Computer Architecture
Improving performance

http://d3s.mff.cuni.cz/teaching/nswil43

Lubomir Bulej
bulej@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics


http://d3s.mff.cuni.cz/teaching/nswi143

Factors limiting CPU performance

e Clock cycle length
= Limited by the most complex step of the most
complex instruction

= Speedup: moving from single-cycle to multi-cycle
datapath
e Simple instructions can be executed faster

‘ insn0.fetch, dec, exec

insnl.fetch, dec, exec ‘

‘ insn0.fetch| insn0.dec ‘ insnO.execo‘ insn0.execl

insn1.fetch| insnl.dec ‘ insnl.execo‘ insnl.execl‘ insnl.execz‘
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Factors limiting CPU performance (2)

e Clocks per instruction (CPI)

= Limited by the number of instructions executed at
the same time

e Even a multi-cycle datapath executes only a single
instruction at a time

= Latency vs. throughput

e Latency of a single instruction is determined by clock
cycle length (we cannot keep shortening it forever)

e Throughput of a sequence of instructions (whole
program) can be improved by executing multiple
instructions at the same time

Computer Architecture, Improving performance, summer 2022/2023 3/78



Pipelined instruction execution

® Hiding instruction latencies

® The datapath starts the 1%t step of the next instruction while
executing the 2" step of the previous one

® |nstruction-level parallelism (preserves sequential execution
model)

® | atency (execution time) of individual instructions remains
unchanged, but overall throughput increases

‘ insn0.fetch| insn0.dec ‘ insnO.execO‘ insn0.execl

insnl.fetch| insnl.dec ‘ insnl.execo‘ insnl.execl‘ insnl.execz‘

‘ insn0.fetch | insn0.dec insnO.execOI insnO.execl‘

insnl.fetch | insnl.dec insn1.exec0‘ insn1.exec1‘ insn1.exec2‘
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Pipelined processor performance

® Rough estimate

m Executing n instructions, clock cycle t, k steps per instruction
T=n-(k-t)
m Pipelined execution in k-stage pipeline
e The first instruction leaves the pipeline after k clocks, all other after 1 clock

Tp=k-t+(n—l)-t
m Speedup

T  nlkt)  nk
T kt+(n—1)t k+(n—1)

p

Speedup =

m Speedup forn >>k
k+(n—1)~n
Speedup > k
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Datapath for pipelined execution

® Basic idea

= Single-cycle datapath as a foundation
® Separate instruction and data memories
® Additional adders (ALU is not shared)

= Elements of the multi-cycle datapath

® Executing instructions in multiple steps

® Latch registers to retain the results of the previous step
(memory, register, and ALU outputs)
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Recall: single-cycle datapath

8 | z
Jump — | X @ - LE Branch
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1[25:0] ALUOP
- gliiszm . RS A Mem~Write
PC 1[20:16]
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IM RT/RD DM
I[15:11] ALUSrc 3)
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RegDst WD MemToReg
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Recall: multi-cycle datapath

PC |=
lorD MemWrite IRWrite RegDst RegWrite ALUSrcA
= [=) ’
Insn
—| > |Address Register »| Read Register
Data register1 datal
™ 2521 rend out
20:16 —
> Data [[15:0} i ‘ register 2
Memory o] Write Register
[15:11] - | register data 2
Write
MemRead L, | Data (e _l" data
Register
o Register File
MemToReg
.[15:0] J6 32 Shi
AN 2
[5:0]
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Datapath for pipelined execution (2)

Ole

[ —p— 2 Branch
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(=)
A J Sign
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Datapath for pipelined execution (3)

RegWrite Memory Write
Eeitcln Decode access back
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Datapath for pipelined execution (4)

o Datapath split into k stages

= Each stage is processing different instruction

e The slowest stage determines the pipeline speed

e Latches to hold results between successive stages

= |nstruction state, operands, results, control signals
= |nstructions in the datapath are in different state of execution

= |deal case: CPl =1

e The pipeline completes one instruction in each cycle
= |nstruction latency increases overhead, not throughput

= Realistic case: CPI > 1
e Pipeline delay and overhead
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Datapath for pipelined execution (5)

