Computer (Literacy) Skills

Variables, records, and pointers

Lubomir Bulej
KDSS MFF UK

Variable = named storage location

Values stored as sequences of bytes

e Type determines storage size and layout
o Also the set of legal values and operations

e Locationin memory = address of the first byte
o Compiler determines where to store values

® Variables provide symbolic names to addresses

var A A+4 .o A+12 A+14 A+16 A+18 A+20
i : integer;
d : double; i d a[1] | a[2] | a[3] | a[4] | a[5]

a : array [1..5]

of word; 4 B 8 B 2B 2B | 2B | 2B 2B

Alignment on modern processors

Certain memory accesses may be inefficient/illegal
e Depends on address and access size

e Memory can be efficiently (sometimes only)
accessed at addresses aligned to access size
® Affects layout of variables in memory!

O Ensure that a value in memory can be read or written to
efficiently (single memory access).

var

o Exact criteria depend on processor architecture

o Access size typically powers of 2, related to register size

: integer;
: double;

: array [1.

of word;

.5]

A+4

A+8

A+16 A+18 A+20 | A+22 A+24

B

4 B

8

d

B

all]

2

B

al2]

2

B

al3]

2

B

a[4]

2

B

a[5]

2

B

Records/structures = composite values

Group of related variables e O e o ing (151
® Access to variables 28e Ltegers |
(fields) inside a record ends
through the name vaZhild, adult: Person;
of the record variable begin
e Laid out togetherin ihild.age

i
Ul

memory en(ajc.jult.age :
e Each field has a fixed
offset from the base address of the record

A A+16 A+32 A+36
name surname age sex
1+ 15 B 1+ 15 B 4 B 1B

Example: FAT directory entry

Describes file in a directory
e File name and extension
Special file attributes
Time and date of creation
Date of last access
Date and time of last modification
Location on disk (cluster number)
File size in bytes

0| 1 2 | 3 /4| 5|6 |7 | 8|9 A B|C|D|E|F
0 File name Extension | Atr Create T
10| CreD | Acc D Update DT Cluster File size

Example: IP packet header

Describes IP packet
e Version and length of the header
e Total length of the packet
e Source and destination addresses
®

B 32 Bits >
8 8 8 | 8
Version T:ﬁg&r Tygs S:f%:’\jce Total Length
Identifier Flags Fragment Offset
Time to Live Protocol Header Checksum
Source Address
Destination Address
Options Padding

Alignment within record

Fields within a record are aligned too
e Typically the closest power of 2 greater than or
equal to field size (alignment size)
o Free Pascal: word-aligned (2 bytes) by default
O Free Pascal: packed records are byte-aligned
e Record size is not necessarily the sum of field sizes
o Due to field alignment within records

type R : record A-I)// A ... A+4
b : byte;
i : integer; b><i b i
end;
)/B 4\ 1B 3B 4 B

The size of things

The SizeOf () function
e Returns the size of a type in bytes
e Predefined for base (primitive) types
e Computed for arrays
o array[LB..UB]of T— (UB-LB + 1) x SizeOf (T)
e Computed forrecords
o ».SizeOf (f)is only lower bound due to alignment

o Sum of the record’s last field’s offset and this field’s size,
rounded up to a multiple of the record’s required
alignment (the alignment of the record’s field with the
largest alignment size)

Example: alignment within a record

Type declaration

type TItem = record
fieldo® : Byte;
fieldl : array [1 .. 3] of Word;
field2 : Single;
field3 : Byte; c _ege .
field4 : OWord; Prlmltlve type sizes
end: SizeOf (Byte) =1
SizeOf (Word) = 2
SizeOf (Single) =
What are the field offsets? SizeOf (QWord) =

What are the field alignments?

What is the record alighment?
What is the result of SizeOf (Titem)?

Abstraction of an address

Pointer
e Type providing an abstraction of an address

o We don’t need to know the address to use it

® Pointer variable stores an address of a value

o Typed pointer points to a value of specific type

Pascal
e Pointer type declaration type PInteger = “integer;
e Pointer variable definition var pi : PInteger;
® Dereferencing a pointer to i = pi®;
access the pointed-to value
e Taking an address of a pi := @i;

variable

10

Basic pointer example

type
PInteger = ~integer;

var
i, j : integer;
pi, pj, p : PInteger;

begin
i := 1; WritelLn (i);
pi := @i; WritelLn (pi”®);
pi” := 2; WritelLn (i);

j := 42; WritelLn (j);

pj := @j; WriteLn (pj");
j := 84; WritelLn (pj”");

p := pi; WriteLn (p*);
p~ := 0; WriteLn (i);

p := pj; WriteLn (p*);
p~ := -1; WritelLn (j);
end.

Address Contents
0x3000 i <
Px3004 j <
0x3008 pi = 9x3000e-
0x300C pj = Ox3004e-
Px3010 p

11

Basic pointer example

type
PInteger = ~integer;

var
i, j : integer;
pi, pj, p : PInteger;

begin
i := 1; WritelLn (i);
pi := @i; WritelLn (pi”®);
pi” := 2; WritelLn (i);

j := 42; WritelLn (j);

pj := @j; WriteLn (pj");
j := 84; WritelLn (pj”");

p := pi; WritelLn (p*);
pN := 0; WriteLn (i);

p := pj; WriteLn (p*);
p~ := -1; WritelLn (j);
end.

Address Contents

0x3000 i :
0x3004 j <
0x3008 pi = Ox3000e-
0x300C pj] = Ox3004e-
0x3010 p = 0x3000 e

12

Basic pointer example

type
PInteger = ~integer;

var
i, j : integer;
pi, pj, p : PInteger;

begin
i := 1; WritelLn (i);
pi := @i; WritelLn (pi”®);
pi” := 2; WritelLn (i);

j := 42; WritelLn (j);

pj := @j; WriteLn (pj");
j := 84; WritelLn (pj”");

p := pi; WriteLn (p*);
p~ := 0; WriteLn (i);

p := pj; WriteLn (p*);
p~ := -1; WritelLn (j);
end.

Address Contents

0x3000 i <
0x3004 j D)
0x3008 pi = 9x3000e-
0x300C pj = Ox3004e-
0x3010 p = OX3004 e

13

Example: linked list

type -
P ode = record: Physical layout
PNode = "TNode; e One of several
TNode = record possible...
value : integer;
next : PNode; Address Contents
end; 0x100 e =)
var 0x104 next = 0x400 e—

list : PNode;

0x200 list = 0x100 @—

Logical view -
. 0x300 value = 3
e ‘“Chain’” of records W

Ox304 | next = 0x@ (NIL) '//}

value = 1 value = 2 value = 3
0x400 value = 2

next &— next &— next
ox404 next = Ox300 e—

list o

14

