
http://d3s.mff.cuni.czhttp://d3s.mff.cuni.cz/teaching/nswi143

Lubomír Bulej
bulej@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE
faculty of mathematics and physics

Computer Architecture
Processor implementation

http://d3s.mff.cuni.cz/teaching/nswi143

2/70Computer Architecture, Processor implementation, summer 2022/2023

Implementing simplified MIPS ISA

Basic characteristics
Simplified to demonstrate key concepts

Registers
32 general-purpose 32-bit registers: R0 – R31
PC register with address of instruction to execute
Special control registers

Exception address, etc.

3/70Computer Architecture, Processor implementation, summer 2022/2023

Implementing simplified MIPS ISA (2)

Memory
Access to 4-byte aligned addresses only

Corresponds to 32-bit word length of the processor
Indirect addressing with immediate displacement

Load: R2 := mem[R1 + immediate]
Store: mem[R1 + immediate] := R2

4/70Computer Architecture, Processor implementation, summer 2022/2023

Implementing simplified MIPS ISA (3)

Operations
Arithmetic and logic

Fully orthogonal, three-operand instructions
Source operands: register/register, register/immediate
Target operand: register
Includes data movement between registers

Load/store operations
Move data between registers and memory (load/store architecture)

Conditional branch
Tests equality/inequality of two registers

Unconditional jumps
Including jumps to subroutine and indirect jumps (return from a
subroutine)

Special instructions

5/70Computer Architecture, Processor implementation, summer 2022/2023

Implementing simplified MIPS ISA (4)

Single-cycle datapath
Basic organization of data path elements

Combinational and sequential blocks
Operations executed in one long cycle

Suitable for operations of similar complexity
Writes to memory elements synchronized by clock

Clock signal is implicit, will not be shown
Simplification: separate instruction memory
(Harvard architecture)

6/70Computer Architecture, Processor implementation, summer 2022/2023

Implementing simplified MIPS ISA (5)

Steps to execute an instruction
1. Fetch instruction from memory

Read from an address supplied by the PC register
2. Decode instruction and fetch instruction operands
3. Execute operation corresponding to the opcode

Register operations, computing address for accessing
memory, comparing operands for conditional branch.

4. Store the result of the operation
Write data to register or memory

5. Adjust PC to point at next instruction
One that immediately follows the current
One that is a target of a jump or branch

7/70Computer Architecture, Processor implementation, summer 2022/2023

Reading an instruction (fetch)

PC register
Address of instruction
in memory
Not directly accessible
to a programmer

Adder
Increment PC by 4
Advance to next
instruction by default

PC
Fetch
address

Instruction

Instruction
Memory

4

opcode

ad
d

8/70Computer Architecture, Processor implementation, summer 2022/2023

Register operations (add, sub, ...)
op (6) rs (5) rt (5) rd (5) sa (5) funct (6)

Read
register 1

Read
register 2

Write
register

Write
data

Register
File

Register
data 1

Register
data 2

rs

rt

rd

result

funct

ALUOp

RegWrite

5

5

5

32

32

32 AL
U

9/70Computer Architecture, Processor implementation, summer 2022/2023

Support for register operations

RS

RT

RD

WD

RF

A

B

result

ALUOpRegWrite

I[25:21]

I[20:16]

I[15:11]

32

32

32

PC Addr

Insn

IM

4

AL
U

ad
d

10/70Computer Architecture, Processor implementation, summer 2022/2023

Immediate operand operations (addi, ...)
op (6) rs (5) rt (5) immediate (16)

Read
register 1

Write
register

Write
data

Register
File

Register
data 1

rs

rt

result

ALUOpRegWrite

5

5

32

32

32
immediate Sign

ext.
16

AL
U

11/70Computer Architecture, Processor implementation, summer 2022/2023

Implementing sign extension

Sign Extend
16 to 32 bits

x0 y0

⁞ ⁞

x15 y15

y16

⁞

y31

12/70Computer Architecture, Processor implementation, summer 2022/2023

Support for immediate operands

RS

RT

RD

WD

RF

A

B

result

ALUOpRegWrite

I[25:21]

I[20:16]

I[15:11]

32

32PC Addr

Insn

IM

4

Sign
ext.

