Number representations and memory

Lubomír Bulej KDSS MFF UK

Number representations? What for?

Recall: computer works with binary numbers

- Groups of zeroes and ones
 - 8 bits (byte), 16 bits (2 bytes), ..., 64 bits (8 bytes), ...
 - Number of bits determines range of numbers
 - If a number does not fit \Rightarrow overflow!
- So far we have used **unsigned integer** numbers
 - Natural numbers with zero included

People usually need other kinds of numbers

- Positive, negative, fractions, ...
- Groups of zeroes and ones... again?

We can interpret bits in different ways

• Some interpretations more useful than others

Positive/negative integer numbers

Things to consider

- Distinguishing positive/negative numbers
- Difficulty working with the numbers (in HW)
 - Arithmetic, negation, detecting overflow
 - Extending/truncating fixed-size representation

Sign and magnitude representation

- Explicit sign bit (where to put it?)
- N bits \Rightarrow {-(2^{N-1}), ..., -0, +0, ..., 2^{N-1}}

Biased representation

- Implicit sign bit (only for bias of 2^{N-1} 1)
- N bits with bias $B \Rightarrow \{-B, ..., 0, ..., 2^N 1 B\}$

Positive/negative integer numbers

One's complement representation

- Implicit sign bit, symmetric range
- Negation is "flip all bits"
- N bits \Rightarrow {-(2^{N-1}), ..., -0, +0, ..., 2^{N-1}}

Two's complement representation

- Implicit sign bit, asymmetric range
- Negation is "flip all bits, then add 1"
- N bits \Rightarrow {-(2^{N-1}), ..., 0, ..., 2^{N-1} 1 }

$$b_{N-1} \times -(2^{N-1}) + b_{N-2} \times 2^{N-2} + \dots + b_1 \times 2^1 + b_0 \times 2^0$$

- Modular arithmetic!
 - Subtract by adding in unsigned arithmetic

Extending/truncating numbers

General principle

- Ensure that interpreting the extended/truncated representation gives the same number
- Truncation can result in **loss of information!**

Unsigned integers

• Extend with zero bits to the left, truncation trivial

Sign and magnitude representation

• Strip sign, extend/truncate as unsigned, set sign

One's and two's complement representations

• Extend using the value of the highest bit, truncation trivial

Representing fractional numbers

Fixed point representation

- Decimal analogy: numbers 0 ... 99 divided by 10 allow representing 0.0, 0.1, 0.2, ..., 9.9
- In binary, the fractional part of a number is the sum of negative powers of 2
- Works also with two's complement

Example: 4.4 fixed-point representation

- Integral part: 0, 1, ..., 15
- Fractional part: 0×0.0625, ..., 15×0.0625 = 0.9375

2 ³ = 8	2 ² = 4	2 ¹ = 2	2 ⁰ = 1	$2^{-1} = 0.5$	2 ⁻² = 0.25	2 ⁻³ = 0.125	2 ⁻⁴ = 0.0625
b ₇ = MSB	b ₆	b ₅	b ₄	b ₃	b ₂	b ₁	b ₀ = LSB
(Imaginary) fixed point							

Decimal ↔ **binary conversion**

Fractional part

• Convert separately from integral part

Simple algorithm

- Multiply fractional part by 2
- Value before decimal point provides next fraction bit, starting with MSB
- Strip of the fractional part and repeat until zero, or ...
 - \circ ... the pattern starts repeating
 - \circ ... we have enough bits

 $0.678_{10} = ???_{2}$

 $\begin{array}{l} 0.678 \times 2 = 1.356 & (1 = b_{-1}) \\ 0.356 \times 2 = 0.712 & (0 = b_{-2}) \\ 0.712 \times 2 = 1.424 & (1 = b_{-3}) \\ 0.424 \times 2 = 0.848 & (0 = b_{-4}) \\ 0.848 \times 2 = 1.696 & (1 = b_{-5}) \\ 0.696 \times 2 = 1.392 & (1 = b_{-6}) \\ 0.392 \times 2 = 0.784 & (0 = b_{-7}) \\ 0.784 \times 2 = 1.568 & (1 = b_{-8}) \end{array}$

 $0.678_{10} \cong 0.10101101_{2}$

Approximating real numbers

Floating point representation

- Decimal analogy: normalized scientific notation $D_0, D_1 D_2 ... D_{P-1} \times 10^E (P \text{ valid digits}, 1 \le D_0 \le 9)$
- Similarly in binary $B_0, B_1B_2...B_{P-1} \times 2^E (P \text{ valid bits, } 1 \le B_0 \le 1)$

${\rm B}_{_{\rm O}}$ is always 1 in this form

In-memory representation

Sign	Exponent	Significand				
	(with blas)	(value of B_0 not stored \Rightarrow hidden 1)				

SP	DP		
Bias = 127	Bias = 1023		
P = 24	P = 53		

- $(-1)^{\text{Sign}} \times \text{Significand} \times 2^{(\text{Exponent Bias})}$
- Half (16-bit) / Single (32-bit) / Double (64-bit)

Real number → **IEEE floating point**

- 1. Convert to binary fractional number
 - Integral and fractional part, ignore sign
- 2. Normalize the binary representation
 - Move binary point to get 1.ssss ×2^{Exp}
- 3. Depending on the target FP representation
 - Round significand to desired precision
 - Convert the exponent to biased representation
- 4. Set the sign bit to reflect the sign
- 5. For in-memory representation
 - Drop initial 1 from the significand (hidden 1)

Speaking of memory...

Programmer's perspective (logical view)

- 1-D array of N bytes numbered 0, ..., N-1
- Individual bytes can be read or written to
- A particular byte is identified by its index

Index => Address

- Numbers occupy multiple bytes in memory
- Address of something = address of first byte

Memory is "visible" to CPU

- CPU sends address to memory controller, requesting bytes to be read or written
- Memory controller uses parts of the address to determine which part of memory to access

How to store multi-byte numbers?

Memory = array of bytes

- Chop up number into sequence of N bytes
 B_{N-1} (Most Signif. Byte), ..., B₁, B₀ (Least Signif. Byte)
- Store N bytes at consecutive addresses in memory
 Addresses A, A+1, A+2, ..., A+(N-1) for N-byte number
- CPU does this when storing/loading contents of its registers to/from memory at a given address

The order of bytes matters!

• Similar to sending bits over serial line.

Big Endian = MSB first

Α	A+1	•••	A+(N-1)
(B _{N-1})	B _{N-2}	•••	B ₀

Little Endian = LSB first

Understanding a memory dump

Lists contents of memory

- Or any other address space, e.g., storage device (hard disk, solid state drive), or a file
- Contents of starting address and fixed number of consecutive addresses (usually all in hexadecimal)

We must know the interpretation!

• What is stored at 0x03194A7B? Or at 0x03194A84?

Address	Byte at (Address + 0), (Addres + 1), …, (Address + 7)							
•••								
03194A78	AF	BC	39	F6	D0	24	91	34
03194A80	81	С9	A3	7C	00	80	Β7	C2
03194A88	E2	6C	71	EA	59	FE	F5	49
•••								