PC

PCSrc Jump
IF/ID
>% PC+4 ® >
©
[25:0]
RegWrite
Addr [15:0] »‘— I
Insn rs A BB
[20:16] RT
[15:11] B |
RD>
Collision WD
RegDst RF
Fetch Decode

o
i

EX/MA
0
Addr
E R Data
DM

Write
back

Memory
access
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Datapath for pipelined execution (6)

o .
ole < N Branch
e |-x<—’<— /_J
47
PCSrc Jump -
4 —p IF/ID ID/EX
>3 PC+4 ® > PC+4
v [25:0] ALUOp
RegWrite
PC Addr : -
[15:0] —» imm |@
Insn [ RS A >l A >
[20:16] »| RT s
[15:11] Bl»> B le»l
—» RD
RegDst 1 0] [ WP ARUSHE
RF
p! RD

Memory  Write
Fetch Decode Execute access back
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A bit of terminology

e Scalar pipeline
= There is only 1 instruction in each stage
e Superscalar pipeline

= There can be more than one instructions in some
of the stages

e Not necessarily all stages, and not necessarily all
possible combinations of instructions

e Requires multiple ALUs, control is much more complex
e Multiple pipelines “side-by-side” sharing resources
= The U and V pipelines on the original Pentium
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A bit of terminology (2)

o In-order execution/pipeline

= |nstruction executions follows the ordering of
Instructions in memory

e Out-of-order execution/pipeline

= |nstructions scheduled for execution in different
order compared to ordering in memory

= Common for superscalar pipelines

e The goal is to utilize all the available ALUs
e Instructions pre-decoded to determine instruction type
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A bit of terminology (3)

e Pipeline depth
= Number of stages in a pipeline

= Scalar in-order RISC: corresponds to logical steps in
instruction execution (5 in our example CPU)

= Superscalar out-of-order RISC: tendency to use
more pipeline stages

e Generally “a bit more” than 10 stages
= 14-19 for Haswell/Broadwell/Skylake/Kaby Lake
e Netburst (Pentium 4) microarchitecture

= Hyper Pipelined Technology
= 20 stages since Willamette, 31 stages since Prescott

= Never considered really successful
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Executing 3 instructions, cycle 1

©l= o Branch
4.:~ = /—J
\__

PCSrc Jump

Iy

ID/EX S
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Executing 3 instructions, cycle 2

=
Ol ol Branch
o /_J
\__
PCSrc Jump
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O
©
ALUOp
RegWrite
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Executing 3 instructions, cycle 3

©l= Branch
“ @
Jump
-
RegWrite
]
|_> RS A P
P RT
B (>
>
RegDst 1 0™ ALESIE
RF
| R
sw $6, 0($7) add $3, 52, 51
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Executing 3 instructions, cycle 4

Iy

—
N
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Executing 3 instructions, cycle 5

o

[T

Jump

' E
PC Addr

IF/ID
PC+4
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sw $6, 0(57)
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Executing 3 instructions, cycle 6

o -
ol ¢ ol Branch
= u
= [ /_
<«
PCSrc Jump -
4 —p IF/ID ID/EX §
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Executing 3 instructions, cycle 7

o ~ -
ol ¢ ol Branch
= [ - /_J
<«
PCSrc Jump -
4 —p IF/ID ID/EX §
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Pipeline control

e Based on single-cycle control

= Control signals need to be activated in stages
= Combinational logic or ROM decodes opcode

= Signal path for control signals is pipelined, with
latch registers between stages

e Each instructions “carries” its own control signals with it
after it has been decoded

e Based on multi-cycle control

= Mostly complex solutions

e A single finite-state automaton
e Hierarchy of automatons, on for each stage
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Pipeline control (2)

PCSrc

Jump

RegWrite

MemToReg
MemWrite

Control

ALUSrc

| ALUOp

Branch
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Pipelined datapath performance

e Single-cycle datapath
m Clock = 50ns, CPI=1 = 50ns per instruction
e Multi-cycle datapath
m 20% branch (3T), 20% load (5T), 60% ALU (4T)
m Clock = 11ns, CPI=~ (20% X 3) + (20% X 5) + (60% X 4) = 4
m 44ns per instruction
e Pipelined datapath

= Clock = 12ns (approx. 50ns/5 stages + latch overhead)

m CPIl =1 (one instruction retired in each cycle)
e But in reality CPI = 1 + stall penalty > 1
= CPI=1.5 = 18ns per instruction S
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® Equal-length instructions

m Easy to fetch instructions in stage 1 and decode them in stage 2
@ Multi-byte instructions considerably more complex to fetch/decode
@ Few instruction formats, fixed position of source register fields
m Stage 2 can start reading register file while the instruction is being
decoded