I[15:0]

M
UX

ALUSrc

M
UX

RegDst

AL
U

ad
d

13/70Computer Architecture, Processor implementation, summer 2022/2023

Multiplexer (mux)

Selects one of several inputs
Selector: n-bit number S {0, ..., 2∈ n–1}
Data input: N=2n m-bit values x0, x1, ..., xN–1

Data output: m-bit value y=xS

0

1

⁞

N–1

x1

⁞

x0

xN–1

S

ys

14/70Computer Architecture, Processor implementation, summer 2022/2023

Implementing a multiplexer

Binary to “1-hot” decoder
Activates 1 (selected output) of N outputs
Input: n-bit number B {0, ..., 2∈ n–1}
N=2n outputs: B-th output logical 1 (hot), other
outputs logical 0

1-hotB

h0

h1

h2

h3

15/70Computer Architecture, Processor implementation, summer 2022/2023

Binary to 1-hot for N=4 outputs

1-hot

B0

B1
h0

h1

h2

h3

Inputs Outputs

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

B
1

B
0

h
3

h
2

h
1

h
0

16/70Computer Architecture, Processor implementation, summer 2022/2023

Implementing a multiplexer (4x 1-bit)

Mux
S

y

x0

x1

x0

x2

x3

1-hot

17/70Computer Architecture, Processor implementation, summer 2022/2023

Loading words from memory (lw)
op (6) rs (5) rt (5) displacement (16)

Read
register 1

Write
register

Write
data

Register
File

Register
data 1

rs

rt

ALUOpRegWrite

5

5

32

32

32
displacement Sign

ext.
16

AL
U Address

Data

Data
Memory

18/70Computer Architecture, Processor implementation, summer 2022/2023

Storing words to memory (sw)
op (6) rs (5) rt (5) displacement (16)

Read
register 1

Read
register 2

Register
File

Register
data 1

Register
data 2

rs

rt

ALUOpRegWrite

5

5 32

32

32
displacement Sign

ext.
16

AL
U Address

Data

Data
Memory

MemWrite

19/70Computer Architecture, Processor implementation, summer 2022/2023

Support for memory access (load/store)

RS

RT

RT/RD

WD

RF

A

B

ALUOpRegWrite

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4

Sign
ext.

I[15:0]

M
UX

ALUSrcM
UX

RegDst

AL
U

ad
d

Addr

Data

DM

M
UX

MemToReg

32

32

MemWrite

20/70Computer Architecture, Processor implementation, summer 2022/2023

Conditional branch relative to PC (beq)
op (6) rs (5) rt (5) offset (16)

Read
register 1

Read
register 2

Register
File

Register
data 1

Register
data 2

rs

rt

zero?

ALUOpRegWrite

5

5

32

32 AL
U

PC

4
ad

d

32
offset Sign

ext.
16

Shl 2

M
UX

ad
d

Branch

21/70Computer Architecture, Processor implementation, summer 2022/2023

Implementing logical shift

32-bit shift
left logical 2

x0 y0

x1 y1

y2

y3

⁞

y31

0

0

⁞

x29

x30

x31

22/70Computer Architecture, Processor implementation, summer 2022/2023

Support for conditional branch

RS

RT

RT/RD

WD

RF

A

B

ALUOp

RegWrite

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4
Sign
ext.

I[15:0]

M
UX

ALUSrcM
UX

RegDst

AL
U

ad
d

Addr

Data

DM

M
UX

MemToReg

32

32

MemWrite

Shl 2

Branch

M
UX

ad
d

23/70Computer Architecture, Processor implementation, summer 2022/2023

Unconditional jump (j)
op (6) target (26)

PC

4

ad
d

28

target
26

Sxl 2

32

4PC+4[31:28]

Shift (and extend) left by 2

24/70Computer Architecture, Processor implementation, summer 2022/2023

Support for unconditional jump

RS

RT

RT/RD

WD

RF

A

B

ALUOp

RegWrite

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4
Sign
ext.

I[15:0]

M
UX

ALUSrcM
UX

RegDst

AL
U

ad
d

Addr

Data

DM

M
UX

MemToReg

32

32

MemWrite

Shl 2

Branch

M
UX

ad
d

M
UX

PC
+4

[3
1:

28
]

Shl 2
I[25:0]

Jump

25/70Computer Architecture, Processor implementation, summer 2022/2023

Single-cycle datapath control

RS

RT

RT/RD

WD

RF

A

B

ALUOp

RegWrite

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4
Sign
ext.

