
http://d3s.mff.cuni.czhttp://d3s.mff.cuni.cz/teaching/computer_architecture/

Lubomír Bulej
bulej@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE
faculty of mathematics and physics

Computer Architecture
Introduction

http://d3s.mff.cuni.cz/teaching/computer_architecture/

2/42Computer Architecture, Introduction, summer 2022/2023

Why should you care?

... I‘ll be coding in Java, C#, Python, …,
JavaScript or PHP all day!

Why do I need to know how
a computer (or a processor) works ?

3/42Computer Architecture, Introduction, summer 2022/2023

Why should you care?

Course credits …
It‘s mandatory ...

4/42Computer Architecture, Introduction, summer 2022/2023

Why should you care?

Course credits …
It‘s mandatory ...

5/42Computer Architecture, Introduction, summer 2022/2023

Why should you care?

Course credits …
It‘s mandatory ...
I‘ll be coding web anyway...

7/42Computer Architecture, Introduction, summer 2022/2023

Why should you care?

Course credits …
It‘s mandatory ...
I‘ll be coding web anyway…

But it may be handy to know...
... how things work in a computer, because it influences
how operating systems, virtual machines, etc. work

8/42Computer Architecture, Introduction, summer 2022/2023

Why should you care?

Course credits …
It‘s mandatory ...
I‘ll be coding web anyway…

But it may be handy to know…
... how things work in a computer, because it influences
how operating systems, virtual machines, etc. work

This will help me to ...
... design and develop apps with more insight
... diagnose and solve problems when (not if) they happen

9/42Computer Architecture, Introduction, summer 2022/2023

Why should you care?

Cultivating mechanical sympathy…
… using a tool with an understanding
how it operates best.

„You don't have to be an engineer to be a racing driver,
but you do have to have mechanical sympathy.“

– Jackie Stewart, F1 racing driver

Applied to computer science
... improving program performance on modern CPUs
… better utilization of computing resources
… comparing performance of different computers and
assess their suitability to a given task
In a systematic fashion, not by trial and error

10/42Computer Architecture, Introduction, summer 2022/2023

Great ideas in computer architecture

Design for Moore‘s law
Use abstraction to simplify design
Make the common cast fast
Performance via parallelism
Performance via pipelining
Performance via prediction
Hierarchy of memories
Dependability via redundancy

11/42Computer Architecture, Introduction, summer 2022/2023

Technology

12/42Computer Architecture, Introduction, summer 2022/2023

Processor and memory technology

Transistor
Basic building block

Discrete (a controllable switch) instead of analog (amplifier)
application

Integrated circuit
Multiple transistors on a single chip

Additional parts (capacitors, resistors, etc.)
Better technology → smaller dimensions → higher level
of integration → higher processor speed and higher
memory capacity

13/42Computer Architecture, Introduction, summer 2022/2023

Processor and memory technology (2)

Source: P&H

14/42Computer Architecture, Introduction, summer 2022/2023

Processor and memory technology (3)

[7][6]

15/42Computer Architecture, Introduction, summer 2022/2023

Processor

Key elements
Data path
(operates on data)
Control
(controls data path)
Memory elements
(registers and cache)

Intel Core i7-980X
6 cores, 12 MB L3 cache, clock
frequency 3.33 GHz
32 nm technology, 248 mm2,
1.2 billion transistors

Source: intel.com

16/42Computer Architecture, Introduction, summer 2022/2023

Processor

Source: https://www.techpowerup.com/281313/cerebras-updates-wafer-scale-engine-on-7-nm-2-6-trillion-transistors-40-gb-onboard-sram-850-000-cores-12-wafer

https://www.techpowerup.com/281313/cerebras-updates-wafer-scale-engine-on-7-nm-2-6-trillion-transistors-40-gb-onboard-sram-850-000-cores-12-wafer

17/42Computer Architecture, Introduction, summer 2022/2023

Operating memory

Volatile
Running programs and data
Directly addressed by the processor
Dynamic Random-Access Memory (DRAM)

