Computer Architecture
Processor implementation

http://d3s.mff.cuni.cz/teaching/nswil43

Lubomir Bulej
bulej@d3s.mff.cuni.cz

CHARLES UNIVERSITY IN PRAGUE

faculty of mathematics and physics

http://d3s.mff.cuni.cz/teaching/nswi143

Implementing simplified RISC-V ISA

o RISC-V: a family of related ISAs

= Primary base integer variants: RV32l, RvV64l
= RV32E (subset of RV32l), RvV128I (future)

o RV32i

= 32 general-purpose 32-bit registers: x0 — x31

e X0/zero wired to zero
e other uses defined by ABI

= 32-bit program counter register (PC)
= Control and status registers (CSRs)

e Exception cause, exception instruction address, time
counter, etc.

Computer Architecture, Processor implementation, summer 2023/2024

Implementing simplified RISC-V ISA (2)

e Memory

= Access to 4-byte aligned addresses only
e Corresponds to 32-bit word length of the processor
= |ndirect addressing with immediate displacement

e Load: R2 := mem|[R1 + immediate]
e Store: mem[R1 + immediate] := R2

Computer Architecture, Processor implementation, summer 2023/2024

Implementing simplified RISC-V ISA (3)

e Operations

m Arithmetic and logic
e Fully orthogonal, three-operand instructions
e Source operands: register/register, register/immediate
e Target operand: register
e Includes data movement between registers
= Load/store operations
e Move data between registers and memory (load/store architecture)
m Conditional branch
e Tests equality/inequality of two registers
m Unconditional jumps

e Including jumps to subroutine and indirect jumps (return from a
subroutine) -'

m Special instructions

Computer Architecture, Processor implementation, summer 2023/2024

Implementing simplified RISC-V ISA (4)

o Single-cycle datapath

= Basic organization of data path elements
e Combinational and sequential blocks
= QOperations executed in one long cycle

e Suitable for operations of similar complexity

e Writes to memory elements synchronized by clock
= Clock signal is implicit, will not be shown

= Simplification: separate instruction memory
(Harvard architecture)

Computer Architecture, Processor implementation, summer 2023/2024

Implementing simplified RISC-V ISA (5)

e Steps to execute an instruction

1. Fetch instruction from memory
e Read from an address supplied by the PC register
2. Decode instruction and fetch instruction operands

3. Execute operation corresponding to the opcode

e Register operations, computing address for accessing
memory, comparing operands for conditional branch.

4. Store the result of the operation
e Write data to register or memory
5. Adjust PC to point at next instruction

e One that immediately follows the current
e One thatis a target of a jump or branch

Computer Architecture, Processor implementation, summer 2023/2024

Reading an instruction (fetch)

o Address provided by PC register

= PC not directly accessible to a programmer

Fetch
PC [address

: 32
Instruction b instruction

Instruction
Memory

Computer Architecture, Processor implementation, summer 2023/2024

Advancing to next instruction

e Increment PC by 4

= Default unless branching or jumping
= Simple thanks to fixed instruction size

Computer Architecture, Processor implementation, summer 2023/2024

Support for reading instructions

Address
INSTrUCtion qu—

100000004

Instruction
Memory

Computer Architecture, Processor implementation, summer 2023/2024

Register operations (add, sub, ...)

R-type funct?7 rsl funct3 opcode
format [31:25] (7) [19:15] (5) | [14:12] (3) [6:0] (7)

RegWrite
I ALUOp
32 2
5 Read Register |3
r$1 =< register 1 data1| °
= [result
5 -
B3| Read Register | 32 <
register 2 data2 [<
5 .
. N—p| Write
register
32 _
——p| Write
data
Registers

Computer Architecture, Processor implementation, summer 2023/2024

Support for register operations

0000000

ALUControl

—t PC @ Address () I—@RegWrite

INSTruction fes—nsn Write
00000000
Instruction sl RD_Reg1 Regl_Data
Memory
rs2 RD_Reg? Reg2_Data {
rd WR_Reg —|
m—t\\'R_Data Reg[ster
opcode File
funct?
funct3

Computer Architecture, Processor implementation, summer 2023/2024

Immediate operand operations (addi, ...)