I[15:0]

M
UX

ALUSrcM
UX

RegDst

AL
U

ad
d

Addr

Data

DM

M
UX

MemToReg

32

32

MemWrite

Shl 2

Branch

M
UX

ad
d

M
UX

PC
+4

[3
1:

28
]

Shl 2
I[25:0]

Jump

26/70Computer Architecture, Processor implementation, summer 2022/2023

Single-cycle datapath control (2)

Controls the flow of data
Depending on the type of operation
Responsible for control signals

Source of the next value of PC
Write to registers
Write to memory
ALU operations
Mux configuration

27/70Computer Architecture, Processor implementation, summer 2022/2023

Example: datapath control for add

RS

RT

RT/RD

WD

RF

A

B

ALUOp=add

RegWrite=1

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4
Sign
ext.

I[15:0]

1

0

ALUSrc=11

0

RegDst=1

AL
U

ad
d

Addr

Data

DM

0 1

MemToReg=0

32

32

MemWrite=0

Shl 2

Branch=0

1 0

ad
d

0 1

PC
+4

[3
1:

28
]

Shl 2
I[25:0]

Jump=0

28/70Computer Architecture, Processor implementation, summer 2022/2023

Example: datapath control for sw

RS

RT

RT/RD

WD

RF

A

B

ALUOp=add

RegWrite=0

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4
Sign
ext.

I[15:0]

1

0

ALUSrc=01

0

RegDst=?

AL
U

ad
d

Addr

Data

DM

0 1

MemToReg=?

32

32

MemWrite=1

Shl 2

Branch=0

1 0

ad
d

0 1

PC
+4

[3
1:

28
]

Shl 2
I[25:0]

Jump=0

29/70Computer Architecture, Processor implementation, summer 2022/2023

Example: datapath control for beq

RS

RT

RT/RD

WD

RF

A

B

ALUOp=sub

RegWrite=0

I[25:21]

I[20:16]

I[15:11]

32

32
PC Addr

Insn

IM

4
Sign
ext.

I[15:0]

1

0

ALUSrc=11

0

RegDst=?

AL
U

ad
d

Addr

Data

DM

0 1

MemToReg=?

32

32

MemWrite=0

Shl 2

Branch=1

1 0

ad
d

0 1

PC
+4

[3
1:

28
]

Shl 2
I[25:0]

Jump=0

30/70Computer Architecture, Processor implementation, summer 2022/2023

Datapath controller

Responsible for generating control signals
Signal values determined by instruction opcode
Some control signals can be directly embedded in
the instruction word

MIPS: ALUOp signals correspond to the bits in the
funct field of the R-type instruction format
Simplifies controller implementation

31/70Computer Architecture, Processor implementation, summer 2022/2023

ROM-based controller

Signal values stored in read-only memory
Each word contains the values of all control signals
Words addressed by the opcode

opcode Jump Branch RegDst RegWrite MemWrite ALUOp ALUSrc

add 0 0 1 1 0 0 func 1
addi 0 0 0 1 0 0 add 0
lw 0 0 0 1 0 1 add 0
sw 0 0 ? 0 1 ? add 0
beq 0 1 ? 0 0 ? sub 1

MemToRe
g

32/70Computer Architecture, Processor implementation, summer 2022/2023

ROM-based controller (2)

Real MIPS implementation
Approx. 100 instructions and 300 control signals

Control ROM capacity needed: 30000 bits (~ 4 KB)
Implementation issues

Making ROM faster than the datapath

33/70Computer Architecture, Processor implementation, summer 2022/2023

Logic-based controller (combinational)

Faster alternative to ROM
Observation: only a few control signals need to be
set to one (zero) at the same time
Contents of ROM can be efficiently expressed
using logic functions

O
pc
od

e

Jump

j

MemWrite

sw

Branch MemToReg RegDst RegWrite ALUSrc

beq

ALUOp

lw
addi
add

34/70Computer Architecture, Processor implementation, summer 2022/2023

Instruction cycle

Datapath with continuous read
No problem in our design

Writes (PC, RF, DM) are independent
No read follows write in the instruction cycle
Instruction fetch does not need control