Constant access time (tens of nanoseconds)
Bits stored as charge in capacitors

Needs periodic refresh (16 Hz typical)
Capacity in gigabytes

Source: slashgear.com

18/42Computer Architecture, Introduction, summer 2022/2023

Operating memory (2)

Volatile
Static Random-Access Memory (SRAM)

Implemented using two-state flip flops (requires 4 to 6
transistors per bit)

No need of periodic refresh
Significantly faster (units of nanoseconds), significantly lower
density, significantly higher cost

Processor caches and register
Other kinds of processor-internal memory

19/42Computer Architecture, Introduction, summer 2022/2023

Moore’s “law”

Gordon Moore (*1929)
On of the founders of Intel
Prediction: The number of transistors integrated
on a single chip will double every 18 – 24 months

1960s
Smaller transistors allow higher speeds and capacities
Often applied to other domains

Storage capacity, network bandwidth

20/42Computer Architecture, Introduction, summer 2022/2023

Growth of capacity per DRAM chip

Source: P&H

21/42Computer Architecture, Introduction, summer 2022/2023

Moore’s “law” (2)

Exponential growth in the last 40 years!
Keeping Moore’s “law” valid requires tremendous
and continuous advances in technology

So far in a single domain (semiconductor transistors)
There are hard physical limits (quantum tunnel effect,
waste heat, quantum noise)

Compromises needed
Number of transistors does not correspond to
computational power for sequential algorithms

22/42Computer Architecture, Introduction, summer 2022/2023

Processor and memory technologies

Impact of technology
What computers will be able to do
How fast will computers evolve

Race to design a better computer
Embracing the latest in electronic technology

Year Technology Relative performance / unit cost
1951 Vacuum tube 1
1965 Transistor 35
1975 Integrated circuit (low integration) 900
1995 Integrated circuit (very large scale integration, VLSI) 2 400 000
2013 Integrated circuit (ultra large scale integration, ULSI) 250 000 000 000

23/42Computer Architecture, Introduction, summer 2022/2023

Basic computer organization

Source: P&H

Computer
input
output
memory
processor

data path
control

Technology
independent

Fits both today‘s and
past computers

24/42Computer Architecture, Introduction, summer 2022/2023

Abstraction

25/42Computer Architecture, Introduction, summer 2022/2023

Abstraction

Required to bridge semantic gaps
From a concrete (technical) language to an
abstract (general) language
Expressing the same using more general terms
while encapsulating internal details and preserving
accuracy

More concise and compact expression
„An abstraction is one thing that represents
several real things equally well.“ (Edsger Dijkstra)

26/42Computer Architecture, Introduction, summer 2022/2023

Implementation

The opposite of abstraction
Concretization
From computer architecture to concrete computer
High-level language

Block diagrams, functional description of circuits
Low-level language

Circuit diagrams connecting electronic components, masks for
producing semiconductor elements in an integrated circuit

„Machine code“
Physical realization of a computer

27/42Computer Architecture, Introduction, summer 2022/2023

From a user to an algorithm

User

Delete paragraph
Set font

....

Algorithm

document.par[i].value = ...;
document.set_font(...);
...

Semantic gap

28/42Computer Architecture, Introduction, summer 2022/2023

Example: Swap k-th and (k+1)-th element

High-level programming language
void swap(unsigned int array[], unsigned int k) {

unsigned int old = array[k];
array[k] = array[k + 1];
array[k + 1] = old;

}

29/42Computer Architecture, Introduction, summer 2022/2023

From an algorithm to a program

Algorithm

document.par[i].value = ...;
document.set_font(...);
...

Semantic gap Program

MULI $2, $5, 4
ADD $2, $4, $2
LW $16, 0($2)
...