I-type immediate [11:0] rsl funct3 opcode
format [31:20] (12) [19:15] (5) | [14:12] (3) [6:0] (7)

32 (Imm) 32

Instruction < Gen <
RegWrite ALUOp
4
<1 :5 | IRead Register 3’2
register 1 datal] “
result
5 Write
. < register
32 .
< Write
data -
Registers L

Computer Architecture, Processor implementation, summer 2023/2024

Generating immediate values

e Values from instruction word

= Different bit lengths (12 or 20 bits)
= Some values shifted left by one bit
= Bit positions depend on format

= All values sign-extended to 32-bits

Computer Architecture, Processor implementation, summer 2023/2024

Generating immediate values (2)

X11

e Sign extension

Sign Extend
12 to 32 bits

Computer Architecture, Processor implementation, summer 2023/2024

o Logical shift

X31

32-bit shift
left logical

X30

- V31

Generating immediate values (3)

e Arithmetics, loads

insn X32

x32)imm_i

e Conditional branches

Computer Architecture, Processor implementation, summer 2023/2024

Support for immediate operands

00000004

Immediate
Insn Imm
Generator
. ALUControl
RegWrite
Address
_ Instruction Insn Write
100000000
Instruction rs1 RD_Reg1 Regl_Data AOP
Memory] Zero
rs2 RD_Reg2 Reg2?_Data .
rd WR_Reg . OF
WR_Data Register 0
opcode File
funct7 Q1 JALUSTC
‘funcB

Computer Architecture, Processor implementation, summer 2023/2024

Multiplexer (mux)

® Selects one of several inputs

= Selector: n-bit number S&{0, ..., 2"}
= Data input: N=2" m-bit values xo, X1, ..., Xn-1
= Data output: m-bit value y=x;

—
=1 O

x, = 1

Xy, = N-1

Computer Architecture, Processor implementation, summer 2023/2024

Implementing a multiplexer

e Binary to “1-hot” decoder

= Activates 1 (selected output) of N outputs
= Input: n-bit number BE{0, ..., 2"}
= N=2" outputs: B-th output logical 1 (hot), other

outputs logical O
/ —

= P h,
B e 8'
4 - 5,

\»hs

Computer Architecture, Processor implementation, summer 2023/2024

Binary to 1-hot for N=4 outputs

Inputs Outputs
h
e @ 0 0 0 & _+:D
© 1 0 o 1 o
1 0 0 1 o0 o
1 1 1 0 0 o — —> h,

Computer Architecture, Processor implementation, summer 2023/2024

Implementing a multiplexer (4x 1-bit)

S
1
Y Mux
1-hot
Xo >
-
X1 >
— |/
. —
X7 -
.
X3 P

Computer Architecture, Processor implementation, summer 2023/2024

Loading words from memory (lw)

I-type immediate [11:0] rsl funct3 opcode
format [31:20] (12) [19:15] (5) | [14:12] (3) [6:0] (7)

32 ImmY 32

instruction < Gen <
RegWrite ALUO
p
>, Read Register |32
S register 1 data 1 N
Address

5 Write Data [+
.) register

:32 I Write
. Memory
Registers &
MemRead ‘

Computer Architecture, Processor implementation, summer 2023/2024

Storing words to memory (sw)

S-type imm [11:5]
format [31:25] (7)

rsl funct3 | imm [4:0] | opcode
[19:15] (5) [14:12] (3) [11:7] (5) [6:0] (7)

. . 32 (Imm}) 32
instruction S S

Gen/
RegWrite \ ALUOP MemWrite
2 | Read Register 532
rs register 1 data 1 D
Address
S Read
- e register 2
Register| 32 > Write
data2| O Data
Data
. Memory
Registers