® Asymmetric instruction format would require splitting stage 2 to first decode an
instruction and then to read the registers

@ Memory operands only appear in loads or stores

m Stage 3 (executed) can be used to calculate memory address for accessing
memory in the following stage

@ Operating directly on memory operands would require expanding stages 3 and 4
into address stage, memory stage, and execute stage

® Operands must be aligned in memory

m Single data transfer instruction requires only one memory access
@ Data can be transferred in a single pipeline stage

Computer Architecture, Improving performance, summer 2022/2023



¢ Realistic pipeline
= CPI =1+ stall penalty

e Penalty corresponds to frequency and duration of
pipeline stalls

= Big penalties not an issue, if they are very rare
= Penalties impact the optimal number of pipeline stages

= Stall is a cycle in which pipeline does not retire an
instruction

e One stage must wait for another to complete
¢ Inserted to prevent a pipeline hazard
= Hazard

o Asituation when the next instruction cannot execute ig &
the following clock cycle




Pipeline hazards

e Structural hazard

= A datapath does not support a specific
combination of instructions

= Concurrent use of a shared resource from multiple
pipeline stages

= Example: shared instruction and data memory

e Load instructions in 4t stage of execution would
interfere with instruction fetch

e Solution: separate instruction and data memories
= Real CPU: separate instruction and data cache

Computer Architecture, Improving performance, summer 2022/2023



Pipeline hazards (2)

e Data hazard

= |nstruction does not have data for execution

e Operand values are the results of an instruction that is
still in the pipeline

e Needs to wait for the preceding instructions to finish
e Control hazard

= Pipeline needs to make a decision before executing
an instruction

= Branch instruction executed in 3™ stage

e By that time, the pipeline will have fetched 2 other
instructions
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Pipeline diagrams
s ® 5. ® » © s
o Simplified pipeline representation
= Each stage takes 1 cycle to execute
= Discrete time in clock cycles

Order of 2121314 121°©17181°]1
instruction — 1 1 1 1 1 1 11 1 -
' Time [cycles]
execution
lw $10, 20($1) ‘ IF | ID | EX [MA|WB
sub S11, S2, S3 IF | ID | EX | MAJWB
add $13, S3, $4 IF | ID | EX | MAJWB
lw $13, 24(S1) IF | ID | EX| MAJWB
add S14, S5, S6 IF | ID | EX | MAJWB
v ? 4
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Data hazard

e Dependencies between instruction operands

m Operand is a result of a preceding instruction

= Operand is the content of memory read by preceding
Instruction

e Finding dependencies during design

m Graph of dependencies

e Nodes = pipeline elements active at given time
e Edges = control or data signals
e Dependencies = edges pointing to “future time”

e Detecting dependencies in hardware

s Compare source and destination register numbers in all
instructions present in the pipeline
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Data hazard (2)

Order of I I I S LT I A I I
instruction | | | | | | | | | |
execution Time [cycles]

wps2, 553 [ IF | 10 H EXH{malws

ines EHEFEHAE

or $13, 36, $2 F 1P H X y{MmaH{we

and $14, $2, $2 F 1P X H{MmaHws
sw $15, 64(52) F {0 [ X {ma

\J
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Dealing with data hazards

o Compiler level (software interlock)

= Ordering instructions so that they reach pipeline
only when all the operands are available
e Need to insert other (independent) instructions
between mutually dependent instructions
e Using a no-operation (nop) instruction in the worst case

= Theoretically possible, practically infeasible
e Leaks CPU implementation details across the hardware-
software interface (ISA)
e MIPS = Microprocessor without Interlocked Pipeline
Stages
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Dealing with data hazards (2)

e Forwarding/bypassing

= Use the intermediate values (not yet written to
registers) as operands for dependent instructions

e Fetch operand from a pipeline registers of the preceding
instructions.

s Forwarding unit

e Control circuitry to detect dependencies and enable
forwarding of values

e Checks if source operand of an instruction is a destination
operand of any of the preceding instructions
s EX/MA.RD := ID/EX.RS
s EX/MA.RD := ID/EX.RT
s MA/WB.RD := ID/EX.RS
s MA/WB.RD := ID.EX.RT
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Data hazard - forwarding/bypassing

