Distributed Version Control

http://d3s.mff.cuni.cz

Pavel Parízek
parizek@d3s.mff.cuni.cz
Key concepts

- Each developer uses a private local repository
 - *clone*: full mirror of some existing repository

- Operations performed on the local repository
 - very fast, off-line

- Synchronization
 - Operations *push* and *pull*
 - Exchanging code patches
Comparing distributed and centralized VCS

- Centralized
 - Everything visible in the central repository
 - Private branches (work) not possible

- Distributed
 - Private repositories (and branches) useful for experimental development
Tools

- Git
- Mercurial
- Bazaar
Main features

- Versions: snapshots of the project (working dir)
- Committed revisions form a direct acyclic graph
 - Multiple “latest” versions (leaf nodes)
- Each commit has an author and committer
 - Distributing changesets via patches (email)
- Whole repository stored in .git (files, metadata)
- Confusing for most people (good for advanced users)
- Commands have names similar to SVN
Usage scenario

Local Operations

- working directory
- staging area
- git directory (repository)

- checkout the project
- stage files
- commit

Task 1

• Configure your identity
 - `git config --global user.name "<your full name>"`
 - `git config --global user.email "<your email address>"`

• Stored in `$HOME/.gitconfig`
Basic commands

- Create repository in the current directory: `git init`
- Print status of the working tree: `git status`
- Start tracking new files: `git add <work dir path>`
- Add files to the staging area: `git add <path>`
- Commit staged modifications: `git commit -m "..."`
- Print uncommitted unstaged changes: `git diff`
- Print staged uncommitted changes:
  ```
  git diff --staged
  ```
- Automatically stage every tracked file and commit
  ```
  git commit -a -m "..."
  ```
- Revert modifications: `git checkout -- <path>`
File status lifecycle

Task 2

- Create repository in a specific directory
- Create some new files (e.g., hello world)
- Print current status of your repository and the working directory
- Stage all the new files
- Print current status
- Modify one of the files
- Print current status
 - Inspect differences from the previous invocation
- Commit all staged modifications
- Print current status
Managing files

- Make the given file untracked

 \texttt{git \, rm \, <work \, dir \, path>}

- Renaming file (directory)

 \texttt{git \, mv \, <old \, path> \, <new \, path>}
Pick your changes

- Full interactive mode: `git add -i`

- Select patch hunks: `git add -p`

- Additional information with examples
Project history

- List all the commits

  ```
git log [-p] [-<N>] [--stat]
  ```

- More options

  ```
  [--pretty=oneline|short|full|fuller]
  [--graph]
  [--since=YYYY-MM-DD]
  [--until=YYYY-MM-DD]
  [--author=<name>]
  ```
Task 3

- Try out file management commands \((\text{rm}, \text{mv})\)

- Play with the \(\text{"git log" command}\)
 - Explore different parameters \((-p, -<N>, --stat, --pretty, --graph)\)

- Run the program \(\text{"gitk" and try it}\)

- Make some changes to a particular file and use interactive staging
Using remote repositories

- Clone a remote repository in the current local directory: `git clone <repo_url>`
- Get recent changes in all branches from the remote repository: `git fetch origin`
- Get recent changes in the “master” branch and merge into your working copy: `git pull`
 - Announcements via `pull requests`
- Publish local changes in the remote repository: `git push origin master`
Branches in Git
Branches in Git

- Branch: pointer to a node in the revision DAG
- Default branch: **master**
- Commit: branch pointer moves forward

What happens after concurrent modification

Branches in Git: commands

- Create new branch: `git branch <name>`
- Switch to given branch: `git checkout <name>`
- Shortcut: `git checkout -b <name>`
- Merge branch into current working directory

 `git merge <branch name>`

- Deleting unnecessary branch

 `git branch -d <branch name>`

- List all branches: `git branch [-a]`
 - Current branch marked with *
Comparing branches

- `git diff <branch 1>..<<branch 2>`
 - Compare heads of the two branches
 - Note the characters ‘..’

