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Implementing simplified MIPS ISA

Basic characteristics
Simplified to demonstrate key concepts

Registers
32 general-purpose 32-bit registers: R0 – R31
PC register with address of instruction to execute
Special control registers

Exception address, etc.
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Implementing simplified MIPS ISA (2)

Memory
Access to 4-byte aligned addresses only

Corresponds to 32-bit word length of the processor
Indirect addressing with immediate displacement

Load: R2 := mem[R1 + immediate]
Store: mem[R1 + immediate] := R2
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Implementing simplified MIPS ISA (3)

Operations
Arithmetic and logic

Fully orthogonal, three-operand instructions
Source operands: register/register, register/immediate
Target operand: register
Includes data movement between registers

Load/store operations
Move data between registers and memory (load/store architecture)

Conditional branch
Tests equality/inequality of two registers

Unconditional jumps
Including jumps to subroutine and indirect jumps (return from a 
subroutine)

Special instructions
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Implementing simplified MIPS ISA (4)

Single-cycle datapath
Basic organization of data path elements

Combinational and sequential blocks
Operations executed in one long cycle

Suitable for operations of similar complexity
Writes to memory elements synchronized by clock

Clock signal is implicit, will not be shown
Simplification: separate instruction memory 
(Harvard architecture)
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Implementing simplified MIPS ISA (5)

Steps to execute an instruction
1. Fetch instruction from memory

Read from an address supplied by the PC register
2. Decode instruction and fetch instruction operands
3. Execute operation corresponding to the opcode

Register operations, computing address for accessing 
memory, comparing operands for conditional branch.

4. Store the result of the operation
Write data to register or memory

5. Adjust PC to point at next instruction
One that immediately follows the current
One that is a target of a jump or branch
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Reading an instruction (fetch)

PC register
Address of instruction 
in memory
Not directly accessible 
to a programmer

Adder
Increment PC by 4
Advance to next 
instruction by default

PC
Fetch
address

Instruction

Instruction
Memory

4

opcode

ad
d
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Register operations (add, sub, ...)
op (6) rs (5) rt (5) rd (5) sa (5) funct (6)

Read
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Write
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Write
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Register
File
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data 1

Register
data 2
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rt
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result
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RegWrite
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Support for register operations
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Immediate operand operations (addi, ...)
op (6) rs (5) rt (5) immediate (16)
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data
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File
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data 1
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Implementing sign extension

Sign Extend
16 to 32 bits

x0 y0

⁞ ⁞

x15 y15

y16

⁞

y31
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Support for immediate operands
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Multiplexer (mux)

Selects one of several inputs
Selector: n-bit number S {0, ..., 2∈ n–1}
Data input: N=2n m-bit values x0, x1, ..., xN–1

Data output: m-bit value y=xS

0

1
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N–1 

x1

⁞

x0
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S
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Implementing a multiplexer

Binary to “1-hot” decoder
Activates 1 (selected output) of N outputs
Input: n-bit number B {0, ..., 2∈ n–1}
N=2n outputs: B-th output logical 1 (hot), other 
outputs logical 0

1-hotB

h0

h1

h2

h3
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Binary to 1-hot for N=4 outputs

1-hot

B0

B1
h0

h1

h2

h3

Inputs Outputs

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

B
1

B
0

h
3

h
2

h
1

h
0



16/70Computer Architecture, Processor implementation, summer 2022/2023

Implementing a multiplexer (4x 1-bit)

Mux
S

y

x0

x1

x0

x2

x3

1-hot
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Loading words from memory (lw)
op (6) rs (5) rt (5) displacement (16)
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data 1
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Storing words to memory (sw)
op (6) rs (5) rt (5) displacement (16)

Read
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data 1
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data 2
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Support for memory access (load/store)
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Conditional branch relative to PC (beq)
op (6) rs (5) rt (5) offset (16)

Read
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Implementing logical shift

32-bit shift
left logical 2

x0 y0

x1 y1

y2

y3

⁞

y31

0
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x29

x30

x31
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Support for conditional branch
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Unconditional jump (j)
op (6) target (26)

PC

4

ad
d

28
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26

Sxl 2

32

4PC+4[31:28]