Order of I I I S LT I A I I
instruction I I I I | | | | | |
execution Time [cycles]

b2, 51,53 [ 1F |10 | EXfr{maj-{ws

and $12, $2, $5 IF n1 B[ MAF e
or $13, 36, $2 F P P X {maHwe
e EABEE
sw $15, 64(52) F {0 [ X {ma

\J
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Dealing with data hazards (3)

¢ Delay instruction execution (pipeline stall)

= Pipeline executes an “empty” operation

= Necessary in case of load/use dependency

e An instruction immediately following a load instruction
uses the result of the load

= Hazard detection unit
e Control circuitry to detect dependency and cause
pipeline stall

e Checks if the source operand of an instruction is the
target operand of the preceding memory load instruction

= [ID/EX.MemRead &&
(ID/EX.RT == IF/ID.RS | | ID/EX.RT == IF/ID.RT)
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Data hazard - load/use dependency

Order of I I I S LT I A I I
instruction I I I I | | | | | |
execution Time [cycles]

Iw $2, 20($1)

and S4, S2, S5

or S8, S2, S6

and S9, $4, S2

slt S1, S6, S7

\J
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Data hazard — load/use & forwarding

Order of I I I S LT I A I I
instruction I I I I | | | | | |
execution Time [cycles]

Iw $2, 20($1)

and S4, S2, S5

or S8, S2, S6

and S9, $4, S2

slt S1, S6, S7

\J
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Data hazard — pipeline stall

1 2 3

Order of I I A I B I I I I
instruction I I I I | | | | | |

execution Time [cycles]

lw $2, 20($1) n n m m m
sasesass (WA

- nop .
and $4, $2, S5 n n m m m

or S8, 52, S6

and S9, $4, S2

\J
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Data hazard — pipeline stall (2)

Order of I I I S LT I A I I
instruction I I I I | | | | | |
execution Time [cycles]

lw $2, 20($1) n n m m m

oo EHBKOADO
nop

and $4, 52, $5 n n E m m

or $8, $2, $6 n ID mr‘m m

o505 P He Ha o)

&

\J
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Data hazard — pipeline stall (3)

Order of I I I S LT I A I I
instruction I I I I | | | | | |
execution Time [cycles]

ws2,20067) [ IF | 10 - EX [-{mA[r{ws

ane-$4,-52,55

- nop

and S4, S2, S5

or S8, 52, S6

and S9, $4, S2

\J
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Control hazard

e Which address to read the next instruction from?

= PCvalue influenced by jump and branch instructions

e Depends on the result of an instruction executed several
cycles later than required: we need to read an instruction in
every cycle

= Exceptions and interrupts
e Handling control hazard

= Forwarding not possible

e Target address may be know, but the branch condition is
evaluated later

= Goal: minimize pipeline stalls
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Control hazard — branching

Order of I I I S LT I A I I
instruction I I I I | | | | | |

execution Time [cycles]

40: beq $1, $3, 28 ﬂ n m m m

44: and $12, S2, S5

48: or $13, $6, $2 E—E
I

52:and $14, 52, S2

Y

72: lw $4, 50($7)

\J
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Dealing with control hazards

e Stall until branch outcome is known
e Try to keep the pipeline full

= Assume branch not taken (until proven otherwise)
= Reduce the delay of branches

e So far PC for next cycle selected in MA stage

e Execute branch earlier = less instructions to flush

m Branch target: PC+4 and immediate value already in IF/ID pipeline
register - move branch adder from EX to ID stage

m Branch condition: compare registers during ID stage, requires extra
circuitry and forwarding/hazard detection logic

m Requires simple test condition
m Reduces branch penalty to 1 cycle if branch is taken

e Branch delay slot
m Always execute 1 more instruction after branch
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Dealing with control hazards (2)

e Trying to keep the pipeline full

= Where to read next instruction from?

e Branch target buffer
= Cache target addresses of branch instructions
e Execute instructions speculatively

= Keep executing instructions regardless of branch condition

= |f we later find that we should execute instructions on another
path, just flush the pipeline and start over

= May require partial virtualization of register file and store
buffers
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Branch prediction

e Static prediction

= |gnores history of branch outcomes

= Without hints

e Heuristics determined by hardware
e Generally assume branch not taken
e Complex heuristics (e.g., branch distance) uncommon

