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e Basic characteristics

= Simplified to demonstrate key concepts
e Registers

= 32 general-purpose 32-bit registers: RO — R31
= PC register with address of instruction to execute

= Special control registers
e Exception address, etc.
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e Memory

= Access to 4-byte aligned addresses only
e Corresponds to 32-bit word length of the processor
= |[ndirect addressing with immediate displacement

e Load: R2 := mem[R1 + immediate]
e Store: mem[R1 + immediate] := R2
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e Operations

m Arithmetic and logic
e Fully orthogonal, three-operand instructions
e Source operands: register/register, register/immediate
e Target operand: register
e Includes data movement between registers
m Load/store operations
e Move data between registers and memory (load/store architecture)
m Conditional branch
e Tests equality/inequality of two registers
m Unconditional jumps

e Including jumps to subroutine and indirect jumps (return from a
subroutine)

m Special instructions
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e Single-cycle datapath

= Basic organization of data path elements
e Combinational and sequential blocks
= Operations executed in one long cycle

e Suitable for operations of similar complexity

e Writes to memory elements synchronized by clock
= Clock signal is implicit, will not be shown

= Simplification: separate instruction memory
(Harvard architecture)
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e Steps to execute an instruction

1. Fetch instruction from memory
e Read from an address supplied by the PC register
2. Decode instruction and fetch instruction operands

3. Execute operation corresponding to the opcode

e Register operations, computing address for accessing
memory, comparing operands for conditional branch.

4. Store the result of the operation
e Write data to register or memory
5. Adjust PC to point at next instruction

e One that immediately follows the current
e One that is a target of a jump or branch
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Reading an instruction (fetch)

PC

Fetch
address

Instruction

Instruction
Memory

—P» opcode

e PCregister

= Address of instruction
In memory

= Not directly accessible
to a programmer

e Adder

= |[ncrement PChby 4

= Advance to next
instruction by default
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Register operations (add, sub,
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Support for register operations
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Immediate operand operations (addi, ...)
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Implementing sign extension
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16 to 32 bits >
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Support for immediate operands
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o Selects one of several inputs

= Selector: n-bit number S&{0, ..., 21}
= Data input: N=2" m-bit values xo, X1, ..., Xn—1
= Data output: m-bit value y=x;

Xo — 0
xi —pl 1
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Implementing a multiplexer

e Binary to “1-hot” decoder

= Activates 1 (selected output) of N outputs
= Input: n-bit number BE{0, ..., 2"}

= N=2" outputs: B-th output logical 1 (hot), other
outputs logical O

Computer Architecture, Processor implementation, summer 2022/2023



Binary to 1-hot for N=4 outputs

0
© 1 6 o 1 o
1 6 6 1 o0 o hy
11 1 6 o0 o >—
- 1,
o—
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Implementing a multiplexer (4x 1-bit)
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Support for memory access (load/store)
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Conditional branch relative to PC (beq)

op (6) ‘ rs (5) - offset (16)
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Implementing logical shift

X31 32'bit Shiﬂ P V31
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Support for conditional branch

D Branch
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Unconditional jump (j)

‘ op (6) ‘ target (26)
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Support for unconditional jump
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Single-cycle datapath control
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Single-cycle datapath control (2)

e Controls the flow of data

= Depending on the type of operation

= Responsible for control signals

e Source of the next value of PC
e Write to registers

e Write to memory

e ALU operations

e Mux configuration
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Example: datapath control for add
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Example: datapath control for beq
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Datapath controller

e Responsible for generating control signals

= Signal values determined by instruction opcode

= Some control signals can be directly embedded in
the instruction word

e MIPS: ALUOp signals correspond to the bits in the
funct field of the R-type instruction format

e Simplifies controller implementation
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ROM-based controller

¢ Signal values stored in read-only memory

Each word contains the values of all control signals
Words addressed by the opcode

opcode Jump Branch RegDst RegWrite MemWrite Men;ToRe ALUOp ALUSrc
add 0 0 1 1 %) 0 func 1
addi %) 0 %) 1 0 0 add %)
lw %] 0 %) 1 %) 1 add 0
SW %) 0 ? %] 1 ? add %)
beq %] 1 ? %] %) ? sub 1
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ROM-based controller (2)

e Real MIPS implementation

= Approx. 100 instructions and 300 control signals
e Control ROM capacity needed: 30000 bits (~ 4 KB)

