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Key concepts
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Each developer uses a private local repository

clone: full mirror of some existing repository

Operations performed on the local repository

very fast, off-line

Synchronization

Operations push and pull

Exchanging code patches



Comparing distributed and centralized VCS
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Centralized

Everything visible in the central repository

Private branches (work) not possible

Distributed

Private repositories (and branches) useful for 
experimental development



Tools
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Git

Mercurial

Bazaar



Git
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Main features
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Versions: snapshots of the project (working dir)

Committed revisions form a direct acyclic graph

Multiple “latest” versions (leaf nodes)

Each commit has an author and committer

Distributing changesets via patches (email)

Whole repository stored in .git (files, metadata)



Usage scenario
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Picture taken from http://git-scm.com/book/



Necessary setup
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Configure your identity
git config --global user.name 

“<your full name>”

git config --global user.email

“<your email address>”

Stored in $HOME/.gitconfig



Basic commands
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Help for specific command: git help <command>
Create repository in the current directory: git init

Print status of the working tree: git status

Start tracking new files: git add <work dir path>

Add files to the staging area: git add <path>

Commit staged modifications: git commit -m “...”

Print uncommitted unstaged changes: git diff

Print staged uncommitted changes:
git diff --staged

Automatically stage every tracked file and commit
git commit -a -m “...”

Revert modifications: git checkout -- <path>

Alternative: git restore <path>



File status lifecycle
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Picture taken from http://git-scm.com/book/



Really basic actions
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Create repository in a specific directory

Create some new files (e.g., hello world)

Print current status of your repository and
the working directory

Stage all the new files

Print current status

Modify one of the files

Print current status
Inspect differences from the previous invocation

Commit all staged modifications

Print current status



Managing files

Software Development Tools Distributed Version Control 12

Make the given file untracked

git rm <work dir path>

Renaming file (directory)

git mv <old path> <new path>



Pick your changes
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Full interactive mode: git add -i

Select patch hunks: git add -p

Additional information with examples

https://git-scm.com/book/en/v2/Git-Tools-
Interactive-Staging

https://git-scm.com/book/en/v2/Git-Tools-Interactive-Staging


Project history
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List all the commits

git log [-p] [-<N>] [--stat] 

More options
[--pretty=oneline|short|full|fuller] 

[--graph] 

[--since=YYYY-MM-DD] 

[--until=YYYY-MM-DD] 

[--author=<name>]

Show author name and revision for modifications

git blame <file path>



Task
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Try out file management commands (rm, mv)

Play with the “git log” command
Explore different parameters (-p, -<N>, --stat, 
--pretty, --graph)

Run the program “gitk” and try it

Make some changes to a particular file and use 
interactive staging



Using remote repositories
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Clone a remote repository in the current local 
directory: git clone <repo url>

Get recent changes in all branches from the 
remote repository: git fetch origin

Get recent changes in the “master” branch and 
merge into your working copy: git pull

Announcements via pull requests

Publish local changes in the remote repository: 
git push origin master



Task

Software Development Tools Distributed Version Control 17

Create new repository in your personal space at 
https://gitlab.mff.cuni.cz/

Try out important commands for manipulation 
with remote repositories

clone, pull, push, fetch

How to set (new) remote for your local Git repo
git remote add origin <repo url>

Ask questions if something is not clear (!!)

https://gitlab.mff.cuni.cz/


Branches in Git
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Branches in Git
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Branch: pointer to a node in the revision DAG

Default branch: master

Commit: branch pointer moves forward

Picture taken from http://git-scm.com/book/



What happens after concurrent modification
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Picture taken from http://git-scm.com/book/



Branches in Git: commands
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Create new branch: git branch <name>

Switch to given branch: git checkout <name>

Shortcut: git checkout -b <name>

Alternative for creating new branch and switching
git switch <branch name>

git switch -c <new branch>

Merge branch into current working directory
git merge <branch name>

Deleting unnecessary branch
git branch -d <branch name>

List all branches: git branch [-a]

Current branch marked with *



Comparing branches
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git diff <branch 1>..<branch 2>

Compare heads of the two branches

Note the characters ‘..’

git diff <branch 1>...<branch 2>

Print changes on the branch 2 (e.g., master) since 
the branch 1 (feature) was created from it

Note the characters ‘...’