= With hint

e The more likely outcome determined by the instruction
opcode
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Branch prediction (2)

e Dynamic prediction
m Takes past branch outcomes into account

m Branch prediction buffer (history table)
e Keeps the state of a predictor for a particular instruction
m 1-bit predictor (2 states)
e State reflects the previous outcome
e Predicts the same behavior as in the past
m Problem with loops: branch back except on last iteration
e 2 mispredictions for simple loops
e Multiplied in nested loops
m 2-bit predictor (4 states)

e General approach: count prediction success/failure, middle of range
break point between predictions

e Reduces mispredictions for cases strongly favoring certain outcome
(typical for many branches)
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Branch history table

@ Basic (1-bit) predictor

m Table of prediction bits indexed by (part of) PC

m Extensions

e Multi-bit predictor
e Correlating predictor

@ Tournament predictor f
® Branch target buffer >| TorNT I

prediction

m Conditional instruction
m Does aliasing hurt? >
e Different PC values with identical >I TorNT I
bits used for indexing BHT >I Tor NT I
m What about nested loops? \
1 |
PC [31:10] ‘ [9:2] ‘[1:0]‘
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2-bit branch predictor

taken
10
predict:
taken not taken
taken not taken
not taken
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not taken




Pipelined datapath and exceptions

o Pipeline contains k instructions

= Which instruction caused an exception?
e Needs to be propagated through pipeline registers

= On multiple exceptions, which one to handle first?
e The one that is the earliest

= Exception handling

o Keep the processor state consistent

= Data from pipeline registers are not written back (register file
and memory contain values before the exception occurred)

e Flush the pipeline before handling the exception
= Similar logic to speculative handling of branch instructions
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Increasing pipeline length

o Trend: pipelines getting longer
= 486 (5 stages), Pentium (7 stages)
= Pentium Il (12 stages), Pentium 4 (20 — 31 stages)

= Core (14 stages)

= Consequences

e Higher clock rate
= Not linear with pipeline length, causes performance
drop starting at certain pipeline lengths
— Pentium 4 at 1 GHz slower than Pentium Il at 800 MHz
e Generally higher CPI

= More costly penalties for mispredicted branches

= Delays due to hazards that cannot be handled using
forwarding/bypassing
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Increasing the number of pipelines

e Flynn bottleneck

= Theoretical limitation of a scalar pipeline

e 1 instruction in each stage - CPI=IPC=1
e Impossible to reach in practice (hazards)
e Diminishing returns from increasing pipeline length

e Superscalar (multiple issue) pipeline

= 4 pipelines typical in modern processors

= Exploiting instruction-level parallelism
e Independent instructions can be executed in parallel
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Instruction-level parallelism

e Compiler schedules instructions

= Necessary even for scalar pipeline (reduce
potential hazards)

= More complex for superscalar pipeline

e How many independent instructions streams can we
find in a program?
= |deal case: copying a block of memory (unrolling the loop
creates many independent instructions)
= Normal programs contain significantly less opportunities

e An alternative: Simultaneous multi-threading (SMT)
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e Execute instructions from more threads

= At the level of superscalar pipeline

e Instructions from independent threads are independent
by definition - more efficient use of superscalar pipeline

e More energy efficient than implementing multiple cores

= Additional register file and instruction reading logic
= The rest of the CPU remains unchanged

e The operating system “sees” multiple logical CPUs
e Problem: Shared resources (cache, memory bandwidth)
e Intel Hyper-Threading Technology
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o SMT adapted to a single pipeline

= Technically: thread switching on the CPU
= Fine-grained

e Switch thread with each instruction

e Niagara (Sun UltraSPARC T1)
= Coarse-grained

e Switch when an instruction causes a delay (pipeline
stall, cache miss, page fault)

e Montecito (Intel Itanium 2)
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Common superscalar pipeline

e Reading instructions

= A block of memory (16, 32 or 64 bytes), 4 — 16
instructions

= Predicting one conditional branch in each cycle
e Parallel instruction decoding

= Detecting dependencies and hazards
e Multi-port register array with additional registers
e Multiple execution units

= Different ALUs, forwarding/bypassing logic
e Access to memory
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Static multiple issue

¢ Instruction schedule determined by compiler

= Pipeline executes instruction packets in-order

= [ssue packet

e A group of instructions to execute in parallel

e Slots in the issue packet not necessarily orthogonal

= Very Long Instruction Word (VLIW)
= Explicit Parallel Instruction Computer (EPIC)

= Performance strongly depends on compiler

e |dentify instruction-level parallelism in code

e Instruction scheduling (issuing instructions to slots)
e Some data and control hazards handled by compiler
e Static branch prediction
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Example: static multiple issue MIPS

