
Lubomír Bulej
KDSS MFF UK

Variables, records, and pointers

Computer (Literacy) Skills

2

Variable = named storage location

Values stored as sequences of bytes
● Type determines storage size and layout

○ Also the set of legal values and operations
● Location in memory = address of the first byte

○ Compiler determines where to store values
● Variables provide symbolic names to addresses

var
 i : integer;
 d : double;
 a : array [1..5]
 of word;

A A+4 ... A+12 A+14 A+16 A+18 A+20

i d a[1] a[2] a[3] a[4] a[5]

4 B 8 B 2 B 2 B 2 B 2 B 2 B

3

Alignment on modern processors

Certain memory accesses may be inefficient/illegal
● Depends on address and access size

○ Exact criteria depend on processor architecture
○ Access size typically powers of 2, related to register size

● Memory can be efficiently (sometimes only)
accessed at addresses aligned to access size

● Affects layout of variables in memory!
○ Ensure that a value in memory can be read or written to

efficiently (single memory access).

var
 i : integer;
 d : double;
 a : array [1..5]
 of word;

A A+4 A+8 ... A+16 A+18 A+20 A+22 A+24

i d a[1] a[2] a[3] a[4] a[5]

4 B 4 B 8 B 2 B 2 B 2 B 2 B 2 B

4

Records/structures = composite values

Group of related variables
● Access to variables

(fields) inside a record
through the name
of the record variable

● Laid out together in
memory

● Each field has a fixed
offset from the base address of the record

type Person : record
 name, surname : string [15];
 age : integer;
 sex : char;
end;

var
 child, adult: Person;

begin
 ...
 child.age := 5;
 adult.age := 21;
end.

A A+16 A+32 A+36

name surname age sex

1 + 15 B 1 + 15 B 4 B 1 B

5

Describes file in a directory
● File name and extension
● Special file attributes
● Time and date of creation
● Date of last access
● Date and time of last modification
● Location on disk (cluster number)
● File size in bytes

Example: FAT directory entry

6

Describes IP packet
● Version and length of the header
● Total length of the packet
● Source and destination addresses
● …

Example: IP packet header

7

Alignment within record

Fields within a record are aligned too
● Typically the closest power of 2 greater than or

equal to field size (alignment size)
○ Free Pascal: word-aligned (2 bytes) by default
○ Free Pascal: packed records are byte-aligned

● Record size is not necessarily the sum of field sizes
○ Due to field alignment within records

type R : record
 b : byte;
 i : integer;
end;

A A+1

b i

1 B 4 B

A ... A+4

b i

1 B 3 B 4 B

8

The size of things

The SizeOf() function
● Returns the size of a type in bytes
● Predefined for base (primitive) types
● Computed for arrays

○ array [LB .. UB] of T → (UB - LB + 1) × SizeOf (T)
● Computed for records

○ ∑i SizeOf (fi) is only lower bound due to alignment
○ Sum of the record’s last field’s offset and this field’s size,

rounded up to a multiple of the record’s required
alignment (the alignment of the record’s field with the
largest alignment size)

9

Example: alignment within a record

Type declaration
type TItem = record

field0 : Byte;
field1 : array [1 .. 3] of Word;
field2 : Single;
field3 : Byte;
field4 : QWord;

end;

Primitive type sizes
SizeOf (Byte) = 1
SizeOf (Word) = 2
SizeOf (Single) = 4
SizeOf (QWord) = 8What are the field offsets?

What are the field alignments?
What is the record alignment?
What is the result of SizeOf (TItem)?

10

Abstraction of an address

Pointer
● Type providing an abstraction of an address

○ We don’t need to know the address to use it
● Pointer variable stores an address of a value

○ Typed pointer points to a value of specific type

Pascal
● Pointer type declaration
● Pointer variable definition
● Dereferencing a pointer to

access the pointed-to value
● Taking an address of a

variable

type PInteger = ^integer;

var pi : PInteger;

i := pi^;

pi := @i;

11

Basic pointer example
type
 PInteger = ^integer;

var
 i, j : integer;
 pi, pj, p : PInteger;

begin
 i := 1; WriteLn (i);
 pi := @i; WriteLn (pi^);
 pi^ := 2; WriteLn (i);

 j := 42; WriteLn (j);
 pj := @j; WriteLn (pj^);
 j := 84; WriteLn (pj^);

 p := pi; WriteLn (p^);
 p^ := 0; WriteLn (i);

 p := pj; WriteLn (p^);
 p^ := -1; WriteLn (j);
end.

Address Contents

0x3000 i

0x3004 j

0x3008 pi = 0x3000

0x300C pj = 0x3004

0x3010 p

12

Basic pointer example
type
 PInteger = ^integer;

var
 i, j : integer;
 pi, pj, p : PInteger;

begin
 i := 1; WriteLn (i);
 pi := @i; WriteLn (pi^);
 pi^ := 2; WriteLn (i);

 j := 42; WriteLn (j);
 pj := @j; WriteLn (pj^);
 j := 84; WriteLn (pj^);

 p := pi; WriteLn (p^);
 p^ := 0; WriteLn (i);

 p := pj; WriteLn (p^);
 p^ := -1; WriteLn (j);
end.

Address Contents

0x3000 i

0x3004 j

0x3008 pi = 0x3000

0x300C pj = 0x3004

0x3010 p = 0x3000

13

Basic pointer example
type
 PInteger = ^integer;

var
 i, j : integer;
 pi, pj, p : PInteger;

begin
 i := 1; WriteLn (i);
 pi := @i; WriteLn (pi^);
 pi^ := 2; WriteLn (i);

 j := 42; WriteLn (j);
 pj := @j; WriteLn (pj^);
 j := 84; WriteLn (pj^);

 p := pi; WriteLn (p^);
 p^ := 0; WriteLn (i);

 p := pj; WriteLn (p^);
 p^ := -1; WriteLn (j);
end.

Address Contents

0x3000 i

0x3004 j

0x3008 pi = 0x3000

0x300C pj = 0x3004

0x3010 p = 0x3004

Physical layout
● One of several

possible...

14

Example: linked list
type
 TNode = record;
 PNode = ^TNode;

 TNode = record
 value : integer;
 next : PNode;
 end;

var
 list : PNode;

Logical view
● “Chain” of records

Address Contents

0x100 value = 1

0x104 next = 0x400

...

0x200 list = 0x100

...

0x300 value = 3

0x304 next = 0x0 (NIL)

...

0x400 value = 2

0x404 next = 0x300

value = 1

next

value = 2

next

value = 3

next

list

