
http://d3s.mff.cuni.cz

Version Control
(Správa verzí)

Pavel Parízek
parizek@d3s.mff.cuni.cz



What is it good for ?

Nástroje pro vývoj software Version Control 2

Keeping history of system evolution

Tracking progress

Allowing concurrent work on the system

Teams of developers

Possible conflicts

Easy reverting to a previous version

Safer experimentation



Typical architecture

Nástroje pro vývoj software Version Control 3

Source code repository
(versioned sources)

Working copy

synchronization

Working copy



Basic usage scenario

Nástroje pro vývoj software Version Control 4

Source code
repository

Working copy

check-out or update
1.

2. modify & test

3.
add & check-in



Categories of versioning systems

Nástroje pro vývoj software Version Control 5

Centralized

CVS: Concurrent Versioning System

The “classic” system

SVN: Subversion

Currently still used by some open-source projects

Distributed

Git, Mercurial, Bazaar



Branches and merging

Nástroje pro vývoj software Version Control 6

main line of development (master branch)

concurrent development (experimenting)

branching merging

time & software versions

bug fix in released version

branching

NOW



Conflicts

Nástroje pro vývoj software Version Control 7

Options

Postpone resolving

Choose version

External merge tool

and many others

Conflict markers

<<<<<<< and >>>>>>> in source file

Three variants of the source file created



Tree conflicts

Nástroje pro vývoj software Version Control 8

Typical cause

Renamed files and directories

Deleted files

Solution

Make proper changes in the working copy

Use patches created with the diff command

Commit when everything is in a clean state



Tags

Nástroje pro vývoj software Version Control 9

Snapshot with a human-friendly name

Logical copy of the whole source tree



Best practices: synchronizing developers

Nástroje pro vývoj software Version Control 10

Software developed in large teams
People may not be always able to coordinate efficiently

Solution: Copy-Modify-Merge
Concurrent modification of source files
Resolving conflicts when they happen

Alternative: Lock-Modify-Unlock
The old classic approach (“before internet”)
Does not scale well (exclusive access)
Not very robust (people forget to unlock)



Best practices: branches and merging

Nástroje pro vývoj software Version Control 11

Use branches for experimental features

Create special branch for each feature

Separate release and development branches

Propagating bugfixes from development to stable

Merge often and synchronize with trunk

Lower chance of ugly conflicts occurring

Smaller conflicts are easier to resolve

Commit often ➔ others will have to merge



Best practices: further reading

Nástroje pro vývoj software Version Control 12

Patterns for Managing Source Code Branches

https://martinfowler.com/articles/branching-
patterns.html

https://martinfowler.com/articles/branching-patterns.html