Order of |1|2|3|4|5|6|7|8|9|)
instruction execution (I 1 1 1 1° 17 1T T 1 Time [cycles]
ALU / branch IF | ID | EX| MAJWB
load / store IF | ID | EX| MAJWB
ALU / branch IF | ID | EX| MAJWB
load / store IF | ID | EX| MAJWB
ALU / branch IF | ID | EX| MAJWB
load / store IF | ID | EX| MAJWB
ALU / branch IF | ID | EX| MAJWB
load / store IF | ID | EX| MAJWB
ALU / branch IF | ID | EX| MAJWB
v load / store IF | ID | EX| MAJWB
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Example: static multiple issue MIPS (2)

e Changes wrt. single issue
= Reading 64bit instructions - 8-byte alignment

e Unused slot can contain NOP instruction
= Register array: support access from both slots

= Additional adder to compute memory addresses
e Problems

= Longer latency to use results

e Register operations 1 instruction, load 2 instructions
e More complex instruction scheduling for compiler

= Penalties due to hazards are more costly
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Example: static multiple issue MIPS (3)

e How to schedule this code?

Loop: 1w $to, 0(%$s1)
addu $to, $to, $s2
SW $to, 0(%$s1)
addi $s1, $s1, -4
bne $s1, $zero, Loop

ALU or branch insn Data transfer insn Clock cycle
Loop: lw $t0, 0($s1) 1

addi $s1, $s1, -4 2

addu $to, $to, $s2 3

bne $s1, $zero, Loop sw $t0, 4(%$s1) 4

e Performance?
= 4 cycles, 5 instructions - CPI = 0.8 (instead of 0.5) {-
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Example: static multiple issue MIPS (4)

@ Unrolling 4 loop iterations...

ALU or branch insn Data transfer insn Clock cycle
Loop: addi $s1, $s1, -16 lw $t0, o(%$s1) 1
Iw $t1, 12($s1) 2
addu $te, $to, $s2 1w $t2, 8($s1) 3
addu $t1, $t1, $s2 Iw $t3, 4($s1) 4
addu $t2, $t2, $s2 sw $t0, 16($s1) 5
addu $t3, $t3, $s2 sw $t1, 12($s1) 6
sw $t2, 8($s1) 7
bne $s1, $zero, Loop sw $t3, 4(%$s1) 8

@ Register renaming (here done by compiler)

Necessary to eliminate false dependencies due to loop unrolling
Use a different register (instead of S$t0) for each iteration
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e Key features

m Many registers

e 128 general purpose, 128 floating point, 8 branch, 64 condition
e Register windows with support for spilling into memory

m EPIC instruction bundle

e Bundle of instructions executed in parallel

e Fixed format, explicit dependencies
m Stop bit: Indicates if the next bundle depends on the actual bundle

m Support for speculation and branch elimination

e Instructions executed, but whether their effects will be permanent
is decided later (if not, software needs to rollback)
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e Other notable features

= [nstruction group

e Group of instructions without data dependencies

e Separated by an instruction with a stop-bit
= For forward compatibility (increasing the number of pipelines)

= |nstruction bundle structure

e 5 bits template (execution units used)
e 3 x 41 bits instructions

e Most instructions can be conditional, depending on a
chosen bit in a predicate register
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Dynamic multiple issue

¢ Instructions scheduled by pipeline

= Exploit instruction-level parallelism, eliminate hazards
and stalls

= [nstructions executed out-of-order
e Results committed in-order to maintain programming model
= Compiler can try to make scheduling easier for the CPU

e Speculative execution

= Execute operation with potentially wrong operands or
without guaranteed that the result will be used

= Rollback mechanism similar to branch prediction
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Example: dynamic instruction scheduling

LOAD R4,B -

05 BNEG R4,LAB2
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Out-of-order execution

e Execution driven by data dependencies

= Colliding register names in independent instructions
e RAW (Read After Write, true data dependency)

= |nstruction result used as operand in subsequent instruction
o WAW (Write After Write, output dependency)

= Two instructions writing in the same register
= Result correspond to that caused by the instruction executed later

e WAR (Write After Read, anti-dependency)

= |nstruction is changing a register while another instruction is
reading it

= WAW and WAR can be dealt with using register
renaming

e Processor has more physical registers than what is
mandated by ISA
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Example: WAW elimination

e Code after e Code after
reordering register renaming
move r3, r7/ move r3, r7/
add r3, r4, r5 add fr8, r4, r5
move rl, r3 move rl, fr8
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Dynamic multiple issue (2)