Computer Architecture, Processor implementation, summer 2023/2024

Support for memory access (load/store)

0000000

Immediate
Insn Imm
Generator

— PC @t A\ddress

Instruction

Instruction
Memory

linsn

I—@RegWrite

opcode

funct?7

funct3
) N

Write

ALUControl

RD_Reg1 Regl_Data
RD_Reg2 Reg2_Data

WR_Reg

WR Data Register
File

ALUSrc

<<

chitecture, Processor implementation, summer 2023/2024

. O

MemWrite

MemRead

Read Write
} Address

Write Data

Data
Memory

x1 |[MemToReg

Data fe—

Conditional branch, PC-relative (beq)

SB-type | imm [12,10:5] rsl | funct3 'imm [4:1,11]] opcode
format [31:25] (7) [19:15] (5) | [14:12] (3) [11:7] (5) [6:0] (7)
<
C
>
4
- instruction
©
PC
32
_ N
N\
RegWriteI
- ALUO
5 Read Register 32 P
rsl =< register 1 data 1
zero?

5 Read Register | .,
- <—> register 2 data 2

Registers

Computer Architecture, Processor implementation, summer 2023/2024

Support for conditional branch

—@Branch

<

0000000

G
O

Address
Instruction

Instruction
Memory

Immediate

Insn Imm
Generator

opcode
funct7

funct3

\—

+ MemWrite
. ALUControl MemRead
I—@Regerte
Write
ROLREg] (Rag e Read Write
RD_Reg2 Reg2_Data
} Address
WR_Reg 1 [\Lf\ Data f—
WR_Data Register 0X Write Data
File Data
ALUSrc Memory

<<

chitecture, Processor implementation, summer 2023/2024

(=)

x1 |[MemToReg

Uncond. jump and link, PC-relative (jal)

UJ-type immediate [20,10:1,11,19:12] opcode
format [31:10] (20) [6:0] (7)

<
C
>
4
PCSrc 32 32
t . B
S Instruction
©
PC
32
! \
N\
RegWriteI
5 Write
-—\V—F register
Write
> data
. %
Registers

Computer Architecture, Processor implementation, summer 2023/2024

Single-cycle datapath control

e Controls the flow of data

= Depending on the type of operation

= Responsible for control signals

e Source of the next value of PC
e Write to registers

e Write to memory

e ALU operations

e Mux configuration

Computer Architecture, Processor implementation, summer 2023/2024

Example: datapath control for add

Branch

<

0000000

G
O

Address
Instruction

Instruction
Memory

Immediate

Insn Imm
Generator

opcode
funct?7

funct3

\—

+ MemWrite
. ALUControl | CCEC> MemRead
I—@Regerte
Write
AL Rl Read Write
RD_Reg2 Reg2_Data
} Address
WR_Reg 1 I\Lf\ Data fe—
WR_Data Register 0X Write Data
File Data
{ Op]aLusrc Memory

<<

chitecture, Processor implementation, summer 2023/2024

N -)

$bjMemToReg

Example: datapath control for Iw

Branch

(><L§
o

0000000

+ MemWrite

Immediate
Insn Imm
Generator
ReqWrite ALUControl| €CO@> MemRead
— PC Address r@ gwn
— Instruction pinsn Write
0000000 . U
'"f\ﬁ%}ﬁﬂ?y - RD-Regl Regl-vata Read Write
rs RD_Reg2 Reg2_Data
} Address
rd WR_Reg ™ Data fe—
. U
opode WR_Data Register 0 X Write Data
File Data
funct?7 ALUSrc Memory
funct3
MO
U
X1
b|MemToReg

chitecture, Processor implementation, summer 2023/2024

Example: datapath control for sw

Branch

(><L§
o

0000000

+ MemWrite

Immediate
Insn Imm
Generator
. ALUControl| €CO@> MemRead
= PC Address () Reante
— Instruction pinsn Write
0000000 . feal Dat
'"ﬂ%}%ﬂ?f - RD-Regl Regl-vata Read Write
rs RD_Reg2 Reg2_Data
} Address
rd WR_Reg ™ Data fe—
. U
opcode WR_Data Register 0 X Write Data
File Data
funct? ALUSrc Memory
funct3
MO0
U
X1