After instruction is read, the controller decodes instruction
opcode into control signals for the rest of the datapath
When PC changes, datapath starts processing another instruction

Read from
insn memory

Read registers
(Read control ROM)

Read from
data memory

Write to data memory
Write to registers
Write to PC

35/70Computer Architecture, Processor implementation, summer 2022/2023

Single-cycle processor performance

Each instruction executed in 1 cycle (CPI=1)
Single-cycle controller (control ROM or a
combinational logic block)
Generally lower clock frequency
Clock period respects the “longest” instruction

Load Word (lw) in our case
Usually multiplication, division, or floating point ops

Datapath contains duplicate elements
Instruction and data memory, two extra adders

36/70Computer Architecture, Processor implementation, summer 2022/2023

Multi-cycle datapath

Basic idea
Simple instructions should not take as much time
to execute as the complex ones

Variable instruction execution time
Clock period is constant (cannot be changed
dynamically), we need a „digital“ solution
We can make clock faster (shorter period) and split
instruction execution into multiple stages

Clock period corresponds to one execution stage
Fixed machine cycle (clock period)
Variable instruction cycle

37/70Computer Architecture, Processor implementation, summer 2022/2023

Example: multi-cycle CPU performance

Rough estimate, assuming the following
Simple instructions take 10 ns to execute
Multiplication takes 40 ns
Instruction mix with 10% of multiplications

Single-cycle datapath
Clock period 40 ns, CPI=1 → 25 MIPS

Multi-cycle datapath
Clock period 10 ns, 13 ns per instruction (average)
CPI=1.3 → 77 MIPS (3x improvement)

38/70Computer Architecture, Processor implementation, summer 2022/2023

Multi-cycle datapath (2)

Instruction cycle
1. Read instruction from memory
2. Decode instruction, read registers, compute

branch target address
3. Execute register operation / compute address for

memory access / finish branch or jump
4. Write register operation results / access memory
5. Finish load from memory

39/70Computer Architecture, Processor implementation, summer 2022/2023

Multi-cycle datapath (3)

Implementation issues
Instruction execution split to stages

Need to isolate stages using latch registers to
“remember” results from previous stage

Need to keep track of stages
Different sequences for different instruction types
Some instructions may skip stages and finish early
Controller needs to remember state → sequential logic

40/70Computer Architecture, Processor implementation, summer 2022/2023

Multi-cycle datapath (4)
PC

Address

Instruction
or Data

Data

Memory

Insn
Register

Data
Register

Read
register 1

Read
register 2

Write
register

Write
data

Register File

Register
data 1

Register
data 2

A

B

AL
U ALU

Out

41/70Computer Architecture, Processor implementation, summer 2022/2023

Stage 1: Instruction Read

Common for all instructions
IR ← Memory[PC]

Read instruction into Instruction Register
Memory is used for both instruction and data access
Need to “remember” the instruction being executed

PC ← PC + 4
Advance PC to point at next instruction in sequence
Changing the PC will not change the instruction being
executed: it was stored in the Instruction Register

42/70Computer Architecture, Processor implementation, summer 2022/2023

Stage 2: Instruction Decode, Read Regs.

Common for all instructions
A ← Reg[IR.rs]

Read contents of source register 1
Store value into latch A for next stage

B ← Reg[IR.rt]
Read contents of source register 2
Store value into latch B for next stage

ALUOut ← PC + (SignExtend(IR.addr) << 2)
Calculate branch target
Relative to (already updated) PC
Remains unused if not a branch

43/70Computer Architecture, Processor implementation, summer 2022/2023

Stage 3: Execute / address calc.

