
http://d3s.mff.cuni.czhttp://d3s.mff.cuni.cz/teaching/computer_architecture/

Lubomír Bulej 

bulej@d3s.mff.cuni.cz 

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physicsfaculty of mathematics and physics

Computer Architecture
Computer performance

Computer Architecture
Computer performance

http://d3s.mff.cuni.cz/teaching/computer_architecture/


2/40Computer Architecture,, Computer Performance, summer 2023/2024

Why care about performance?Why care about performance?

Comparing/ranking computers
Cheaper and/or better product wins

Personal computers: fierce performance competition
Embedded computers: optimize price of final product

Important for buyers → important for designers 
and producers

Performance impact of architectural changes
Systematic assessment is the only indication 
whether some progress is really a progress



3/40Computer Architecture,, Computer Performance, summer 2023/2024

How to define computer performance?How to define computer performance?

Computer A is “better” than computer B
What does it mean? Better in what?
Is a truck “better” car than a sports car?
Is a Concorde “better” plane than a Boeing 777?

Airplane

Boeing 737 240 4828 907 217680
BAC/Sud Concorde 132 6437 2172 286704
Boeing 777-200LR 301 15120 892 268492
Airbus A380-800 853 13642 944 805232

Capacity
[persons]

Range
[km]

Cruising speed
[km/h]

Throughput
[pers·km/h]



4/40Computer Architecture,, Computer Performance, summer 2023/2024

Program performanceProgram performance

HW or SW component Impact on performance

Algorithm

Processor, memory

Number of source-level 
statements and of I/O 
operations executed

Programming language, 
compiler, computer 
architecture

Number of instructions for 
each source-level statement

How fast instructions can be 
executed

I/O system (hardware, 
operating system)

How fast I/O operations can 
be executed



5/40Computer Architecture,, Computer Performance, summer 2023/2024

How to define computer performance?How to define computer performance?

Basic criteria
What do we need?
What do we compare?

Basic metrics
Execution time (response time)

Time to complete a particular task
Important for users

Throughput
Amount of work completed in unit time
Important for server or data center operators



6/40Computer Architecture,, Computer Performance, summer 2023/2024

How to define computer performance?How to define computer performance?

Performance based on execution time
We desire: higher number = higher performance
Execution time is the opposite → needs fixing

Now we can compare performance

Performance X=
1

Executiontime X

Performance X>PerformanceY

1
Executiontime X

>
1

Execution timeY

Execution timeX <ExecutiontimeY



7/40Computer Architecture,, Computer Performance, summer 2023/2024

Relative performanceRelative performance

Relating performance of two computers
X is n-times faster than Y (has higher performance)

If X is n-times faster than Y, then execution time on 
Y is n-times longer than on X

Performance X

PerformanceY

=n

Performance X

PerformanceY

= Execution time Y
Execution time X

=n



8/40Computer Architecture,, Computer Performance, summer 2023/2024

Performance: user perspectivePerformance: user perspective

Total execution time
Wall-clock time, response time, elapsed time
Includes waiting for I/O operations, OS overhead, etc.

Including sharing resources (CPU) with other users
Reflects whole-system performance

Processor time
CPU execution time, CPU time
Time when the program was actually executing

Does not include waiting for I/O operations
Does not include time when to program was not running
Includes OS overhead (user vs system CPU time)

Reflects processor performance



9/40Computer Architecture,, Computer Performance, summer 2023/2024

Performance: CPU designer perspectivePerformance: CPU designer perspective

Speed for executing instructions
Clock rate
Clock cycle length

CPU execution time=
CPU clock cycles
CPU clock rate

CPU executiontime=CPU clock cycles×CPU clock cycle time



10/40Computer Architecture,, Computer Performance, summer 2023/2024

Performance: compiler perspectivePerformance: compiler perspective

Average number of cycles per instruction
Clock cycles per instruction (CPI)
Specific to a particular program or its part
Allows comparing different implementations of the 
same architecture

Given a fixed number of instructions

CPU clock cycles=CPI×Number of instructions



11/40Computer Architecture,, Computer Performance, summer 2023/2024

Classic processor performance equationClassic processor performance equation

Relates number of instructions,
CPI and clock cycle length

3 different factors influencing performance
Allows comparing different implementations
Allows assessing alternative architectures

CPU executiontime=CPI ×Number of instructions×CPU clock cycle time

CPU execution time=
CPI×Number of instructions

CPU clock rate



12/40Computer Architecture,, Computer Performance, summer 2023/2024

Program performance (2)Program performance (2)

Component Affects what? Affects how?