¥bjMemToReg

chitecture, Processor implementation, summer 2023/2024

Example: datapath control for beq

—@Branch

(><L§
o

0000000

+ MemWrite

Immediate
Insn Imm
Generator
. ALUControl| €00@> MemRead
= PC Address () Regerte
— Instruction pinsn Write
0000000 | . 1 feal Dat
n?\}%lnﬁg?; N RD-Regl Regl-Data Read Write
rs RD_Reg2 Reg2_Data
} Address
rd WR_Reg ™ Data fe—
. U
opcode WR_Data Register 0 X Write Data
File Data
funct7 { @p]ALUSKC Memory
funct3
M O
U
X1

¥bjMemToReg

chitecture, Processor implementation, summer 2023/2024

Datapath controller

e Responsible for generating control signals

Signal values determined by instruction opcode

Some control signals can be directly embedded in
the instruction word

opcode ALUSrc MemToReg RegWrite MemRead MemWrite Branch ALUOp

R-format 0 %) 1 %) %) %) 10 (func)
|-format 1 0 1 0 0 0 10 (func)
lw 1 1 1 1 0 0 00 (add)
sw 1 ? 0 0 1 0 00 (add)
begq) ? 0 0 0 1 @1 (sub)

Computer Architecture, Processor implementation, summer 2023/2024

ROM-based controller

e Signal values stored in read-only memory

= Each word contains the values of all control signals
= Words addressed by the opcode

0000O011..

0100011...sw 2 ROM 32 x9

0010011...i-format 0 0

0110011.. rformat :4 A37

1100011... beq -1 C

1101111..jal Ag, ALUSI’C
AH ;
= :;1 >MemToReg
AP x1 >RegWrite
P\ ot 5
= :21 >MemRead
AP x1 >MemWrite
A

s) B Branch

A

Computer Architecture, Processor implementation, summer 2023/2024

ROM-based controller (2)

o Implementation issues

= Making ROM faster than the datapath
e Real MIPS

= Approx. 100 instructions and 300 control signals
e Control ROM capacity needed: 30000 bits (~ 4 KB)
= Real RISC-V at |least as complex

e Optional extensions can add significant complexity

Computer Architecture, Processor implementation, summer 2023/2024

Logic-based controller (combinational)

e Faster alternative to ROM

= Observation: only a few control signals need to be
set to one (zero) at the same time

= Contents of ROM can be efficiently expressed
using logic functions

\

r-format 7Y

i-format @ @

Iw ® ® . 4
Opcode [z D——tosroie [\

0000011...lw Decoder peq I
0100011...sw (gates)

0010011...i-formaf jal
0110011.. r—formari”)a”d/
1100011...beq N~ N—"

1101111..jal

@ @ © ©

ALUSrc MemToReg RegWrite MemReadMemWrite Branch ALUOp

Computer Architecture, Processor implementation, summer 2023/2024

Instruction cycle

e Datapath with continuous read

= No problem in our design

e Writes (PC, RF, DM) are independent
e No read follows write in the instruction cycle

e Instruction fetch does not need control

m After instruction is read, the controller decodes instruction
opcode into control signals for the rest of the datapath

= When PC changes, datapath starts processing another instruction

1 b
!