Branch instruction (finish)
(A == B) PC ⇒ ← ALUOut

Branch target in ALUOut from previous stage
Jump instruction (finish)

PC ← PC[31:28] + (IR[25:0] << 2)
Register operation

ALUOut ← A funct B, or alternatively
ALUOut ← A funct SignExtend(IR[15:0])

Memory access
ALUOut ← A + SignExtend(IR[15:0])

Calculate address for memory access

44/70Computer Architecture, Processor implementation, summer 2022/2023

Stage 4: Write Results / memory access

Register operation (finish)
Reg[IR.rd] ← ALUOut

Result in ALUOut (from previous stage)
Write to memory (finish)

Memory[ALUOut] ← B
Address in ALUOut (from previous stage)

Read from memory
DR ← Memory[ALUOut]

Address in ALUOut (from previous stage)
Store data into latch DR for next stage

45/70Computer Architecture, Processor implementation, summer 2022/2023

Stage 5: Finish reading from memory

Read from memory (finish)
Reg[IR.rt] ← DR

Value stored in DR (from previous stage)

46/70Computer Architecture, Processor implementation, summer 2022/2023

Multi-cycle datapath implementation
PC

Address

Data

Data

Memory

Insn
Register

[25:21]
[20:16]

[15:0]

Data
Register

Read
register 1

Read
register 2

Write
register

Write
data

Register File

Register
data 1

Register
data 2

A

AL
U ALU

Out

1

0

IorD MemWrite

MemRead

1

0

IRWrite RegDst

0

1
B

RegWrite

1

0

ALUSrcA

3
 2

1

 0

4

Sign
ext.

16 32 Shl
2

ALUSrcB

ALU
Control

[5:0]

[15:0]

ALUOp[15:11]

MemToReg

47/70Computer Architecture, Processor implementation, summer 2022/2023

Multi-cycle datapath control

Sequential process
Instructions executed in multiple cycles
Controller is a sequential circuit (automaton)

Current state stored in a state register
Combinational block determines next state

Depends on current state and instruction being executed
Updated on rising edge of the clock signal

Instruction fetch/decode
Register fetchSTART

Memory access
instructions

R-type
instructions

Branch
instruction

Jump
instruction

START

48/70Computer Architecture, Processor implementation, summer 2022/2023

Instruction fetch/decode, Register fetch

MemRead
ALUSrcA=0

IorD=0
IRWrite

ALUSrcB=01
ALUOp=00

PCWrite
PCSource=00

START
ALUSrcA=0

ALUSrcB=11
ALUOp=00

Instruction fetch Instruction decode
Register fetch

0 1

Memory access
instructions

R-type
instructions

Branch
instruction

Jump
instruction

Op=='lw'
||

Op=='sw'
Op is R-type Op='beq' Op='j'

49/70Computer Architecture, Processor implementation, summer 2022/2023

Memory access instructions

From 1
ALUSrcA=1

ALUSrcB=10
ALUOp=00

Memory address computation

2

Op=='lw'

MemRead
IorD=1

Memory
access

3

RegWrite
MemToReg=1

RegDst=0

4
Memory read

completion step

MemWrite
IorD=1

Memory
access

5

Op=='sw'

To 0

50/70Computer Architecture, Processor implementation, summer 2022/2023

R-type instructions

From 1
ALUSrcA=1

ALUSrcB=00
ALUOp=10

R-type execution

6

RegDst=1
MemToReg=0
RegWrite=1R-type

completion

7

To 0

51/70Computer Architecture, Processor implementation, summer 2022/2023

Branch instruction

From 1

ALUSrcA=1
ALUSrcB=00
ALUOp=01

PCWriteCond
PCSource=01

Branch completion

12

To 0

52/70Computer Architecture, Processor implementation, summer 2022/2023

Jump instruction

From 1 PCWrite
PCSource=10

Jump execution

13

To 0

53/70Computer Architecture, Processor implementation, summer 2022/2023

Multi-cycle datapath control (2)