= [mplementation issues
e Making ROM faster than the datapath
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Logic-based controller (combinational)

e Faster alternative to ROM

= Observation: only a few control signals need to be
set to one (zero) at the same time

= Contents of ROM can be efficiently expressed
using logic functions

add
addi}

beq ——¢ I
\ A
| Y Y | Y ’

Jump MemWrite Branch ALUOp MemToReg RegDst RegWrite ALUSrc %

Opcode
=
-9
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Instruction cycle

e Datapath with continuous read

= No problem in our design

e Writes (PC, RF, DM) are independent
e No read follows write in the instruction cycle

e Instruction fetch does not need control

m After instruction is read, the controller decodes instruction
opcode into control signals for the rest of the datapath

= When PC changes, datapath starts processing another instruction

1 R
!

Read from Read registers Read from Write to data memory
insn memory (Read control ROM) data memory  Write to registers
Write to PC
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Single-cycle processor performance

e Each instruction executed in 1 cycle (CPI=1)

= Single-cycle controller (control ROM or a
combinational logic block)

= Generally lower clock frequency

= Clock period respects the “longest” instruction
e Load Word (lw) in our case
e Usually multiplication, division, or floating point ops
= Datapath contains duplicate elements

e Instruction and data memory, two extra adders
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Multi-cycle datapath

e Basic idea

= Simple instructions should not take as much time
to execute as the complex ones

e Variable instruction execution time

= Clock period is constant (cannot be changed
dynamically), we need a , digital” solution

= We can make clock faster (shorter period) and split
instruction execution into multiple stages

e Clock period corresponds to one execution stage
e Fixed machine cycle (clock period)
e Variable instruction cycle
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Example: multi-cycle CPU performance

¢ Rough estimate, assuming the following

= Simple instructions take 10 ns to execute
= Multiplication takes 40 ns
= |[nstruction mix with 10% of multiplications

¢ Single-cycle datapath
= Clock period 40 ns, CPI=1 - 25 MIPS
e Multi-cycle datapath

= Clock period 10 ns, 13 ns per instruction (average)
= CPI=1.3 - 77 MIPS (3x improvement)
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Multi-cycle datapath (2)

¢ Instruction cycle

1. Read instruction from memory

2. Decode instruction, read registers, compute
branch target address

3. Execute register operation / compute address for
memory access / finish branch or jump

4. Write register operation results / access memory
5. Finish load from memory
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Multi-cycle datapath (3)

o Implementation issues

= |nstruction execution split to stages

e Need to isolate stages using latch registers to
“remember” results from previous stage

= Need to keep track of stages
e Different sequences for different instruction types

e Some instructions may skip stages and finish early
e Controller needs to remember state - sequential logic
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Multi-cycle datapath (4)

Lp_c_'<
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Stage 1: Instruction Read

e Common for all instructions
= |R & Memory[PC]

e Read instruction into Instruction Register
e Memory is used for both instruction and data access
e Need to “remember” the instruction being executed

= PC&PC+4

e Advance PC to point at next instruction in sequence

e Changing the PC will not change the instruction being
executed: it was stored in the Instruction Register
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Stage 2: Instruction Decode, Read Regs.

e Common for all instructions
= A & Reg[lR.rs]

e Read contents of source register 1
e Store value into latch A for next stage

= B & RegllIR.rt]

e Read contents of source register 2
e Store value into latch B for next stage

= ALUOut <& PC + (SignExtend(IR.addr) << 2)

e (Calculate branch target
e Relative to (already updated) PC
e Remains unused if not a branch
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¢ Branch instruction (finish)
= (A ==B)= PC & ALUOUL

e Branch target in ALUOut from previous stage
¢ Jump instruction (finish)

s PC & PC[31:28] + (IR[25:0] << 2)
e Register operation

= ALUOut <& A funct B, or alternatively
= ALUOut < A funct SignExtend(IR[15:0])

e Memory access
= ALUOut < A + SignExtend(IR[15:0]) e

e Calculate address for memory access
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Stage 4: Write Results / memory access

o Register operation (finish)
= Reg[IR.rd] < ALUOut

e Result in ALUOut (from previous stage)

e Write to memory (finish)

