instruction fetch Instruction decode
Register fetch

0 1

Memory access
instructions

R-type
instructions

Branch
instruction

Jump
instruction

Op=='lw'
||

Op=='sw'
Op is R-type Op='beq' Op='j'



49/70Computer Architecture, Processor implementation, summer 2019/2020

Memory access instructionsMemory access instructions

From 1
ALUSrcA=1

ALUSrcB=10
ALUOp=00

Memory address computation

2

Op=='lw'

MemRead
IorD=1

Memory
access

3

RegWrite
MemToReg=1

RegDst=0

4
Memory read

completion step

MemWrite
IorD=1

Memory
access

5

Op=='sw'

To 0



50/70Computer Architecture, Processor implementation, summer 2019/2020

R-type instructionsR-type instructions

From 1
ALUSrcA=1

ALUSrcB=00
ALUOp=10

R-type execution

6

RegDst=1
MemToReg=0
RegWrite=1

R-type
completion

7

To 0



51/70Computer Architecture, Processor implementation, summer 2019/2020

Branch instructionBranch instruction

From 1

ALUSrcA=1
ALUSrcB=00
ALUOp=01

PCWriteCond
PCSource=01

Branch completion

12

To 0



52/70Computer Architecture, Processor implementation, summer 2019/2020

Jump instructionJump instruction

From 1 PCWrite
PCSource=10

Jump execution

13

To 0



53/70Computer Architecture, Processor implementation, summer 2019/2020

Multi-cycle datapath control (2)Multi-cycle datapath control (2)

MemRead
ALUSrcA=0

IorD=0
IRWrite

ALUSrcB=01
ALUOp=00

PCWrite
PCSource=00

START
ALUSrcA=0

ALUSrcB=11
ALUOp=00

Instruction fetch
PC update

Instruction decode
Register fetch
Branch target

ALUSrcA=1
ALUSrcB=10
ALUOp=00

Memory address
computation

Op==lw

MemRead
IorD=1

Memory
access

RegWrite
MemToReg=1

RegDst=0

Memory load
completion

MemWrite
IorD=1

ALUSrcA=1
ALUSrcB=00
ALUOp=10

R-type
execution

RegDst=1
MemToReg=0
RegWrite=1

R-type
completion

ALUSrcA=1
ALUSrcB=00
ALUOp=01

PCWriteCond
PCSource=01 Branch

completion

PCWrite
PCSource=10

Jump
execution

0 1

2

3

4

5

6

7
12

13

Op==lw || Op==sw

O
p==sw

O
p=

=R
-t

yp
e

Op==beq

Op==j



54/70Computer Architecture, Processor implementation, summer 2019/2020

Addi instructionAddi instruction

From 1
ALUSrcA=1

ALUSrcB=10
ALUOp=00

Addi execution

9

RegDst=0
MemToReg=0
RegWrite=1

I-type
completion

10

To 0



55/70Computer Architecture, Processor implementation, summer 2019/2020

Multi-cycle datapath control (3)Multi-cycle datapath control (3)

MemRead
ALUSrcA=0

IorD=0
IRWrite

ALUSrcB=01
ALUOp=00

PCWrite
PCSource=00

START
ALUSrcA=0

ALUSrcB=11
ALUOp=00

Instruction fetch
PC update

Instruction decode
Register fetch
Branch target

ALUSrcA=1
ALUSrcB=10
ALUOp=00

Memory address
computation

Op==lw

MemRead
IorD=1

Memory
access

RegWrite
MemToReg=1

RegDst=0

Memory load
completion

MemWrite
IorD=1

ALUSrcA=1
ALUSrcB=00
ALUOp=10

R-type
execution

RegDst=1
MemToReg=0
RegWrite=1

R-type
completion

ALUSrcA=1
ALUSrcB=00
ALUOp=01

PCWriteCond
PCSource=01 Branch

completion

PCWrite
PCSource=10

Jump
execution

0 1

2

3

4

5

6

7
12

13ALUSrcA=1
ALUSrcB=10
ALUOp=00

Op==lw || Op==sw

O
p==sw

O
p=

=R
-t

yp
e

Op==beq

Op==j

O
p

==add
i

9

RegDst=0
MemToReg=0
RegWrite=1

I-type
completion

10

Addi
execution



56/70Computer Architecture, Processor implementation, summer 2019/2020

Flow of instructionsFlow of instructions

Normal/expected flow

Sequential: common code operating on data

Non-sequential: branches and jumps

Unexpected flow

Internal (Exception/Trap)

Arithmetic overflow

Undefined instruction

Unauthorized access to memory

Requesting service from operating system (system call)

Hardware failure

External (Interrupt)

Request for “attention” from an I/O device

Hardware failure



57/70Computer Architecture, Processor implementation, summer 2019/2020

Supporting exceptions and interruptsSupporting exceptions and interrupts

Hardware support (minimum necessary)

Stop executing an instruction

Maintain valid processor and computation state

Allow to identify cause

Flag bits in a special register

Identifier of exception type

Store address of instruction that caused exception

Allows re-executing or skipping an instruction on resume

Jump to exception/interrupt handler

Single address for all exceptions/interrupts

Multiple addresses corresponding to exception type



58/70Computer Architecture, Processor implementation, summer 2019/2020

Arithmetic overflow exceptionArithmetic overflow exception

From 1
ALUSrcA=1

ALUSrcB=00
ALUOp=10

R-type execution

6

RegDst=1
MemToReg=0
RegWrite=1

R-type
completion

7

To 0

IntCause=1
CauseWrite
ALUSrcA=0

ALUSrcB=01
ALUOp=01
EPCWrite
PCWrite

PCSource=11

8

Arithmetic
overflow

Overflow



59/70Computer Architecture, Processor implementation, summer 2019/2020

Undefined instruction exceptionUndefined instruction exception

From 1

To 0

ALUSrcA=0
ALUSrcB=01
ALUOp=01
IntCause=0
CauseWrite

PCSource=11
EPCWrite
PCWrite

14

Undefined
instruction

Undefined
instruction



60/70Computer Architecture, Processor implementation, summer 2019/2020

Multi-cycle datapath control (4)Multi-cycle datapath control (4)