MemRead
ALUSrcA=0

IorD=0
IRWrite

ALUSrcB=01
ALUOp=00

PCWrite
PCSource=00

START
ALUSrcA=0

ALUSrcB=11
ALUOp=00

Instruction fetch
PC update

Instruction decode
Register fetch
Branch target

ALUSrcA=1
ALUSrcB=10
ALUOp=00

Memory address
computation

Op==lw

MemRead
IorD=1

Memory
access

RegWrite
MemToReg=1

RegDst=0

Memory load
completion

MemWrite
IorD=1

ALUSrcA=1
ALUSrcB=00
ALUOp=10

R-type
execution

RegDst=1
MemToReg=0
RegWrite=1

R-type
completion

ALUSrcA=1
ALUSrcB=00
ALUOp=01

PCWriteCond
PCSource=01 Branch

completion

PCWrite
PCSource=10

Jump
execution

0 1

2

3

4

5

6

7
12

13

Op==lw || Op==sw

Op==sw

Op
==

R-
ty

pe
Op==beq

Op==j

54/70Computer Architecture, Processor implementation, summer 2022/2023

Addi instruction

From 1
ALUSrcA=1

ALUSrcB=10
ALUOp=00

Addi execution

9

RegDst=0
MemToReg=0
RegWrite=1

I-type
completion

10

To 0

55/70Computer Architecture, Processor implementation, summer 2022/2023

Multi-cycle datapath control (3)

MemRead
ALUSrcA=0

IorD=0
IRWrite

ALUSrcB=01
ALUOp=00

PCWrite
PCSource=00

START
ALUSrcA=0

ALUSrcB=11
ALUOp=00

Instruction fetch
PC update

Instruction decode
Register fetch
Branch target

ALUSrcA=1
ALUSrcB=10
ALUOp=00

Memory address
computation

Op==lw

MemRead
IorD=1

Memory
access

RegWrite
MemToReg=1

RegDst=0

Memory load
completion

MemWrite
IorD=1

ALUSrcA=1
ALUSrcB=00
ALUOp=10

R-type
execution

RegDst=1
MemToReg=0
RegWrite=1

R-type
completion

ALUSrcA=1
ALUSrcB=00
ALUOp=01

PCWriteCond
PCSource=01 Branch

completion

PCWrite
PCSource=10

Jump
execution

0 1

2

3

4

5

6

7
12

13ALUSrcA=1
ALUSrcB=10
ALUOp=00

Op==lw || Op==sw

Op==sw

Op
==

R-
ty

pe
Op==beq

Op==j

Op==addi

9

RegDst=0
MemToReg=0
RegWrite=1

I-type
completion

10

Addi
execution

56/70Computer Architecture, Processor implementation, summer 2022/2023

Flow of instructions

Normal/expected flow
Sequential: common code operating on data
Non-sequential: branches and jumps

Unexpected flow
Internal (Exception/Trap)

Arithmetic overflow
Undefined instruction
Unauthorized access to memory
Requesting service from operating system (system call)
Hardware failure

External (Interrupt)
Request for “attention” from an I/O device
Hardware failure

57/70Computer Architecture, Processor implementation, summer 2022/2023

Supporting exceptions and interrupts

Hardware support (minimum necessary)
Stop executing an instruction

Maintain valid processor and computation state
Allow to identify cause

Flag bits in a special register
Identifier of exception type

Store address of instruction that caused exception
Allows re-executing or skipping an instruction on resume

Jump to exception/interrupt handler
Single address for all exceptions/interrupts
Multiple addresses corresponding to exception type

58/70Computer Architecture, Processor implementation, summer 2022/2023

Arithmetic overflow exception

From 1
ALUSrcA=1

ALUSrcB=00
ALUOp=10

R-type execution

6

RegDst=1
MemToReg=0
RegWrite=1

R-type
completion

7

To 0

IntCause=1
CauseWrite
ALUSrcA=0

ALUSrcB=01
ALUOp=01
EPCWrite
PCWrite

PCSource=11

8

Arithmetic
overflow

Overflow

59/70Computer Architecture, Processor implementation, summer 2022/2023

Undefined instruction exception

From 1

To 0

ALUSrcA=0
ALUSrcB=01
ALUOp=01
IntCause=0
CauseWrite

PCSource=11
EPCWrite
PCWrite

14

Undefined
instruction

Undefined
instruction

60/70Computer Architecture, Processor implementation, summer 2022/2023

Multi-cycle datapath control (4)