= Memory[ALUOut] < B
e Address in ALUOut (from previous stage)

e Read from memory

= DR &< Memory[ALUOut]

e Address in ALUOut (from previous stage)
e Store data into latch DR for next stage
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Stage 5: Finish reading from memory

e Read from memory (finish)

= Reg[IR.rt] & DR
e Value stored in DR (from previous stage)
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Multi-cycle datapath implementation

PC

ALUSrcA

lorD MemWrite IRWrite RegDst RegWrite
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Multi-cycle datapath control

e Sequential process

= |nstructions executed in multiple cycles

Controller is a sequential circuit (automaton)

e Current state stored in a state register

e Combinational block determines next state

= Depends on current state and instruction being executed
= Updated on rising edge of the clock signal

Instruction fetch/decode
START > Register fetch <
Y Y | Y Y
Memory access R-type Branch Jump

instructions instructions instruction instruction
| | |
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Instruction fetch/decode, Register fetch

Instruction decode
Register fetch

Instruction fetch

MemRead
ALUSrcA=0

I'Ig\';\?:t% 1 f ALUSrcA=0
START _ ALUSrcB=11
ALUSrcB=01 ALUOD=00
ALUOp=00 P=
PCWrite
PCSource=00
Op=="Iw'
| | Op is R-type Op='beq’ Op="j'
Op=="sw' +
Memory access R-type Branch Jump
instructions instructions instruction instruction
| | |
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Memory access instructions

Memory address computation

From 1

5

Memory Memory
access access

Memory read
completion step
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R-type instructions

R-type execution

From 1

R-type
completion

To O
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Branch instruction

Branch completion

12
From 1

To O
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Jump instruction

Jump execution

13
From 1

To O




Multi-cycle datapath control (2)

Instruction decode
Register fetch
Branch target

Instruction fetch
PC update

0

START

Memory address
computation

2
Op==Ilw

Memory
access

3

R-type
completion

Jump
execution

Branch
completion

Memory load
completion

4




Addi instruction

Addi execution

From 1

I-type
completion

To O
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Multi-cycle datapath control (3)

Instruction decode
Register fetch
Branch target

Instruction fetch
PC update

0

START

@ (@)

Q ko)
¢ \
%

NS

\0\)
o
o

Memory address

computation R-type

9

Jump
execution

2

Addi

Op==Iw execution

Memory
access

10

I-type
completion

Branch
completion

3

R-type
completion

Memory load
completion

4




Flow of instructions

¢ Normal/expected flow

m Sequential: common code operating on data
m Non-sequential: branches and jumps

e Unexpected flow

= Internal (Exception/Trap)
e Arithmetic overflow
e Undefined instruction
e Unauthorized access to memory
e Requesting service from operating system (system call)
e Hardware failure
m External (Interrupt)

e Request for “attention” from an 1/O device
e Hardware failure
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Supporting exceptions and interrupts

¢ Hardware support (minimum necessary)

= Stop executing an instruction
e Maintain valid processor and computation state
= Allow to identify cause

e Flag bits in a special register
e |dentifier of exception type

= Store address of instruction that caused exception
e Allows re-executing or skipping an instruction on resume
= Jump to exception/interrupt handler

e Single address for all exceptions/interrupts
e Multiple addresses corresponding to exception type
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Arithmetic overflow exception

R-type execution

From 1
Arithmetic
overflow
R-type
completion

Overflow

To O
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Undefined instruction exception

Undefined
instruction

14

From 1
Undefined
instruction

To O
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Multi-cycle datapath control (4)

Instruction decode
Register fetch
Branch target

Instruction fetch
PC update
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14

START

Undefined
instruction
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\0\)
o
o
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2
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completion