Three-way merge
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Common ancestor

Target branch

Source branch

Conflicts happen also with Git
Standard markers <<<<<< ====== >>>>>>

Marking resolved files: git add

Graphical merging tool: git mergetool



Task
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Create new branch B and switch to it

Modify some files and commit them

Switch back to the master branch 

Modify some files and then commit

Merge your branch B into the master

Delete the now unnecessary branch

Try switching branches with uncommitted 
changes in the working copy

Try graphical merging tool on some conflicts



Advanced features
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Stashing

Undo

Rebase

“Squash”



Stashing
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Using stack of unfinished changes
git stash [push]

git stash pop

git stash apply [<stash name>]

git stash list



“Undoing” changes
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Symbolic names of versions
HEAD, HEAD~1, HEAD^2

How to undo some changes
git reset <commit>

Moves the branch HEAD to a given commit

Several variants
--soft: undo commit (just in history of revisions)

--mixed (default): undo commit and changes in staging area

--hard: undo everything (commit, staging area, working dir)



“Undoing” changes – basic scenarios
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Drop modifications just in the working directory (before commit)
git checkout -- <path>

git restore <path>

Remove the last commit (not yet pushed to remote) in your local 
repository and put the changes back to the working directory

git reset –mixed HEAD~

Want to undo commits already pushed to the public shared repo ?
NEVER EVER drop commits in the public repo (branches) !!!
Make another commit that “restores” the original state (as if the 
particular commit never happened)
git revert <commit ID>

git revert <oldest commit>..<latest commit>



Task
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Try some approaches to “undoing” changes 
on your local repo and working directory

Use git status and git diff to observe the 
state of both working directory and staging area



Rebasing
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Command: git rebase
Replaying changes done in some branch onto another branch
Very powerful command but also tricky (be really careful !!)
Usage: git rebase <source branch> in target branch

Modifying committed history
e.g., commit messages (git commit --amend)

Interactive rebase
Command: git rebase -i <after commit>

Purpose: reordering commits, editing commit messages
https://git-scm.com/docs/git-rebase#_interactive_mode

https://git-scm.com/docs/git-rebase#_interactive_mode


Advanced features
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Ignoring certain files

List patterns in the file .gitignore

Tagging: git tag

Bare repository

No working copy



Merging: recommended practice
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Keep linear history

Rebase your branch on "main" just before merge

Sometimes you want to "squash" multiple 
commits into one before merge

Why: eliminate work-in-progress commits from 
the final history ("cleaning")

Commands: git reset --soft HEAD~N, 
followed by git commit



Mercurial
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Basic principles: like Git

Simpler learning curve

Commands very similar

init, clone, add, commit, merge, push, pull



Work-flow models (cooperation)
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Work-flow models (cooperation)
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Anything possible technically with DVCS
“Network of trust” between developers

Examples of possible organizations
Single “central” repository (branch)
Multiple release repositories (branches)
Many public repositories
Total anarchy

Different workflow models
especially regarding branches



Git workflow models
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Centralized (and comparison)
https://www.atlassian.com/git/tutorials/comparing-workflows

Feature branch
https://www.atlassian.com/git/tutorials/comparing-
workflows/feature-branch-workflow

Trunk-based
https://www.atlassian.com/continuous-delivery/continuous-
integration/trunk-based-development

Forking
https://www.atlassian.com/git/tutorials/comparing-
workflows/forking-workflow

https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow


Single “central” repository (branch)
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Central
Repository

(branch)

Privileged
Developer
Repository

Normal
Developer
Repository

(branch)

Privileged
Developer
Repository

Normal
Developer
Repository

(branch)



Multiple release repositories (branches)
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Main
Repository

(branch)
development

Developer
Repository

GUI branch

Release 1
Repository

(branch)

Developer
Repository

DB branch

Release 2
Repository

(branch)

Release 3
Repository

(branch)



Many public repositories or branches
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Linux kernel

Official
Release

Main
Development

integration

Module
Development

experiments

Module
Development

experiments

Module
Development

experiments

Module
Development

experiments

Vendor
Release Vendor

Release



Total anarchy
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Repository
(branch)

no. 5

Repository
(branch)

no. 1

Repository
(branch)

no. 3

Repository
(branch)

no. 2

Repository
(branch)

no. 4



Organization policy
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Organization

project, company, team

Relevant aspects

Commit messages

Names of branches



Contributing to [open-source] projects
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Typical scenario

Project hosted on some public repository server

Write access to official repository is not possible

Important concepts

Forking of the official repository

Publishing via pull requests



Contributing to [open-source] projects
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Official central repository (upstream)
https://github.com/projectname

Fork on the same server
https://github.com/user/projectname

Clone to local repository
From https://github.com/user/projectname to 
$HOME/projectname

Synchronizing fork with official repository
git fetch upstream

git merge upstream/master

Publishing changes to the upstream repository
Creating pull requests (processed later by maintainer)

https://github.com/projectname
https://github.com/user/projectname
https://github.com/user/projectname


Links
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Git documentation
http://git-scm.com/doc

Mercurial
http://www.mercurial-scm.org/, http://hgbook.red-bean.com/

Repository servers
https://github.com/
https://bitbucket.org/
https://gitlab.com/

Tools
Git for Windows (http://msysgit.github.io/), TortoiseGit (Win), 
SmartGit (http://www.syntevo.com/smartgit/)
TortoiseHg (Mercurial GUI, Windows)
SourceTree (https://www.sourcetreeapp.com/, Git and Mercurial)



Homework
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Assignment

ReCodEx: group associated with this course

Web: https://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

Deadline

5.3.2025

https://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