Algorithm

Compiler

Instruction count
CPI

Number and kind of source program 
statements and operations, data types 
(integer vs. floating point)

Programming
Language

Instruction count 
CPI

Kind of source program statements, 
abstractions used to express the algorithm.

Instruction count 
CPI

How program statements are translated to 
machine code, choice and layout of 
instructions.

Instruction set 
architecture

Instruction count 
CPI
Clock rate

Instructions available to compiler, cost in 
cycles for each instruction, overall clock rate.



13/40Computer Architecture,, Computer Performance, summer 2023/2024

Pitfall: Unrealistic expectationsPitfall: Unrealistic expectations

Expecting the improvement of one aspect of a 
computer to increase overall performance by 
an amount proportional to the size of the 
improvement.

Total execution time: 100 s
Out of which multiplication operations: 80 s

How much do we need to improve multiplication 
to make the program run 5× faster? 



14/40Computer Architecture,, Computer Performance, summer 2023/2024

Pitfall: Unrealistic expectations (2)Pitfall: Unrealistic expectations (2)

Some „back of the envelope“ calculations

Execution fast=
Execution slow

5

Execution slow=80+20

Execution fast=
80
n

+20
80
n

+20=
80+20
5

80
n

+20=20

80
n

=0

80≠0



15/40Computer Architecture,, Computer Performance, summer 2023/2024

Pitfall: Wrong performance metricsPitfall: Wrong performance metrics

Using a subset of the performance equation 
as a performance metric

Using a single factor is almost always wrong
Using two factors may be valid in limited context

Easily misused: dependencies between factors
Other metrics dressing up other known factors



16/40Computer Architecture,, Computer Performance, summer 2023/2024

Pitfall: Wrong performance metrics (2)Pitfall: Wrong performance metrics (2)

MIPS (Million Instructions Per Second)
Instruction execution rate
Intuitive (higher number → faster computer)
Problems

Ignores instruction capabilities, execution time of individual 
instructions, different number of instructions for different ISAs

Impossible to compare computers with different ISA
Depends on the instruction mix of a particular program (a 
single value to not represent the performance of a computer)

CPI can vary significantly on the same processor

MIPS= InstructionCount
10 6×ExecutionTime

= InstructionCount

10 6× InstructionCount×CPI
ClockRate

=ClockRate
106×CPI



17/40Computer Architecture,, Computer Performance, summer 2023/2024

Processor performanceProcessor performance

Performance while executing a particular program
Depends on the number of instructions, average 
number of cycles per instructions (CPI), clock cycle 
length (or clock rate)
No single factor can completely express performance 

Reducing number of instructions → architecture with lower 
clock frequency or higher CPI
CPI depends on the instruction mix (frequency and type of 
executed instructions) of a given program

Code with the lowest number of instructions is not necessarily the 
fastest



18/40Computer Architecture,, Computer Performance, summer 2023/2024

Processor performance (2)Processor performance (2)

Performance while executing a particular 
program

The only complete and reliable metrics is 
processor time

Does not tell anything about processor time for other 
programs



19/40Computer Architecture,, Computer Performance, summer 2023/2024

Performance evaluationPerformance evaluation

Comparing performance of different 
computers

Easy for one specific program (processor execution 
time)
Comparing isolated components (clock rate, CPI, 
number of instructions) not indicative for other 
programs
How to approximate performance with respect to 
a set of programs?