MemRead
ALUSrcA=0

IorD=0
IRWrite

ALUSrcB=01
ALUOp=00

PCWrite
PCSource=00

START
ALUSrcA=0

ALUSrcB=11
ALUOp=00

Instruction fetch
PC update

Instruction decode
Register fetch
Branch target

ALUSrcA=1
ALUSrcB=10
ALUOp=00

Memory address
computation

Op==lw

MemRead
IorD=1

Memory
access

RegWrite
MemToReg=1

RegDst=0

Memory load
completion

MemWrite
IorD=1

ALUSrcA=1
ALUSrcB=00
ALUOp=10

R-type
execution

RegDst=1
MemToReg=0
RegWrite=1

R-type
completion

ALUSrcA=1
ALUSrcB=00
ALUOp=01

PCWriteCond
PCSource=01 Branch

completion

PCWrite
PCSource=10

Jump
execution

0 1

2

3

4

5

6

7
12

13ALUSrcA=1
ALUSrcB=10
ALUOp=00

Op==lw || Op==sw

O
p==sw

O
p=

=R
-t

yp
e

Op==beq

Op==j

O
p

==add
i

9

RegDst=0
MemToReg=0
RegWrite=1

I-type
completion

10

Addi
execution

ALUSrcA=0
ALUSrcB=01
ALUOp=01
IntCause=0
CauseWrite

PCSource=11
EPCWrite
PCWrite

Undefined
instruction

14



61/70Computer Architecture, Processor implementation, summer 2019/2020

Supporting exceptions and interrupts (2)Supporting exceptions and interrupts (2)

Software handler

Store the current state of computation

Save contents of CPU registers to memory

Determine the cause of exception/interrupt and
execute the corresponding handler routine

Deal with I/O device

Deal with memory management

Continue/terminate current process

Switch to another process

Restore state of current (next) process

Resume execution (jump into) of current (next) process

Restart instruction that caused an exception

Continue from next instruction



62/70Computer Architecture, Processor implementation, summer 2019/2020

Multi-cycle datapath performanceMulti-cycle datapath performance

Instruction mix

30% load (5ns), 10% store (5ns)

50% add (4ns), 10% mul (20ns)

Single-cycle datapath (clock period 20ns, CPI = 1)

20ns per instruction → 50 MIPS

Coarse-grained multi-cycle datapath (clock period 5ns)

CPI≈ (90% × 1) + (10% × 4) = 1.3

6.5ns per instruction → 153 MIPS

Fine-grained multi-cycle datapath (clock period 1ns)

CPI≈ (30% × 5) + (10% × 5) + (50% × 4) + (10% × 20) = 6

6ns per instruction → 166 MIPS



63/70Computer Architecture, Processor implementation, summer 2019/2020

Implementing a sequential controllerImplementing a sequential controller

Implementing a finite-state automaton

State + transition conditions = memory + 
combinational logic → sequential logic

Implementation depends on internal state 
representation

Sequential circuitry

1 flip-flop per state (only one active at a time), active 
state shifted through enabling gates between flip-flops

State register + combinational logic

Simple sequencer + control memory

Micro- and nano- programming



65/70Computer Architecture, Processor implementation, summer 2019/2020

Implementing a sequential controllerImplementing a sequential controller

Control
logic

State registerInstruction register
opcode field

NS3
NS2
NS1
NS0

S3 S2 S1 S0O
p

5
O

p
4

O
p

3
O

p
2

O
p

1
O

p
0

Inputs

O
u

tp
u

ts

PCWrite
...
MemRead
...
...
ALUOp

State register

Control logic

Combinational logic

ROM, FPGA



66/70Computer Architecture, Processor implementation, summer 2019/2020

Next state is next control ROM addressNext state is next control ROM address



67/70Computer Architecture, Processor implementation, summer 2019/2020

Control memory address select logicControl memory address select logic



68/70Computer Architecture, Processor implementation, summer 2019/2020

Horizontal micro-instructionsHorizontal micro-instructions

Direct representation of control signals

Control memory contains raw control signals

Micro-instruction = set of control signal values

No need to decode (fast)

Any combination is possible (flexible)

Requires a lot of space



69/70Computer Architecture, Processor implementation, summer 2019/2020

Vertical micro-instructionsVertical micro-instructions

Encoded representation of control signals

Microinstructions identify valid combinations of 
control signals

Decoded intro actual control signals using a decoder

Reduces space at the cost of flexibility and latency



70/70Computer Architecture, Processor implementation, summer 2019/2020

Nano-programmingNano-programming

Combines horizontal & vertical encoding

Microprogram memory only contains numbers 
representing valid combinations of control signals 
(vertical format)

Decoding to horizontal format is realized using 
another memory (instead of a combinational 
circuit) which contains the control signal 
combination corresponding to microprogram code

Significantly reduces the amount of space required 
to store the microprogram, but increases decoding 
latency



71/70Computer Architecture, Processor implementation, summer 2019/2020

Micro- vs nano-programmingMicro- vs nano-programming


