Version Control

(Sprava verzi)

http://d3s.mff.cuni.cz

e s Pavel Parizek
Dependable
parizek@d3s.mff.cuni.cz

FACULTY
OF MATHEMATICS

AND PHYSICS
Charles University




What is it good for ?

* Keeping history of system evolution

= Tracking progress

* Allowing concurrent work on the system
= Teams of developers
= Possible conflicts

®* Easy reverting to a previous version

= Safer experimentation

Nastroje pro vyvoj software Version Control 2



Typical architecture

Working copy Source code repository

% (versioned sources)

synchronization

T~

Working copy

Ndastroje pro vyvoj software Version Control 3




Basic usage scenario

Source code
check-out or update repository

Working copy

% 2. modify & test

add & check-in

Nastroje pro vyvoj software Version Control 4



Categories of versioning systems

® Centralized

= CVS: Concurrent Versioning System
®* The “classic” system

= SVN: Subversion
® Currently still used by some open-source projects

® Distributed

= @Git, Mercurial, Bazaar

Nastroje pro vyvoj software Version Control 5



Branches and merging

bug fix in released version

branching

/ main line of development (master branch)

\ 1 /

concurrent development (experimenting)

time & software versions

Nastroje pro vyvoj software Version Control 6



Conflicts

®* Options
= Postpone resolving
= Choose version
= External merge tool
= and many others

® Conflict markers
B <<<<<<< and >>>>>>> in source file

® Three variants of the source file created

Nastroje pro vyvoj software Version Control 7



Tree conflicts

* Typical cause

= Renamed files and directories
= Deleted files

® Solution

= Make proper changes in the working copy
= Use patches created with the diff command

= Commit when everything is in a clean state

Nastroje pro vyvoj software Version Control 8



Tags

®* Snapshot with a human-friendly name

* Logical copy of the whole source tree

Nastroje pro vyvoj software Version Control 9



Best practices: synchronizing developers

* Software developed in large teams
= People may not be always able to coordinate efficiently

® Solution: Copy-Modify-Merge
= Concurrent modification of source files
= Resolving conflicts when they happen

* Alternative: Lock-Modify-Unlock

" The old classic approach (“before internet”)
" Does not scale well (exclusive access)
= Not very robust (people forget to unlock)

Nastroje pro vyvoj software Version Control 10



Best practices: branches and merging
R R RRRRRRRRRRRRRRRRRRRRRRRRRRAARERERERERCEERAWAA—AAR =
® Use branches for experimental features
* Create special branch for each feature
®* Separate release and development branches

= Propagating bugfixes from development to stable

°* Merge often and synchronize with trunk
= Lower chance of ugly conflicts occurring
= Smaller conflicts are easier to resolve
= Commit often =2 others will have to merge

Nastroje pro vyvoj software Version Control 11



Best practices: further reading

® Patterns for Managing Source Code Branches

" https://martinfowler.com/articles/branching-
patterns.html

Nastroje pro vyvoj software Version Control 12


https://martinfowler.com/articles/branching-patterns.html