20/40Computer Architecture,, Computer Performance, summer 2023/2024

Performance evaluation (2)Performance evaluation (2)

Workload
A set of programs and tasks capturing a user’s workload
Compare execution time of the workload on different 
computers
Difficult to define (domain specific)
Difficult to automate (repeated execution)

Benchmark
Program specifically made to measure performance
Set of benchmarks

Statistically relevant representative of a typical workload
Hoping that benchmark results will reflect how well a computer 
will perform with the user’s workload



21/40Computer Architecture,, Computer Performance, summer 2023/2024

Performance evaluation (3)Performance evaluation (3)

SPEC (Standard Performance Evaluation 
Corporation)

Funded by commercial and non-commercial entities
Manufacturers of processors and computers
Producers of compilers, operating systems
Research institutes

Goal: Define a standard set of benchmarks to enable 
comparison of computer systems’ performance

Different benchmarks for different workloads
Primarily focusing on CPU performance
Now CPU power, GPU performance & power, compilers, 
databases, e-mail systems, transaction processing, etc.



22/40Computer Architecture,, Computer Performance, summer 2023/2024

SPEC CPU 2006SPEC CPU 2006

Processor performance
CINT2006 (integer computation)

12 benchmarks (C compiler, chess algorithm, quantum 
computer simulation, etc.)

CFP2006 (floating point computation)
17 benchmarks (finite elements, molecular dynamics, etc.)

SPECratio
Ratio of reference vs. measured benchmark execution time
Summary score (single number): geometric mean

n√∏i=1
n

SPECratioi



23/40Computer Architecture,, Computer Performance, summer 2023/2024

SPEC CINT2006 on AMD Opteron X4SPEC CINT2006 on AMD Opteron X4

Source: P&H



24/40Computer Architecture,, Computer Performance, summer 2023/2024

SPEC CINT2006 on Intel Core i7 920SPEC CINT2006 on Intel Core i7 920

Source: P&H



25/40Computer Architecture,, Computer Performance, summer 2023/2024

SPECspeed 2017 on Intel Xeon E5-2650LSPECspeed 2017 on Intel Xeon E5-2650L

Source: P&H



26/40Computer Architecture,, Computer Performance, summer 2023/2024

Program performance (3)Program performance (3)

End of the 
golden era



27/40Computer Architecture,, Computer Performance, summer 2023/2024

The Power WallThe Power Wall

Source: P&H

Cl
oc

k 
ra

te
 [M

H
z]

Po
w

er
 [W

]



28/40Computer Architecture,, Computer Performance, summer 2023/2024

The Power Wall (2)The Power Wall (2)

Complementary Metal Oxide Semiconductor 
(CMOS)

Dominant technology for integrated circuits
Very low static consumption
Dynamic power consumption

Capacitive load (conductors, transistors, output load)
Operating voltage (affects switching speed)
Switching frequency (function of clock rate)

Power≈
1
2
×Capacitive load×Voltage2×Frequency switched



29/40Computer Architecture,, Computer Performance, summer 2023/2024

The Power Wall (3)The Power Wall (3)

Real-world impact
In the last 20 years

Clock rate growth by factor of 1000
Power growth (only) by factor of 30
How: voltage dropped from 5 V to 1 V

15% reduction with each generation

Example
New technology results in 85% capacitive load of old 
technology. Also, the operating voltage and switching 
frequency can be reduced by 15% to save power.

Powernew
Powerold

=
(CapacitiveLoad×0.85)×(Voltage×0.85)×(FrequencySwitched×0.85)

CapacitiveLoad×Voltage×FrequencySwitched
=0.854=0.52



30/40Computer Architecture,, Computer Performance, summer 2023/2024

The Power Wall (4)The Power Wall (4)

Further lowering of voltage difficult/impossible
Makes transistors too leaky
40% of power consumption in server chips is due to 
leakage
Low signal/noise ratio

Difficult to tell ones from zeroes reliably

Cooling cannot be easily improved
Power dissipated from a rather small area of the chip
Parts of chip not used in a clock cycle can be turned off
Water (and other) cooling techniques too 
complex/expensive

