
Lubomír Bulej
KDSS MFF UK

Number representations and memory

Computer (Literacy) Skills

2

Number representations? What for?

Recall: computer works with binary numbers
● Groups of zeroes and ones

○ 8 bits (byte), 16 bits (2 bytes), …, 64 bits (8 bytes), ...
○ Number of bits determines range of numbers
○ If a number does not fit ⇒ overflow!

● So far we have used unsigned integer numbers
○ Natural numbers with zero included

People usually need other kinds of numbers
● Positive, negative, fractions, ...
● Groups of zeroes and ones… again?

We can interpret bits in different ways
● Some interpretations more useful than others

3

Positive/negative integer numbers

Things to consider
● Distinguishing positive/negative numbers
● Difficulty working with the numbers (in HW)

○ Arithmetic, negation, detecting overflow
○ Extending/truncating fixed-size representation

Sign and magnitude representation
● Explicit sign bit (where to put it?)
● N bits ⇒ { -(2N-1), …, -0, +0, …, 2N-1 }

Biased representation
● Implicit sign bit (only for bias of 2N-1 - 1)
● N bits with bias B ⇒ { -B, …, 0, …, 2N - 1 - B }

4

Positive/negative integer numbers

One’s complement representation
● Implicit sign bit, symmetric range
● Negation is “flip all bits”
● N bits ⇒ { -(2N-1), …, -0, +0, …, 2N-1 }

Two’s complement representation
● Implicit sign bit, asymmetric range
● Negation is “flip all bits, then add 1”
● N bits ⇒ { -(2N-1), …, 0, …, 2N-1 - 1 }

○ bN-1× -(2N-1) + bN-2×2N-2 + … + b1×21 + b0×20

● Modular arithmetic!
○ Subtract by adding in unsigned arithmetic

5

Extending/truncating numbers

General principle
● Ensure that interpreting the extended/truncated

representation gives the same number
● Truncation can result in loss of information!

Unsigned integers
● Extend with zero bits to the left, truncation trivial

Sign and magnitude representation
● Strip sign, extend/truncate as unsigned, set sign

One’s and two’s complement representations
● Extend using the value of the highest bit,

truncation trivial

6

Fixed point representation
● Decimal analogy: numbers 0 … 99 divided

by 10 allow representing 0.0, 0.1, 0.2, …, 9.9
● In binary, the fractional part of a number is

the sum of negative powers of 2
● Works also with two’s complement

Example: 4.4 fixed-point representation
● Integral part: 0, 1, …, 15
● Fractional part: 0×0.0625, …, 15×0.0625 = 0.9375

Representing fractional numbers

23 = 8 22 = 4 21 = 2 20 = 1 2-1 = 0.5 2-2 = 0.25 2-3 = 0.125 2-4 = 0.0625

b7 = MSB b6 b5 b4 b3 b2 b1 b0 = LSB

(Imaginary) fixed point

7

Decimal ↔ binary conversion

Fractional part
● Convert separately from integral part

Simple algorithm
● Multiply fractional part by 2
● Value before decimal point

provides next fraction bit,
starting with MSB

● Strip of the fractional part
and repeat until zero, or ...
○ … the pattern starts repeating
○ … we have enough bits

0.678
10
 = ???

2

0.678 × 2 = 1.356 (1 = b
-1
)

0.356 × 2 = 0.712 (0 = b
-2
)

0.712 × 2 = 1.424 (1 = b
-3
)

0.424 × 2 = 0.848 (0 = b
-4
)

0.848 × 2 = 1.696 (1 = b
-5
)

0.696 × 2 = 1.392 (1 = b
-6
)

0.392 × 2 = 0.784 (0 = b
-7
)

0.784 × 2 = 1.568 (1 = b
-8
)

 ...
0.678

10
 ≅ 0.10101101

2

8

Floating point representation
● Decimal analogy: normalized scientific notation

D0 , D1D2...DP-1×10E (P valid digits, 1 ≤ D0 ≤ 9)

● Similarly in binary
B0 , B1B2...BP-1×2E (P valid bits, 1 ≤ B0 ≤ 1)

In-memory representation

● (-1)Sign × Significand × 2(Exponent - Bias)

● Half (16-bit) / Single (32-bit) / Double (64-bit)

Approximating real numbers

Sign Exponent
(with bias)

Significand
(value of B0 not stored ⇒ hidden 1)

SP DP

Bias = 127 Bias = 1023

P = 24 P = 53

B0 is always 1 in this form

9

1. Convert to binary fractional number
● Integral and fractional part, ignore sign

2. Normalize the binary representation
● Move binary point to get 1.ssss ×2Exp

3. Depending on the target FP representation
● Round significand to desired precision
● Convert the exponent to biased representation

4. Set the sign bit to reflect the sign
5. For in-memory representation

● Drop initial 1 from the significand (hidden 1)

Real number → IEEE floating point

10

Programmer’s perspective (logical view)
● 1-D array of N bytes numbered 0, …, N-1
● Individual bytes can be read or written to
● A particular byte is identified by its index

Index => Address
● Numbers occupy multiple bytes in memory
● Address of something = address of first byte

Memory is “visible” to CPU
● CPU sends address to memory controller,

requesting bytes to be read or written
● Memory controller uses parts of the address to

determine which part of memory to access

Speaking of memory...

Big Endian = MSB first

11

Memory = array of bytes
● Chop up number into sequence of N bytes

○ BN-1 (Most Signif. Byte), …, B1, B0 (Least Signif. Byte)
● Store N bytes at consecutive addresses in memory

○ Addresses A, A+1, A+2, …, A+(N-1) for N-byte number
● CPU does this when storing/loading contents of its

registers to/from memory at a given address
The order of bytes matters!

● Similar to sending bits over serial line.

How to store multi-byte numbers?

A A+1 ... A+(N-1)

BN-1 BN-2 ... B0

Little Endian = LSB first
A A+1 ... A+(N-1)

B0 B1 ... BN-1

Lists contents of memory
● Or any other address space, e.g., storage

device (hard disk, solid state drive), or a file
● Contents of starting address and fixed number of

consecutive addresses (usually all in hexadecimal)
We must know the interpretation!

● What is stored at 0x03194A7B? Or at 0x03194A84?

12

Understanding a memory dump

Address Byte at (Address + 0), (Addres + 1), …, (Address + 7)

...

03194A78 AF BC 39 F6 D0 24 91 34

03194A80 81 C9 A3 7C 00 80 B7 C2

03194A88 E2 6C 71 EA 59 FE F5 49

...