Shift (and extend) left by 2
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Support for unconditional jump
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Single-cycle datapath control
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Single-cycle datapath control (2)

Controls the flow of data
Depending on the type of operation
Responsible for control signals

Source of the next value of PC
Write to registers
Write to memory
ALU operations
Mux configuration
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Example: datapath control for add
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Example: datapath control for sw
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Example: datapath control for beq
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Datapath controller

Responsible for generating control signals
Signal values determined by instruction opcode
Some control signals can be directly embedded in 
the instruction word

MIPS: ALUOp signals correspond to the bits in the 
funct field of the R-type instruction format
Simplifies controller implementation
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ROM-based controller

Signal values stored in read-only memory
Each word contains the values of all control signals
Words addressed by the opcode

opcode Jump Branch RegDst RegWrite MemWrite ALUOp ALUSrc

add 0 0 1 1 0 0 func 1
addi 0 0 0 1 0 0 add 0
lw 0 0 0 1 0 1 add 0
sw 0 0 ? 0 1 ? add 0
beq 0 1 ? 0 0 ? sub 1

MemToRe
g



32/70Computer Architecture, Processor implementation, summer 2022/2023

ROM-based controller (2)

Real MIPS implementation
Approx. 100 instructions and 300 control signals

Control ROM capacity needed: 30000 bits (~ 4 KB)
Implementation issues

Making ROM faster than the datapath
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Logic-based controller (combinational)

Faster alternative to ROM
Observation: only a few control signals need to be 
set to one (zero) at the same time
Contents of ROM can be efficiently expressed 
using logic functions

O
pc
od

e

Jump

j

MemWrite

sw

Branch MemToReg RegDst RegWrite ALUSrc

beq

ALUOp

lw
addi
add
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Instruction cycle

Datapath with continuous read
No problem in our design

Writes (PC, RF, DM) are independent
No read follows write in the instruction cycle
Instruction fetch does not need control

After instruction is read, the controller decodes instruction 
opcode into control signals for the rest of the datapath
When PC changes, datapath starts processing another instruction

Read from
insn memory

Read registers
(Read control ROM)

Read from
data memory

Write to data memory
Write to registers
Write to PC
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Single-cycle processor performance

Each instruction executed in 1 cycle (CPI=1)
Single-cycle controller (control ROM or a 
combinational logic block)
Generally lower clock frequency
Clock period respects the “longest” instruction

Load Word (lw) in our case
Usually multiplication, division, or floating point ops

Datapath contains duplicate elements
Instruction and data memory, two extra adders
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Multi-cycle datapath

Basic idea
Simple instructions should not take as much time 
to execute as the complex ones

Variable instruction execution time
Clock period is constant (cannot be changed 
dynamically), we need a „digital“ solution
We can make clock faster (shorter period) and split 
instruction execution into multiple stages

Clock period corresponds to one execution stage
Fixed machine cycle (clock period)
Variable instruction cycle
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Example: multi-cycle CPU performance

Rough estimate, assuming the following
Simple instructions take 10 ns to execute
Multiplication takes 40 ns
Instruction mix with 10% of multiplications

Single-cycle datapath
Clock period 40 ns, CPI=1 → 25 MIPS

Multi-cycle datapath
Clock period 10 ns, 13 ns per instruction (average)
CPI=1.3 → 77 MIPS (3x improvement)
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Multi-cycle datapath (2)

Instruction cycle
1. Read instruction from memory
2. Decode instruction, read registers, compute 

branch target address
3. Execute register operation / compute address for 

memory access / finish branch or jump
4. Write register operation results / access memory
5. Finish load from memory
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Multi-cycle datapath (3)

Implementation issues
Instruction execution split to stages

Need to isolate stages using latch registers to 
“remember” results from previous stage

Need to keep track of stages
Different sequences for different instruction types
Some instructions may skip stages and finish early
Controller needs to remember state → sequential logic



40/70Computer Architecture, Processor implementation, summer 2022/2023

Multi-cycle datapath (4)
PC

Address

Instruction
or Data

Data

Memory

Insn
Register

Data
Register

Read
register 1

Read
register 2

Write
register

Write
data

Register File

Register
data 1

Register
data 2
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B
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Out
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Stage 1: Instruction Read

Common for all instructions
IR ← Memory[PC]

Read instruction into Instruction Register
Memory is used for both instruction and data access
Need to “remember” the instruction being executed

PC ← PC + 4
Advance PC to point at next instruction in sequence
Changing the PC will not change the instruction being 
executed: it was stored in the Instruction Register
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Stage 2: Instruction Decode, Read Regs.