MemRead
ALUSrcA=0

IorD=0
IRWrite

ALUSrcB=01
ALUOp=00

PCWrite
PCSource=00

START
ALUSrcA=0

ALUSrcB=11
ALUOp=00

Instruction fetch
PC update

Instruction decode
Register fetch
Branch target

ALUSrcA=1
ALUSrcB=10
ALUOp=00

Memory address
computation

Op==lw

MemRead
IorD=1

Memory
access

RegWrite
MemToReg=1

RegDst=0

Memory load
completion

MemWrite
IorD=1

ALUSrcA=1
ALUSrcB=00
ALUOp=10

R-type
execution

RegDst=1
MemToReg=0
RegWrite=1

R-type
completion

ALUSrcA=1
ALUSrcB=00
ALUOp=01

PCWriteCond
PCSource=01 Branch

completion

PCWrite
PCSource=10

Jump
execution

0 1

2

3

4

5

6

7
12

13ALUSrcA=1
ALUSrcB=10
ALUOp=00

Op==lw || Op==sw

Op==sw

Op
==

R-
ty

pe
Op==beq

Op==j

Op==addi

9

RegDst=0
MemToReg=0
RegWrite=1

I-type
completion

10

Addi
execution

ALUSrcA=0
ALUSrcB=01
ALUOp=01
IntCause=0
CauseWrite

PCSource=11
EPCWrite
PCWrite

Undefined
instruction

14

61/70Computer Architecture, Processor implementation, summer 2022/2023

Supporting exceptions and interrupts (2)

Software handler
Store the current state of computation

Save contents of CPU registers to memory
Determine the cause of exception/interrupt and
execute the corresponding handler routine

Deal with I/O device
Deal with memory management
Continue/terminate current process
Switch to another process

Restore state of current (next) process
Resume execution (jump into) of current (next) process

Restart instruction that caused an exception
Continue from next instruction

62/70Computer Architecture, Processor implementation, summer 2022/2023

Multi-cycle datapath performance

Instruction mix
30% load (5ns), 10% store (5ns)
50% add (4ns), 10% mul (20ns)

Single-cycle datapath (clock period 20ns, CPI = 1)
20ns per instruction → 50 MIPS

Coarse-grained multi-cycle datapath (clock period 5ns)
CPI≈ (90% × 1) + (10% × 4) = 1.3
6.5ns per instruction → 153 MIPS

Fine-grained multi-cycle datapath (clock period 1ns)
CPI≈ (30% × 5) + (10% × 5) + (50% × 4) + (10% × 20) = 6
6ns per instruction → 166 MIPS

63/70Computer Architecture, Processor implementation, summer 2022/2023

Implementing a sequential controller

Implementing a finite-state automaton
State + transition conditions = memory +
combinational logic → sequential logic

Implementation depends on internal state
representation

Sequential circuitry
1 flip-flop per state (only one active at a time), active
state shifted through enabling gates between flip-flops
State register + combinational logic

Simple sequencer + control memory
Micro- and nano- programming

65/70Computer Architecture, Processor implementation, summer 2022/2023

Implementing a sequential controller

Control
logic

State registerInstruction register
opcode field

NS3
NS2
NS1
NS0

S3 S2 S1 S0Op
5

Op
4

Op
3

Op
2

Op
1

Op
0

Inputs

Ou
tp

ut
s

PCWrite
...
MemRead
...
...
ALUOp

State register
Control logic

Combinational logic
ROM, FPGA

66/70Computer Architecture, Processor implementation, summer 2022/2023

Next state is next control ROM address

67/70Computer Architecture, Processor implementation, summer 2022/2023

Control memory address select logic

68/70Computer Architecture, Processor implementation, summer 2022/2023

Horizontal micro-instructions

Direct representation of control signals
Control memory contains raw control signals
Micro-instruction = set of control signal values

No need to decode (fast)
Any combination is possible (flexible)
Requires a lot of space

69/70Computer Architecture, Processor implementation, summer 2022/2023

Vertical micro-instructions

Encoded representation of control signals
Microinstructions identify valid combinations of
control signals

Decoded intro actual control signals using a decoder
Reduces space at the cost of flexibility and latency

70/70Computer Architecture, Processor implementation, summer 2022/2023

Nano-programming

Combines horizontal & vertical encoding
Microprogram memory only contains numbers
representing valid combinations of control signals
(vertical format)
Decoding to horizontal format is realized using
another memory (instead of a combinational
circuit) which contains the control signal
combination corresponding to microprogram code
Significantly reduces the amount of space required
to store the microprogram, but increases decoding
latency

71/70Computer Architecture, Processor implementation, summer 2022/2023

Micro- vs nano-programming