Read from Read registers Read from Write to data memory
insn memory (Read control ROM) data memory Write to registers
Write to PC

Computer Architecture, Processor implementation, summer 2023/2024

Single-cycle processor performance

e Each instruction executed in 1 cycle (CPI=1)

= Single-cycle controller (control ROM or a
combinational logic block)

= Generally lower clock frequency

= Clock period respects the “longest” instruction
e Load Word (lw) in our case
e Usually multiplication, division, or floating point ops
= Datapath contains duplicate elements

e Instruction and data memory, two extra adders

Computer Architecture, Processor implementation, summer 2023/2024

Multi-cycle datapath

e Basic idea

= Simple instructions should not take as much time
to execute as the complex ones

e Variable instruction execution time

= Clock period is constant (cannot be changed
dynamically), we need a , digital” solution

= We can make clock faster (shorter period) and split
instruction execution into multiple stages

e Clock period corresponds to one execution stage
e Fixed machine cycle (clock period)
e Variable instruction cycle

Computer Architecture, Processor implementation, summer 2023/2024

Example: multi-cycle CPU performance

¢ Rough estimate, assuming the following

= Simple instructions take 10 ns to execute
= Multiplication takes 40 ns
= [nstruction mix with 10% of multiplications

¢ Single-cycle datapath
= Clock period 40 ns, CPI=1 - 25 MIPS
e Multi-cycle datapath

= Clock period 10 ns, 13 ns per instruction (average)
= CPI=1.3 - 77 MIPS (3x improvement)

Computer Architecture, Processor implementation, summer 2023/2024

Multi-cycle datapath (2)

¢ Instruction cycle

1. Read instruction from memory

2. Decode instruction, read registers, compute
branch target address

3. Execute register operation / compute address for
memory access / finish branch or jump

4. Write register operation results / access memory
5. Finish load from memory

Computer Architecture, Processor implementation, summer 2023/2024

Multi-cycle datapath (3)

o Implementation issues

= |[nstruction execution split to stages

e Need to isolate stages using latch registers to
“remember” results from previous stage

= Need to keep track of stages
e Different sequences for different instruction types

e Some instructions may skip stages and finish early
e Controller needs to remember state - sequential logic

Computer Architecture, Processor implementation, summer 2023/2024

Multi-cycle datapath (4)

Lp_C_’<

Computer Architecture, Processor implementation, summer 2023/2024

-
@
Insn Read Register
Register register1 datal
—pp-| Address —_— T
Instruction register 2 Out
Dat _ _
oram Write Register
—p-| Data register data 2
Data Write
Memor :
y Register IT data
Register File

Stage 1: Instruction Read

e Common for all instructions

= |R & Memory|[PC]

e Read instruction into Instruction Register
e Memory is used for both instruction and data access
e Need to “remember” the instruction being executed

= ALUOut < PC+4

e Compute the address of next instruction
e Do not update PC before computing branch target

Computer Architecture, Processor implementation, summer 2023/2024

Stage 2: Instruction Decode, Read Regs.

® Common for all instructions
® A & Reg[lIR.rs1]

® Read contents of source register 1

® Store value into latch A for next stage
® B & Reg[lIR.rs2]

® Read contents of source register 2

® Store value into latch B for next stage
® ALUOut & PC + Immediate
® Compute branch/jump target (type-B/type-J)
® Relative to current instruction (before updating PC)

® Remains unused if not a branch/jump
® PC & ALUOUt (PC + 4)

® Advance PC to next instruction. This will not change the instruction bei
executed: it was stored in the Instruction Register

Computer Architecture, Processor implementation, summer 2023/2024

Stage 3: Execute / address calc.