In-order Instruction fetch
issue . Instruction decode

'Yy

Instruction scheduler

v v v v

Reservation Reservation Reservation Reservation
station station station station
Integer ALU Integer ALU FP ALU Load/Store

Y

Commit unit e

In-order
commit
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Exceptions in out-of-order pipeline

e More complicated compared to scalar pipeline

= More difficult to pinpoint the exact place where to
interrupt program execution

e Instructions following the instruction that caused an exception
must not change machine state

m Some of those could have been already executed
e There must be no earlier unfinished instructions

e All exceptions caused by earlier instructions
must have been handled

m Precise vs. imprecise exceptions

e OOE + register renaming first implemented in IBM 360/91
(1969), widespread use in 1990s

e Cause: imprecise exceptions + higher efficiency
only for a small class of programs

Computer Architecture, Improving performance, summer 2022/2023



Speculative execution

o Predicting properties/outcome of instruction

= Allows to start executing dependent instructions

= Extra logic to handle bad speculation

e In the compiler
= Extra code generated to “repair” wrong speculations
e In the processor

= Speculative results not written back until confirmed

= Speculatively executed instructions either don’t raise
exceptions, or raise special kinds of exceptions
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Example: 1A-32

¢ Intel Pentium Pro ... Pentium 4
= CISC instruction set implemented using micro-ops
on a post-RISC core

e Instructions split into micro-ops
e Pipeline executes micro-ops

= Superscalar, out-of-order, speculative execution
(including branch/jump prediction and register
renaming)

e Pentium4

= Trace cache to speed up instruction decoding
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;@ Simplified view of the Skylake
I family microarchitecture
Branch Instruction Fetch & PreDecode . .
E Predictor P m |nstructions decoded into
5 e e micro-ops (LOPs)
m OPs noP uopP nop HOP
1 R = pOPs executed out-of-order
Allocation Queve by execution units in the
Execution Engine
it Reorderbufer m Reorder Buffer responsible for
l noP anP l,uOP l uoOP l,u(‘)P l wOp l,u(‘)P l uOp . . .
£ L Scheduler register allocation, register
5 renaming, and instruction
8 HEEIRE H _ retirement
E £ 13 |3 g B - .
2 5 2 4] 2 ) e Also eliminates register moves and
L = = = zeroing idioms
xecution Units
m Scheduler forwards pOPs to

&[] s execution units depending on
A N i availability of data
U'_g ata Cache .
2 Lo m Source: M. Lipp et al. Meltdow




Core architecture in numbers

Conroe Nehalem Sandyllvy Haswell Skylakel
Bridge (Broadwell) Kabylake

Allocation queue 5 56 56 56 128
(decoded insn queue) (2x 28) (2x 28) (2x 64)
%é}%fgr’rgjf;g‘r’)i“dow 96 128 168 192 224
fo o 32 36 54 04 o7
Execution ports ? 6 6 8 8
Integer register file N/A N/A 160 168 180
FP register file N/A N/A 144 168 168
In-flight loads 32 48 64 72 72
In-flight stores 20 32 36 42 56
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o Relative frequency of instructions (IBM 360)
Group Fraction

data movement 45,28 %
control 28,73 %
arithmetics 10,75 %
comparisons 5,92 %
logic operations 3,91 %
shifts, rotations 2,93 %
bit operations 2,05 %
/O operations 0,43 %
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e Additional observations (IBM 360)

= 56 % immediates in the £15 range (5 bits)
= 98 % immediates in the £511 range (10 bits)

= 95 % subroutines can be passed arguments
in less than 24 bytes

o Additional observations (DEC Alpha)

= Typical program uses only 58 % of the available the
instruction set

= 98 % of instructions implemented in 15 % of
firmware (PAL)
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e Historical focus

= Large instruction set, complex instructions

= Trying to bridge the gap between assembler and
higher-level programming language

e Current focus

= Small instruction set, simple instructions

= Faster instruction execution, easier to optimize
(both at compile time and at runtime)
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e CISC and RISC architectures converging

= Useful, complex (CISC-like) instructions added to
RISC instruction set

= Superscalar execution

= Aggressive instruction reordering

e Out-of-order speculative execution
e Avoid relying on compiler optimizations

= New specialized execution units
= Trying to exploit as much as possible ILP
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