Memory load
completion
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Supporting exceptions and interrupts (2)

e Software handler

m Store the current state of computation
e Save contents of CPU registers to memory

= Determine the cause of exception/interrupt and
execute the corresponding handler routine

e Deal with I/O device

e Deal with memory management

e Continue/terminate current process
e Switch to another process

m Restore state of current (next) process

= Resume execution (jump into) of current (next) process

e Restart instruction that caused an exception
e Continue from next instruction
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Multi-cycle datapath performance

e Instruction mix
m 30% load (5ns), 10% store (5ns)
m 50% add (4ns), 10% mul (20ns)

e Single-cycle datapath (clock period 20ns, CPI = 1)
m 20ns per instruction - 50 MIPS

e Coarse-grained multi-cycle datapath (clock period 5ns)
s CPI~ (90% X 1) + (10% X 4) = 1.3
m 6.5ns per instruction - 153 MIPS

e Fine-grained multi-cycle datapath (clock period 1ns)
s CPI~ (30% X 5) + (10% X 5) + (50% X 4) + (10% X 20) = 6
m 6ns per instruction - 166 MIPS

Computer Architecture, Processor implementation, summer 2022/2023



Implementing a sequential controller

o Implementing a finite-state automaton

= State + transition conditions = memory +
combinational logic - sequential logic

e Implementation depends on internal state
representation

= Sequential circuitry

e 1 flip-flop per state (only one active at a time), active
state shifted through enabling gates between flip-flops

o State register + combinational logic
= Simple sequencer + control memory

e Micro- and nano- programming
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Implementing a sequential controller
s ® 5. ® » © s

rcwite . @ State register
MemRead o
e Control logic
Control P : : :
logic S| ALUOP = Combinational logic
8 S | [ns3
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Next state is next control ROM address

PCWrite
PCWriteCond
lorD
MemRead
PLA or ROM MemWrite

|IRWrite

Control unit P

Outputs < | MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
RegDst
AddrCtl

Input

¢ + State

o

Address select logic

T A
Q
Lo

A

Op

Instruction register
opcode field
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Control memory address select logic

Instruction register
opcode field

Computer Architecture, Processor implementation, summer 2022/2023

PLA or ROM
State
Mux AddrCtl

3 2 1 0

Dispatch ROM 2 Dispatch ROM 1
? - ? Address select logic

o
O




Horizontal micro-instructions

e Direct representation of control signals

= Control memory contains raw control signals

= Micro-instruction = set of control signal values

e No need to decode (fast)
e Any combination is possible (flexible)
e Requires a lot of space

Control fields
R 13

RERERRIRRERER

Control lines
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Vertical micro-instructions

e Encoded representation of control signals

= Microinstructions identify valid combinations of
control signals

e Decoded intro actual control signals using a decoder
e Reduces space at the cost of flexibility and latency

Enntrql fields

0 1 2
1 | I

STTTISES T

Single control field

Decoder 0] | Decoder 1 || Decoder 2 Decoder
YTYY T YERY YYYYYNYY “l!ll**illl*l
| Control lines | Control lines
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e Combines horizontal & vertical encoding

= Microprogram memory only contains numbers
representing valid combinations of control signals

(vertical format)

= Decoding to horizontal format is realized using
another memory (instead of a combinational
circuit) which contains the control signal
combination corresponding to microprogram code

= Significantly reduces the amount of space required
to store the microprogram, but increases decoding

latency
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k= []Dgz{nﬂ
= | log, 100 |

w =41 bits = 7 bits
3 - e T
S S Micro- =
- . .
it _Dngmul z program _
= Microprogram = _ &
=1 ™~ w =41 bits -
- ‘ - > =
= = =
=
=
:f'_.
\J Y 2
Total Arca=nxw = Microprogram Area =n X b = 2048 < 7
2048 > 4] = 83,968 bits = 14,336 hits

Nanoprogram Area =m X w = 100 x 4]
= 4100 bits
Total Area= 14336 + 4100 = 158,436 bits

Computer Architecture, Processor implementation, summer 2022/2023