- `git diff <branch 1>...<branch 2>`
 - Print changes on the branch 2 (e.g., master) since the branch 1 (feature) was created from it
 - Note the characters ‘...’
Three-way merge

- Common ancestor
- Target branch
- Source branch

- Conflicts happen also with Git
 - Standard markers `<<<<<< ====== >>>>>>>`
 - Marking resolved files: `git add`

- Graphical merging tool: `git mergetool`
Task 4

- Create new branch B and switch to it
- Modify some files and commit them
- Switch back to the master branch
- Modify some files and then commit
- Merge your branch B into the master
- Delete the now unnecessary branch

- Try switching branches with uncommitted changes in the working copy
- Try graphical merging tool on some conflicts
Advanced features I.

- Using stack of unfinished changes (stashing)
 - `git stash [push]`
 - `git stash apply [<stash name>]`
 - `git stash list`

- How to undo some changes
 - `git reset <commit>`
 - Moves the branch HEAD to a given commit
 - Several variants
 - `--soft`: undo commit
 - `--mixed` (default): undo commit and changes in staging area
 - `--hard`: undo everything (commit, staging area, working dir)
Advanced features II.

- Symbolic names of versions
 - HEAD, HEAD~1, HEAD^2

- `git rebase`
 - Replaying changes done in a branch onto another branch
 - Very powerful command but also tricky (be careful !!)

- Modifying committed history
 - e.g., commit messages (`git commit --amend`)

- Ignoring certain files
 - List patterns in the file `.gitignore`

- Tagging: `git tag`

- Bare repository
 - No working copy
Mercurial

• Basic principles: like Git

• Simpler learning curve

• Commands very similar
 - init, clone, add, commit, merge, push, pull
Work-flow models (cooperation)
Work-flow models (cooperation)

- Anything possible technically with DVCS
- "Network of trust" between developers

Examples
- Single "central" repository
- Multiple release repositories
- Many public repositories
- Total anarchy
Single “central” repository

Privileged Developer Repository

Normal Developer Repository

Central Repository

Privileged Developer Repository

Normal Developer Repository
Multiple release repositories

Main Repository development

- Developer Repository GUI branch
- Developer Repository DB branch
- Release 1 Repository
- Release 2 Repository
- Release 3 Repository
Many public repositories

- Linux kernel

Diagram:

- Official Release
 - Vendor Release
 - Main Development integration
 - Module Development experiments
 - Vendor Release
 - Module Development experiments
 - Module Development experiments
 - Module Development experiments
Total anarchy

Repository no. 1

Repository no. 2

Repository no. 3

Repository no. 4

Repository no. 5
Contributing to [open-source] projects

• Typical scenario
 ▪ Project hosted on some public repository server
 ▪ Write access to official repository is not possible

• Important concepts
 ▪ Forking of the official repository
 ▪ Publishing via pull requests
Contributing to [open-source] projects

- Official central repository (upstream)
 - https://github.com/projectname
- Fork on the same server
 - https://github.com/user/projectname
- Clone to local repository
 - From https://github.com/user/projectname to
 $HOME/projectname

- Synchronizing fork with official repository
 - `git fetch upstream`
 - `git merge upstream/master`

- Publishing changes to the upstream repository
 - Creating pull requests (processed later by maintainer)
Links

- Git documentation
 - http://git-scm.com/doc

- Mercurial

- Repository servers
 - https://github.com/
 - https://bitbucket.org/
 - https://gitlab.com/

- Tools
 - Git for Windows (http://msysgit.github.io/), TortoiseGit (Win), SmartGit (http://www.syntevo.com/smartgit/)
 - TortoiseHg (Mercurial GUI, Windows)
 - SourceTree (https://www.sourcetreeapp.com/, Git and Mercurial)
Homework

- Assignment
 - [link]
 - https://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

- Deadline
 - 13.10.2020 / 14.10.2020