30/42Computer Architecture, Introduction, summer 2022/2023

Example: Swap k-th and (k+1)-th element

Assembler representation for MIPS
swap:

sll $a1, $a1, 2
addu $a1, $a1, $a0
lw $v0, 0($a1)
lw $v1, 4($a1)
sw $v1, 0($a1)
sw $v0, 4($a1)
jr $ra

31/42Computer Architecture, Introduction, summer 2022/2023

Example: Swap k-th and (k+1)-th element

Assembler representation for SuperH
swap:
 shll2 r5
 mov r4,r1
 add r5,r1
 mov.l @r1,r2
 add #4,r5
 add r5,r4
 mov.l @r4,r3
 mov.l r3,@r1
 rts
 mov.l r2,@r4

32/42Computer Architecture, Introduction, summer 2022/2023

Example: Swap k-th and (k+1)-th element

Assembler representation for x86-64
swap:

movslq %esi, %rsi
leaq (%rdi, %rsi, 4), %rdx
leaq 4(%rdi, %rsi, 4), %rax
movl (%rdx), %ecx
movl (%rax), %esi
movl %esi, (%rdx)
movl %ecx, (%rax)
retq

33/42Computer Architecture, Introduction, summer 2022/2023

From a program to machine code

Semantic gapProgram

MULI $2, $5, 4
ADD $2, $4, $2
LW $16, 0($2)
...

Processor

0101001010010
0110101001101
0111010110101
...

34/42Computer Architecture, Introduction, summer 2022/2023

Example: Swap k-th and (k+1)-th element

Machine code for MIPS
00000000000001010010100010000000
00000000101001000010100000100001
10001100101000100000000000000000
10001100101000110000000000000100
10101100101000100000000000000100
10101100101000110000000000000000
00000011111000000000000000001000

35/42Computer Architecture, Introduction, summer 2022/2023

Example: Swap k-th and (k+1)-th element

Machine code for SuperH
0000100001000101
0100001101100001
0101110000110001
0001001001100010
0000010001110101
0101110000110100
0100001001100011
0011001000100001
0000101100000000
0010001000100100

36/42Computer Architecture, Introduction, summer 2022/2023

Example: Swap k-th and (k+1)-th element

Machine code for x86-64
010010000110011111110110
01001000100011010001010010110111
0100100010001101010001001011011100000100
1000101100001010
1000101101110000
1000100101110010
1000100100001000
11000111

37/42Computer Architecture, Introduction, summer 2022/2023

From power-on to running applications

Firmware
BIOS (Basic Input/Output System)

Operating system loader
Boot sector
Boot loader

Operating system
User interface/desktop environment
Application

38/42Computer Architecture, Introduction, summer 2022/2023

100s of 1000s of lines of code

Application software
Text editor, spread sheet, ...
User interface libraries

System software
Operating system

Input/output operations
Memory and storage management
Resource sharing

Firmware
Hardware

Processor, memory, I/O devices

Hardware

39/42Computer Architecture, Introduction, summer 2022/2023

100s of 1000s of lines of code

Hardware

Ford F150 Pickup (2016)

Modern High-End Car (2013)

Mac OS X "Tiger"

Large Hadron Collider

Microsoft Office 2013

Windows 7

Mozilla Firefox

Linux Kernel 4.1

Android

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

150

100

86

50

45

40

36.8

19.5

12

Millions of Lines of Code (MLOC)

Source: https://informationisbeautiful.net/visualizations/million-lines-of-code (data as of 2016)

https://informationisbeautiful.net/visualizations/million-lines-of-code

Procesor

C++

Machine code

Assembler

Firmware / Operating system

JVM / CLR

Java / .NET

Component system

Application framework

C

41/42Computer Architecture, Introduction, summer 2022/2023

Abstraction layers in a computer

User interface

Application engine

Application libraries/frameworks

Operating system

Instruction Set Architecture (ISA)

Data path, control

Logic circuits

Transistors

HW/SW interface

So
ftw

ar
e

Hardw
are

Ap
pl

ica
tio

ns

Ab
st

ra
cti

on
 le

ve
l

42/42Computer Architecture, Introduction, summer 2022/2023

Beware: abstraction is (only) a tool!