® Branch instruction (finish)

® (A==B)=PC & ALUOut (branch target)

® Branch target in ALUOut from previous stage
® Jal instruction (finish)

® Reg[IR.rd] ¢ PC + 4 (next instruction)
B PC < ALUOuUt (jump target)

® Jump target in ALUOut from previous stage

® Register operation

® ALUOut € A funct B, or alternatively
® ALUOut €& A funct Immediate (type-l, type-U)

® Memory access
® ALUOut € A + Immediate (type-l, type-S)

® Compute address for memory access

Computer Architecture, Processor implementation, summer 2023/2024

Stage 4: Write Results / memory access

o Register operation (finish)

= Reg[IR.rd] &< ALUOuUt
e Result in ALUOut (from previous stage)

e Write to memory (finish)

= Memory[ALUOut] < B
e Address in ALUOut (from previous stage)

e Read from memory

= DR & Memory[ALUOut]

e Address in ALUOut (from previous stage)
e Store data into latch DR for next stage

Computer Architecture, Processor implementation, summer 2023/2024

Stage 5: Finish reading from memory

¢ Read from memory (finish)
= Reg[IR.rd] ¢ DR

e Value stored in DR (from previous stage)

Computer Architecture, Processor implementation, summer 2023/2024

Multi-cycle datapath implementation

/—r-@PCWriteCond
_G—@PCWrite —

Write
PC
[_ ®
ALUControl|__ x4
. (o)
MemWrite o
MemRead IRWrite F3 !
r@Reante ALUSrcA [x1
Read Write @ | A
OM Write OMm
y Address -/ y AOp
1 X Write RD_Reg1 Regl_Data A 7 X Zero
Data fem@@e=t INSN o — — ALU
, $2 RD_Reg2 Reg2_Data R out @
lorD p==tWrite Data JM u
" rd WR_Reg 0000000 4= 1! B 2
emory =) 1 \\/R_Data Register 2 [
File
ALUSrcB | x2
Immediate
Insn Imm
Generator
2
M
=t Data “i
()
x2_|WDataSrc

hitecture, Processor implementation, summer 2023/2024

Multi-cycle datapath control

e Sequential process

= |nstructions executed in multiple cycles

= Controller is a sequential circuit (automaton)

e Current state stored in a state register

e Combinational block determines next state

= Depends on current state and instruction being executed
= Updated on rising edge of the clock signal

Instruction fetch/decode
START - Register fetch <
Y Y | Y Y
Memory access R-type Branch Jal

instructions instructions instruction instruction
| | |

Computer Architecture, Processor implementation, summer 2023/2024

Instruction fetch/decode, Register fetch

Instruction fetch

Instruction decode

lorD=0 Register fetch
MemRead 1 PCWrite
START IRWrite ALUSrcA=0
ALUSrcA=0 ALUSrcB=10b
ALUSrcB=01b ALUOp=00b
ALUOp=00b
Op=="Iw'
p==R-type p=Dbeq pP=a
| Op==R-t Op='beq' Op='jal'
Op=="sw' *
Memory access R-type Branch Jal
instructions instructions instruction instruction
| | |

Computer Architecture, Processor implementation, summer 2023/2024

Memory access instructions

Memory address computation

From 1

5

Memory
access

Memory
access

Memory read
completion step

Computer Architecture, Processor implementation, summer 2023/2024

R-type instructions

R-type execution

From 1

7

Register
operation
completion

To O

Computer Architecture, Processor implementation, summer 2023/2024

Branch instruction

Branch completion

12
From 1

To O

Computer Architecture, Processor implementation, summer 2023/2024

Jal instruction

Jal completion

13

From 1

To O

Computer Architecture, Processor implementation, summer 2023/2024

Multi-cycle datapath control (2)

Instruction fetch
PC update

0

Instruction decode
Register fetch
Branch target

START

Memory address
computation

2

Jal
completion

(@)
L R-type
Y, execution

Op==Ilw
P %

Memory
access

Branch
completion

3

R-type
completion

Memory load
completion

4

Computer Architecture, Processor implementation, summer 2023/2024

I-type instructions

I-type execution

From 1

9

Register
operation
completion

To O

Computer Architecture, Processor implementation, summer 2023/2024

Multi-cycle datapath control (3)

