
http://d3s.mff.cuni.cz/teaching/nswi143

Lubomír Bulej
bulej@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physicsfaculty of mathematics and physics

Computer Architecture
Digital Circuits

Computer Architecture
Digital Circuits

http://d3s.mff.cuni.cz/teaching/nswi143

2/34Computer Architecture, Digital circuits, summer 2023/2024

Digital computerDigital computer

Two voltage levels of interest
High level

Logical one (signal high/true/asserted)

Low level
Logical zero (signal low/false/deasserted)

Logical values are complementary and inverse of
each other

Unlike the voltage levels representing logical ones and
zeros

3/34Computer Architecture, Digital circuits, summer 2023/2024

Logic blocksLogic blocks

Combinational
No memory → no internal state
Output depends only on current input
Represents logical functions

Sequential
Has memory → has internal state
Output depends on input and internal state
Captures sequence of steps

4/34Computer Architecture, Digital circuits, summer 2023/2024

Logic functions and truth tablesLogic functions and truth tables

Logic function (also Boolean function)
Output value is a function of input values

f: Bk → B, where B = { 0, 1 } and k ∈ N is arity

Truth table
Function defined by enumerating the output for each
combination of inputs (a table 2k rows for k inputs)

Inputs Output
a b
0 0 0
0 1 1
1 0 1
1 1 1

f(a, b)

5/34Computer Architecture, Digital circuits, summer 2023/2024

Boolean algebraBoolean algebra

Logic functions expressed as equations
Variables hold values from B = {0, 1}
Basic operators – primitive logic functions

Logical inversion (NOT): x, ¬x, !x
Logical product, conjunction (AND): x ∙ y, x ∧ y, x && y
Logical sum, disjunction (OR): x + y, x ∨ y, x || y

Additional operators (16 for 2 variables)
NAND, NOR, XOR etc.

6/34Computer Architecture, Digital circuits, summer 2023/2024

Logic operatorsLogic operators

Inputs Basic operators Universal operators
a b

¬ ∧ ∨ ↑ ↓
0 0 1 0 0 1 1
0 1 1 0 1 1 0
1 0 0 0 1 1 0
1 1 0 1 1 0 0

NOT a a AND b a OR b a NAND b a NOR b

Inputs Other operators
a b

⊕ ↔ → ← ... ⊥ ⊤
0 0 0 1 1 1 ... 0 1
0 1 1 0 1 0 ... 0 1
1 0 1 0 0 1 ... 0 1
1 1 0 1 1 1 ... 0 1

a XOR b a XNOR b

7/34Computer Architecture, Digital circuits, summer 2023/2024

Boolean algebra lawsBoolean algebra laws

Idempotency: a + a = a, a ∙ a = a

Computativity: a + b = b + a, a ∙ b = b ∙ a

Associativity: a + (b + c) = (a + b) + c, a ∙ (b ∙ c) = (a ∙ b) ∙ c

Absorption: a ∙ (a + b) = a, a + (a ∙ b) = a

Distributivity: a ∙ (b + c) = (a ∙ b) + (a ∙ c), a + (b ∙ c) = (a + b) ∙ (a + c)

Neutrality of 0 and 1: a + 0 = a, a ∙ 1 = a

Aggressivity of 0 and 1: a + 1 = 1, a ∙ 0 = 0

Complementarity: a + ¬a = 1, a ∙ ¬a = 0

Absorption of negation: a ∙ (¬a + b) = a ∙ b, a + (¬a ∙ b) = a + b

De Morgan’s laws: ¬(a + b) = ¬a ∙ ¬b, ¬(a ∙ b) = ¬a + ¬b

Double negation: ¬(¬a) = a

8/34Computer Architecture, Digital circuits, summer 2023/2024

Intermezzo: CPU logical operations (1)Intermezzo: CPU logical operations (1)

Logic functions extended to operate on
(finite) sequences of bits

Word = finite sequence of bits
Word length = number of bits in the sequence
Output of a logic operation a is function of input
values

f: (Bn)k → Bn, where B = {0, 1}, k∈N is arity and n∈N is
word length

9/34Computer Architecture, Digital circuits, summer 2023/2024

Intermezzo: CPU logical operations (2)Intermezzo: CPU logical operations (2)

(Bitwise) logical product/sum/inversion
Operators &, |, ~ etc. in C-like languages
Primitive logic function applied to individual bits of
the input words, result stored to individual bits of
the output word
Allow isolating (AND), zeroing (AND, NOR), setting
(OR), inverting (XOR) selected bits, or inverting all
bits (NOT), of the input word