Common for all instructions
A ← Reg[IR.rs]

Read contents of source register 1
Store value into latch A for next stage

B ← Reg[IR.rt]
Read contents of source register 2
Store value into latch B for next stage

ALUOut ← PC + (SignExtend(IR.addr) << 2)
Calculate branch target
Relative to (already updated) PC
Remains unused if not a branch
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Stage 3: Execute / address calc.

Branch instruction (finish)
(A == B)  PC ⇒ ← ALUOut

Branch target in ALUOut from previous stage
Jump instruction (finish)

PC ← PC[31:28] + (IR[25:0] << 2)
Register operation

ALUOut ← A funct B, or alternatively
ALUOut ← A funct SignExtend(IR[15:0])

Memory access
ALUOut ← A + SignExtend(IR[15:0])

Calculate address for memory access
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Stage 4: Write Results / memory access

Register operation (finish)
Reg[IR.rd] ← ALUOut

Result in ALUOut (from previous stage)
Write to memory (finish)

Memory[ALUOut] ← B
Address in ALUOut (from previous stage)

Read from memory
DR ← Memory[ALUOut]

Address in ALUOut (from previous stage)
Store data into latch DR for next stage
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Stage 5: Finish reading from memory

Read from memory (finish)
Reg[IR.rt] ← DR

Value stored in DR (from previous stage)
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Multi-cycle datapath implementation
PC
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Data

Data
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Multi-cycle datapath control

Sequential process
Instructions executed in multiple cycles
Controller is a sequential circuit (automaton)

Current state stored in a state register
Combinational block determines next state

Depends on current state and instruction being executed
Updated on rising edge of the clock signal

Instruction fetch/decode
Register fetchSTART

Memory access
instructions

R-type
instructions

Branch
instruction

Jump
instruction

START
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Instruction fetch/decode, Register fetch

MemRead
ALUSrcA=0

IorD=0
IRWrite

ALUSrcB=01
ALUOp=00

PCWrite
PCSource=00

START
ALUSrcA=0

ALUSrcB=11
ALUOp=00

Instruction fetch Instruction decode
Register fetch

0 1

Memory access
instructions

R-type
instructions

Branch
instruction

Jump
instruction

Op=='lw'
||

Op=='sw'
Op is R-type Op='beq' Op='j'
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Memory access instructions

From 1
ALUSrcA=1

ALUSrcB=10
ALUOp=00

Memory address computation

2

Op=='lw'

MemRead
IorD=1

Memory
access

3

RegWrite
MemToReg=1

RegDst=0

4
Memory read

completion step

MemWrite
IorD=1

Memory
access

5

Op=='sw'

To 0
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R-type instructions

From 1
ALUSrcA=1

ALUSrcB=00
ALUOp=10

R-type execution

6

RegDst=1
MemToReg=0
RegWrite=1R-type

completion

7

To 0
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Branch instruction

From 1

ALUSrcA=1
ALUSrcB=00
ALUOp=01

PCWriteCond
PCSource=01

Branch completion

12

To 0
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Jump instruction

From 1 PCWrite
PCSource=10

Jump execution

13

To 0
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Multi-cycle datapath control (2)

MemRead
ALUSrcA=0

IorD=0
IRWrite
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Addi instruction

From 1
ALUSrcA=1

ALUSrcB=10
ALUOp=00

Addi execution
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RegWrite=1
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To 0
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Multi-cycle datapath control (3)
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Flow of instructions

Normal/expected flow
Sequential: common code operating on data
Non-sequential: branches and jumps

Unexpected flow
Internal (Exception/Trap)

Arithmetic overflow
Undefined instruction
Unauthorized access to memory
Requesting service from operating system (system call)
Hardware failure