Instruction fetch
PC update

0

Instruction decode
Register fetch
Branch target

START

Memory address
computation

2

Jal
completion

(@)
2 R-type
‘?s;t execution

I-type
execution

Op==lw

Memory
access

Branch
completion

3

R-type
completion

I-type
completion

Memory load
completion

4

Computer Architecture, Processor implementation, summer 2023/2024

Flow of instructions

e Normal/expected flow

= Sequential: common code operating on data
= Non-sequential: branches and jumps

e Unexpected flow

= Internal (Exception/Trap)

e Invalid instruction

e Arithmetic overflow, division by zero (not on RISC-V)

e Unauthorized access to memory

e Requesting service from operating system (system call)
e Hardware failure

= External (Interrupt)

e Request for “attention” from an 1/O device
e Hardware failure

Computer Architecture, Processor implementation, summer 2023/2024

Supporting exceptions and interrupts

e Hardware support (minimum necessary)

= Stop executing an instruction
e Maintain valid processor and computation state
= Allow to identify cause

e Flag bits in a special register
e |dentifier of exception type
= Store address of instruction that caused exception

e Allows re-executing or skipping an instruction on
resume

= Jump to exception/interrupt handler

e Single address for all exceptions/interrupts
o Multiple addresses corresponding to exception type

Computer Architecture, Processor implementation, summer 2023/2024

Invalid instruction exception

Invalid
instruction

From 1

Invalid
instruction

To O

Computer Architecture, Processor implementation, summer 2023/2024

Multi-cycle datapath control (4)

Instruction fetch
PC update

0

Instruction decode
Register fetch
Branch target

15
START

Invalid
instruction

Memory address
computation

8
2

O
2 R-type
\?:2& execution

I-type
execution

Op==Iw

Memory
access

3

R-type
completion

I-type

completion

Memory load
completion

Jal
completion

Branch
completion

4

Computer Architecture, Processor implementation, summer 2023/2024

Supporting exceptions and interrupts (2)

e Software handler

= Store the current state of computation
e Save contents of CPU registers to memory

= Determine the cause of exception/interrupt and
execute the corresponding handler routine

e Deal with I/O device

e Deal with memory management

e Continue/terminate current process
e Switch to another process

= Restore state of current (next) process
= Resume execution (jump into) of current (next) process

e Restart instruction that caused an exception
e Continue from next instruction

Computer Architecture, Processor implementation, summer 2023/2024

Multi-cycle datapath performance

® Instruction mix

® 30% load (5ns), 10% store (5ns)
® 50% add (4ns), 10% mul (20ns)

® Single-cycle datapath (clock period 20ns, CPI = 1)
® 20ns per instruction - 50 MIPS
® Coarse-grained multi-cycle datapath (clock period 5ns)
B CPI=~ (90% X 1)+ (10% X 4)=1.3
® 6.5ns per instruction - 153 MIPS
® Fine-grained multi-cycle datapath (clock period 1ns)
5 CPl~ (30% X 5) + (10% X 5) + (50% X 4) + (10% X 20) = 6
® 6ns per instruction - 166 MIPS

Computer Architecture, Processor implementation, summer 2023/2024

Implementing a sequential controller (1)

o Implementing a finite-state automaton

= State + transition conditions = memory +
combinational logic - sequential logic

e Implementation depends on internal state
representation

= Sequential circuitry

e 1 flip-flop per state (only one active at a time), active
state shifted through enabling gates between flip-flops

o State register + combinational logic
= Simple sequencer + control memory

e Micro- and nano- programming

Computer Architecture, Processor implementation, summer 2023/2024

Implementing a sequential controller (2)

e State and transitions as flip-flop chains

st0 stl st2 st5
sto if stl de
st2 ma
1 st5 sw
] o=
Power-on value
st3 st4
st3 Ivﬁ st4 lw
st6
st7
\ st6_re st7 re
Decoder .—D_
(gates) r-type
i-type st8
opcode [T Dmmmorce [) -
}Opcode
PeosE oooxgo11 I i o i i *t9
0000011 sv\\/,v branch st8 imm st9 imm
0010011 ...i-type ial
0110011 ...rtype Lo e
110001 1...branch '”/Va"d/ st12
1101111..jal ._D_stIZ br
stl3
._D_;t13 jal
stl5
_D_btls inv