10/34Computer Architecture, Digital circuits, summer 2023/2024

Intermezzo: CPU logical operations (3)Intermezzo: CPU logical operations (3)

Logical shifts (left and right)
Operators << and >> in C-like languages
Shifts bits in a words i positions to the left or right

“Vacated” bits are replaced with 0
For binary natural numbers

Shift by i bits to the left → multiplying by 2i

Shift by i bits to the right → dividing by 2i

11/34Computer Architecture, Digital circuits, summer 2023/2024

Logic gates (1)Logic gates (1)

Physical implementation basic logic functions
Basic gates: NOT, OR, AND

a ¬a

OR a + b

a

b
AND a ∙ b

a

b

12/34Computer Architecture, Digital circuits, summer 2023/2024

Logic gates (2)Logic gates (2)

Physical implementation of logic operators
Inverting gates: NAND, NOR
Less common gates: XOR

¬(a ∙ b)

a

b
NAND

¬(a + b)

a

b
NOR

a ⊕ b

a

b
XOR

13/34Computer Architecture, Digital circuits, summer 2023/2024

Combinational logic circuitsCombinational logic circuits

Implementation of more complex logic
functions

Combines multiple logic operators
Logic signals correspond to variables
Logic gates correspond to primitive operators

Most commonly NAND or NOR gates
Sufficient for expressing any logic function

Logic block
Abstracts away from internal structure of a circuit
Provides functional building blocks

14/34Computer Architecture, Digital circuits, summer 2023/2024

Logic blocks: binary (half) adderLogic blocks: binary (half) adder

Adds two 1-bit numbers
The simplest case
Input:

operand a
operand b

Output:
sum s
carry c

Function:
s = a · ¬b + ¬a · b = a XOR b
c = a · b = a AND b

½∑

a b

s

c

Inputs Outputs
a b c s
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

15/34Computer Architecture, Digital circuits, summer 2023/2024

Logic blocks: binary (half) adder (2)Logic blocks: binary (half) adder (2)

½∑

AND

XOR

s

c

a b

16/34Computer Architecture, Digital circuits, summer 2023/2024

Logic blocks: binary adder (3)Logic blocks: binary adder (3)

n-bit ∑
½∑

a0 b0

s0c0

½∑

a1 b1

s1c1

½∑

a2 b2

s2c2

½∑

an-1 bn-1

sn-1cn-1

...

Adding n-bit numbers
Merge n ½-adders for individual bits?

½-adder cannot propagate carry from previous
additions (not enough inputs)

17/34Computer Architecture, Digital circuits, summer 2023/2024

Logic blocks: binary adder (4)Logic blocks: binary adder (4)

Full adder
Adds two 1-bit numbers
taking into account carry
from previous addition
Input:

operand a
operand b
carry c0

Output:
sum s
carry c

∑

a b

s

c c0

18/34Computer Architecture, Digital circuits, summer 2023/2024

Logic blocks: binary adder (5)Logic blocks: binary adder (5)

Full adder
Adds two 1-bit numbers
taking into account carry
from previous addition
Inputs: operand a, operand b,
carry c0

Outputs: sum s, carry c
s = ¬c0 · (a · ¬b + ¬a · b) + c0 · (a · b + ¬a · ¬b)
s = ...
s = c0 XOR (a XOR b)
c = a · b + c0 · (a · ¬b + ¬a · b)
c = (a AND b) OR (c0 AND (a XOR b))

a b c s
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

c
0

19/34Computer Architecture, Digital circuits, summer 2023/2024

Logic blocks: binary adder (6)Logic blocks: binary adder (6)

∑

AND

s1

c1

a b

OR

AND
c2

s2

c

s

XOR

XOR

c0

20/34Computer Architecture, Digital circuits, summer 2023/2024

Logic blocks: binary adder (7)Logic blocks: binary adder (7)
Abstraction:
a + b + c0 = (a + b) + c0

∑

s1

c1

a b

OR

c2

s2

c

s

c0

½∑

½∑

21/34Computer Architecture, Digital circuits, summer 2023/2024

Logic blocks: binary adder (8)Logic blocks: binary adder (8)

n-bit ∑
...

a0 b0

s0

∑

a1 b1

s1

∑

an-1 bn-1

sn-1

∑c 0

add

a b

s

c

Function block:

22/34Computer Architecture, Digital circuits, summer 2023/2024

Logic block for subtractionLogic block for subtraction

Taking advantage of 2’s complement
Basic building block: adder
Use XOR gate as a controlled inverter
Example: 2-bit ALU supporting addition and
subtraction

Data input: operand bits a1a0, operand bits b1b0

Control input: signal SUB to determine operation
SUB = 0 → addition
SUB = 1 → subtraction

Output: sum/difference bits s1s0, carry c

23/34Computer Architecture, Digital circuits, summer 2023/2024

2-bit ALU for adding/subtracting2-bit ALU for adding/subtracting

2-bit
ALU

a0 b0

s0

∑

a1 b1

s1

∑c

SUB

XORXOR

SUB = 1 inverts bits of
the second operand and
adds 1 (negates number)

ALU

a b

s

opc

24/34Computer Architecture, Digital circuits, summer 2023/2024

Sequential logicSequential logic

Combinational logic + memory elements
Memory elements keep internal state
Inputs and the contents of memory (internal state)
determines outputs and next internal state

Synchronous vs. asynchronous sequential circuits
Determines how and when state changes
Need to ensure stable inputs (inputs don’t change)

Memory
element 1

Combinational
logic

Memory
element 2

25/34Computer Architecture, Digital circuits, summer 2023/2024

Synchronous sequential circuitsSynchronous sequential circuits

Clock signal to synchronize state changes
Change state during one clock cycle

Inputs of combinational logic does not change while it
is being read
Writing of values from outputs to memory elements
happens with rising/falling edge of the clock signal

rising edge falling edge

clock signal period

26/34Computer Architecture, Digital circuits, summer 2023/2024

Memory elementsMemory elements

Pair of inverters in a feedback loop
Asynchronous circuit with two stable states

Allows “storing” 1 bit of information
Need to be able to control the state…

We need a gate that can pass the signal unchanged,
but allows forcing an output value when required

Basic building block for memory elements

q q

27/34Computer Architecture, Digital circuits, summer 2023/2024

Set-Reset (R-S) latch, NOR-basedSet-Reset (R-S) latch, NOR-based

Inputs Outputs

0 0
0 1 1 0
1 0 0 1
1 1 ? ?

r s qn qn

qn-1 ¬qn-1

r

s

q

q

r

s

q

q

28/34Computer Architecture, Digital circuits, summer 2023/2024

Set-Reset (R-S) latch, NAND-basedSet-Reset (R-S) latch, NAND-based

s

r
`

q

q

Inputs Outputs

r s

0 0 ? ?
0 1 0 1
1 0 1 0

1 1

q
n

q
n

q
n-1 ¬q

n-1

s

r

q

q

29/34Computer Architecture, Digital circuits, summer 2023/2024

Other flip-flopsOther flip-flops

Derived from R-S
Clocked R-S latch

Synchronous R-S latch variant
Reacts to R or S signals while the clock signal is high

R-S master/slave (R-S flip-flop)
Two clocked R-S latches (in series) with complementary
clock signal
Reacts to R or S signals only on rising/falling edge of the
clock signal

S Q

R ¬Q

30/34Computer Architecture, Digital circuits, summer 2023/2024

Other flip-flops (2)Other flip-flops (2)

Derived from R-S
J-K master/slave (J-K flip-flop)

Extends R-S (J = S, K = R), inverts state when J = K = 1
Clocked D latch, D flip-flop

Value determines by single input
T flip-flop

Allows dividing clock signal frequency

J Q

K ¬Q

D Q

 ¬Q

Q
T

 ¬Q

31/34Computer Architecture, Digital circuits, summer 2023/2024

Data register made of flip-flopsData register made of flip-flops

CLOCK

DATA

D Q

dn–1

D Q

d0

D Q

d1

...

.........

qn–1 q1 q0.........

32/34Computer Architecture, Digital circuits, summer 2023/2024

Shift register made of flip-flopsShift register made of flip-flops

CLOCK

D QDATA D QD Q

...

qn–1 q1 q0.........

33/34Computer Architecture, Digital circuits, summer 2023/2024

32-bit sequential multiplier32-bit sequential multiplier

32-bit ∑

A

Shift Arith. Right

Write

Control

Test

64-bit A×B

34/34Computer Architecture, Digital circuits, summer 2023/2024

32-bit sequential divider32-bit sequential divider

32-bit ALU

B

Shift Right

Write

Control

Test

64-bit A div BA mod B

Shift Left