Not even an option for personal mobile devices



31/40Computer Architecture,, Computer Performance, summer 2023/2024

The Power Wall (5)The Power Wall (5)

New way to improve performance needed
Dramatic change in microprocessor design

The switch from
Uniprocessors to Multiprocessors



32/40Computer Architecture,, Computer Performance, summer 2023/2024

Growth in processor performanceGrowth in processor performance

Source: P&H



33/40Computer Architecture,, Computer Performance, summer 2023/2024

Multiprocessor systemsMultiprocessor systems

Then
Multiple physical processors (multiprocessor)
Where: Supercomputers, high-end servers
Rare in personal and embedded computers

Now
Multiple processor cores in a single microprocessor 
package

Post-Moore‘s „law“ world, shrinking transistors 
difficult/expensive,
but we can still put more of then on a single (bigger) chip

Where: everywhere



34/40Computer Architecture,, Computer Performance, summer 2023/2024

Multicore systemsMulticore systems

Impact on performance
Increased throughput

Processing more requests in parallel
Clock rate and CPI remain the same

Performance of sequential algorithms stays the same

Impact on programmers
Technology does not make programs faster (anymore)
Programs need to take advantage of multiple cores

Better APIs needed (executor frameworks, parallel collections, ...)
Programs need to be improved as number of cores 
increases

Increasing number of cores from 4 to 32 will not make a parallel 
program 8 times faster



35/40Computer Architecture,, Computer Performance, summer 2023/2024

Why is this such a big deal?Why is this such a big deal?

Fundamental change in HW/SW interface
Parallelism was always important, but used to be 
hidden

Instruction-level parallelism, pipelining, and other 
techniques
Programmer and compiler alike produced sequential code

Now parallelism needs to be explicit!
Parallel architectures known for 40+ years...

… but whoever relied on explicit parallelism failed!
Programmers never accepted the new paradigm

Now the whole IT industry bets on programmers to 
switch to explicit parallelism



36/40Computer Architecture,, Computer Performance, summer 2023/2024

Why is parallel programming difficult?Why is parallel programming difficult?

Programming focused on performance
Increases difficult of programming

Not only does the program need to be correct, it also 
needs to be fast
If you don‘t need performance, just write a sequential 
program.

People think “sequentially” in a “single thread”

Problem: split work equally between processors
Ensure that the overhead of planning and 
coordinating the work does not take away the 
performance benefit



37/40Computer Architecture,, Computer Performance, summer 2023/2024

Why is parallel programming difficult? (2)Why is parallel programming difficult? (2)

Real-world analogy
1 reporter writes 1 article in 2 hours

Can we get 8 reporters to write 1 article in 15 minutes?
Actual problems

Scheduling
Who writes what?

Load balancing
No reporter is idle

Communication and synchronization overhead
How to put the final article together?



38/40Computer Architecture,, Computer Performance, summer 2023/2024

Amdahl’s lawAmdahl’s law

Gene Amdahl (* 1922)
Multiple variants
Most general for theoretical speed-up
of a sequential algorithm using
multiple threads (formulated in 1967)
A quantitative versions of the
law of diminishing returns

The performance enhancement possible with a given
improvement is limited by the amount that the
improved feature is used.

[1]

Speedup(n)=
1

B+
1
n
(1−B)

n∈ℕ

B∈⟨0,1⟩



39/40Computer Architecture,, Computer Performance, summer 2023/2024

Amdahl’s law (2)Amdahl’s law (2)

Speedup potential (ideal case)



40/40Computer Architecture,, Computer Performance, summer 2023/2024

Amdahl’s law (3)Amdahl’s law (3)

Practical impact
Make the common case fast
Optimize for the common case
Optimization impacts the common case the most

The common case is often much simpler than the 
special cases, and therefore easier to optimize

Even massive optimization of special cases often 
provide only very little benefit compared to 
modest optimization of the common cases