External (Interrupt)
Request for “attention” from an I/O device
Hardware failure
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Supporting exceptions and interrupts

Hardware support (minimum necessary)
Stop executing an instruction

Maintain valid processor and computation state
Allow to identify cause

Flag bits in a special register
Identifier of exception type

Store address of instruction that caused exception
Allows re-executing or skipping an instruction on resume

Jump to exception/interrupt handler
Single address for all exceptions/interrupts
Multiple addresses corresponding to exception type
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Arithmetic overflow exception

From 1
ALUSrcA=1

ALUSrcB=00
ALUOp=10

R-type execution

6

RegDst=1
MemToReg=0
RegWrite=1

R-type
completion

7

To 0

IntCause=1
CauseWrite
ALUSrcA=0

ALUSrcB=01
ALUOp=01
EPCWrite
PCWrite

PCSource=11

8

Arithmetic
overflow

Overflow
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Undefined instruction exception

From 1

To 0

ALUSrcA=0
ALUSrcB=01
ALUOp=01
IntCause=0
CauseWrite

PCSource=11
EPCWrite
PCWrite

14

Undefined
instruction

Undefined
instruction
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Multi-cycle datapath control (4)

MemRead
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IorD=0
IRWrite
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I-type
completion

10

Addi
execution

ALUSrcA=0
ALUSrcB=01
ALUOp=01
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EPCWrite
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Supporting exceptions and interrupts (2)

Software handler
Store the current state of computation

Save contents of CPU registers to memory
Determine the cause of exception/interrupt and
execute the corresponding handler routine

Deal with I/O device
Deal with memory management
Continue/terminate current process
Switch to another process

Restore state of current (next) process
Resume execution (jump into) of current (next) process

Restart instruction that caused an exception
Continue from next instruction
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Multi-cycle datapath performance

Instruction mix
30% load (5ns), 10% store (5ns)
50% add (4ns), 10% mul (20ns)

Single-cycle datapath (clock period 20ns, CPI = 1)
20ns per instruction → 50 MIPS

Coarse-grained multi-cycle datapath (clock period 5ns)
CPI≈ (90% × 1) + (10% × 4) = 1.3
6.5ns per instruction → 153 MIPS

Fine-grained multi-cycle datapath (clock period 1ns)
CPI≈ (30% × 5) + (10% × 5) + (50% × 4) + (10% × 20) = 6
6ns per instruction → 166 MIPS
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Implementing a sequential controller

Implementing a finite-state automaton
State + transition conditions = memory + 
combinational logic → sequential logic

Implementation depends on internal state 
representation

Sequential circuitry
1 flip-flop per state (only one active at a time), active 
state shifted through enabling gates between flip-flops
State register + combinational logic

Simple sequencer + control memory
Micro- and nano- programming
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Implementing a sequential controller

Control
logic

State registerInstruction register
opcode field

NS3
NS2
NS1
NS0

S3 S2 S1 S0Op
5

Op
4

Op
3

Op
2

Op
1

Op
0

Inputs

Ou
tp

ut
s

PCWrite
...
MemRead
...
...
ALUOp

State register
Control logic

Combinational logic
ROM, FPGA
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Next state is next control ROM address
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Control memory address select logic
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Horizontal micro-instructions

Direct representation of control signals
Control memory contains raw control signals
Micro-instruction = set of control signal values

No need to decode (fast)
Any combination is possible (flexible)
Requires a lot of space
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Vertical micro-instructions

Encoded representation of control signals
Microinstructions identify valid combinations of 
control signals

Decoded intro actual control signals using a decoder
Reduces space at the cost of flexibility and latency
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Nano-programming

Combines horizontal & vertical encoding
Microprogram memory only contains numbers 
representing valid combinations of control signals 
(vertical format)
Decoding to horizontal format is realized using 
another memory (instead of a combinational 
circuit) which contains the control signal 
combination corresponding to microprogram code
Significantly reduces the amount of space required 
to store the microprogram, but increases decoding 
latency



71/70Computer Architecture, Processor implementation, summer 2022/2023

Micro- vs nano-programming


