
Lubomír Bulej
KDSS MFF UK

Computer (Literacy) Skills

Architecture, numbers, and operations

Real computer architecture (Intel)

2

Real computer architecture (ARM)

3

Abstract computer architecture (H&P)

4

5

Computers operate on numbers

Everything is made of numbers...
● Images, videos, music, documents

… even programs!
● Instructions identified by numbers

Computer must be able to perform arithmetic
● We can do a lot with just addition

Additional operations make life easier
● Multiplication, division, logical operations

6

Numbers inside computer are binary

1 bit (b) = 1 binary digit
● Smallest unit of information
● A digit in a number (values 0 and 1)
● A logical truth value (0=false and 1=true)

Easily represented in electronics
● Only need to distinguish two states
● Voltage levels (difference), polarity, ...

1 byte (B) = smallest addressable unit of memory
● Consists of 8 bits (in modern computers)

7

Representing numbers in base B

Sequence of digits
● Sum of positional values of all digits

Positional value of digit di in base B
● di × Bi where Bi represents weight of di

Digit index = base power
● i ≥ 0 for integral part
● i < 0 for fractional part

Right-to-left ordering with increasing weight
● Digit with the highest weight is the leftmost

8

Structure of a binary byte

Bit weights

● MSB = Most Significant Bit (highest weight)
● LSB = Least Significant Bit (lowest weight)

Byte value
b
7
×27 + b

6
×26 + b

5
×25 + b

4
×24 + b

3
×23 + b

2
×22 + b

1
×21 + b

0
×20

Alternatively
((((((b

7
×2 + b

6
)×2 + b

5
)×2 + b

4
)×2 + b

3
)×2 + b

2
)×2 + b

1
)×2 + b

0

27 = 128 26 = 64 25 = 32 24 = 16 23 = 8 22 = 4 21 = 2 20 = 1

b7 (MSB) b6 b5 b4 b3 b2 b1 b0 (LSB)

9

Decimal ↔ binary conversion

Smaller numbers
● Find/sum the right powers of 2

11
10
 = 8 + 2 + 1 = 1×23 + 0×22 + 1×21 + 1×20 = 1011

2

Useful
powers of 2

● Bit values
● Ranges
● Sizes

Up to 8 bits Up to 16 bits Over 16 bits

20 1 28 256 216 65536 = 64 Ki

21 2 29 512 220 1 Mi ≈ 106

22 4 210 1024 (1 Ki ≈ 103) 224 16 Mi

23 8 211 2048 (2 Ki) 230 1 Gi ≈ 109

24 16 212 4096 (4 Ki) 232 4 Gi

25 32 213 8192 (8 Ki) 240 1 Ti ≈ 1012

26 64 214 16384 (16 Ki) 250 1 Pi ≈ 1015

27 128 215 32768 (32 Ki) 260 1 Ei ≈ 1018

10

Decimal ↔ binary conversion

Larger numbers
● Avoid decimal, use hexadecimal (base 16)

Simple algorithm
● Divide number by 2

(integer division)
● Remainder provides next

bit, starting with LSB
● Repeat until quotient is zero
● Note: Works in any positional

system with a single base

151
10
 = ???

2

151 : 2 = 75 (1 = b
0
)

75 : 2 = 37 (1 = b
1
)

37 : 2 = 18 (1 = b
2
)

18 : 2 = 9 (0 = b
3
)

9 : 2 = 4 (1 = b
4
)

4 : 2 = 2 (0 = b
5
)

2 : 2 = 1 (0 = b
6
)

1 : 2 = 0 (1 = b
7
)

151
10
 = 10010111

2

11

Hexadecimal ↔ binary conversion

Convert 4-bit groups using a “lookup table”
● Preferably “stored” in your head.
● For bin ↔ hex

start from LSB.
○ Pad with zero bits

if the leftmost
group has less
than 4 bits.

CAFEBABE
16
 = 11001010111111101011101010111110

2

11011110101011011111000000000001
2
 = DEADF001

16

Dec Bin Hex Dec Bin Hex

0 0000 0 8 1000 8

1 0001 1 9 1001 9

2 0010 2 10 1010 A

3 0011 3 11 1011 B

4 0100 4 12 1100 C

5 0101 5 13 1101 D

6 0110 6 14 1110 E

7 0111 7 15 1111 F

12

How processor works with numbers

Basic operations on numbers
● Arithmetic (later), bitwise logical
● Bit shifts and rotations

Operands stored in registers
● Numbered places inside the processor

○ Operands “going into” operations
○ Results “coming out” from operations

● Register size is always fixed
○ Determines how large numbers can the processor

operate on efficiently
○ General purpose registers: 8, 16, 32, 64 bits
○ Special purpose registers: 128, …, 512 bits

13

What if the register size does not fit

Register too small to hold a number
● Holding 12-bit number in 8-bit registers
● Store part of the number in another register

Register “too big” to hold a number
● Holding 4-bit number in 8-bit register
● Ignore the irrelevant bits
● Use the “free” bits to store another number

We need operations to “slice’n’dice” the bits
● Bitwise logical operations, shifts, rotations

14

Bitwise logical operations

Based on basic boolean functions

Applied to individual bits of the operands
● Pairwise between bits at the same position

Engineering interpretation
● NOT ~ flipping all bits
● AND ~ clearing selected bits (masking)
● OR ~ setting selected bits
● XOR ~ flipping selected bits

AND 0 1

0 0 0

1 0 1

OR 0 1

0 0 1

1 1 1

XOR 0 1

0 0 1

1 1 0

NOT

0 1

1 0

15

Bit shift operations

Shift Logical Left/Right
● Shift all bits of the operand by n positions
● Insert zero bits in the “vacated” places

Alternative interpretation
● Multiply (shift left) or divide (shift right) by 2