Computer Architecture, Processor implementation, summer 2023/2024

Implementing a sequential controller (3)

e Outputs as a functions of state

sto_if [x1 ® ®

stl_de|xl . 4

st2_ma| x1

st3_Iw|x1 4

st4_Iw|x1

st5_sw|x1 \ 4
st6_reg | x1 . 4
st7_reg | x1

st8_imm| x1

st9_imm| x1

stl2_br|x1 4 . 4

st13_jal| x1) L 4

RegWrite

lorD —J3 >IRwrite
—DPCWriteCond —DMemWrite OPCSource
PCWrite MemRead WDataSrc ALUSIcA

Derive control signals from controller state
Each signal collects states in which it is active

rchitecture, Processor implementation, summer 2023/2024

Implementing a sequential controller (4)

rcwite . o State register
MemRead .
e Control logic
Control PN = : : :
logic 5 [= Combinational logic
::i = ROM, FPGA
Inputs NSO
AAriha AAad
Ol A O
38| ¢ (318 KA
Instg:(c:i(:)igg ;iigl(i;ter ‘ ‘ State register ‘
I

Computer Architecture, Processor implementation, summer 2023/2024

Next state is next control ROM address

Control unit PCWrite
~ | PCWriteCond

lorD
MemRead
MemWrite
IRWrite

PLA or ROM

Outputs < | MemtoReg
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite
AddrCtl

—
-
o=

State
N
Adder A

Address select logic

? A

A

Op[5-0]

Instruction register
opcode field

Computer Architecture, Processor implementation, summer 2023/2024

Control memory address select logic

PLA or ROM

|

State

AddrCtl

Dispatch ROM 2

Dispatch ROM 1

T

? Address select logic

O

Instruction register
opcode field

Computer Architecture, Processor implementation, summer 2023/2024

Horizontal micro-instructions

e Direct representation of control signals

= Control memory contains raw control signals

= Micro-instruction = set of control signal values

e No need to decode (fast)
e Any combination is possible (flexible)
e Requires a lot of space

Control fields
R 13

RERERRIRRERER

Control lines

Computer Architecture, Processor implementation, summer 2023/2024

Vertical micro-instructions

e Encoded representation of control signals

= Microinstructions identify valid combinations of
control signals

e Decoded intro actual control signals using a decoder
e Reduces space at the cost of flexibility and latency

Enntrql fields

0 1 2
1 | I

STTTISES T

Single control field

Decoder 0] | Decoder 1 || Decoder 2 Decoder
YTYY T YERY YYYYYNYY “l!ll**illl*l
| Control lines | Control lines

Computer Architecture, Processor implementation, summer 2023/2024

Nano-programming

e Combines horizontal & vertical encoding

= Microprogram memory only contains numbers
representing valid combinations of control signals

(vertical format)

= Decoding to horizontal format is realized using
another memory (instead of a combinational
circuit) which contains the control signal
combination corresponding to microprogram code

= Significantly reduces the amount of space required
to store the microprogram, but increases decoding

latency

Computer Architecture, Processor implementation, summer 2023/2024

Micro- vs nano-programming

k= []Dgz{nﬂ
= | log, 100 |

w =41 bits = 7 bits
3 - e T
=) e Micro- =
:; .. -
it _Dngmul z program _
= Microprogram = _ &
=1 ™~ w =41 bits -
— g - =
= = =
£
=
s
\J Y 2
Total Arca=nxw = Microprogram Area =n X b = 2048 < 7
2048 > 4] = 83,968 bits = 14,336 hits

Nanoprogram Area =m X w = 100 x 4]
= 4100 bits
Total Area= 14336 + 4100 = 158,436 bits

Computer Architecture, Processor implementation, summer 2023/2024

