
http://d3s.mff.cuni.cz

Distributed
Version Control

Pavel Parízek
parizek@d3s.mff.cuni.cz

Key concepts

Software Development Tools Distributed Version Control 2

Each developer uses a private local repository

clone: full mirror of some existing repository

Operations performed on the local repository

very fast, off-line

Synchronization

Operations push and pull

Exchanging code patches

Comparing distributed and centralized VCS

Software Development Tools Distributed Version Control 3

Centralized

Everything visible in the central repository

Private branches (work) not possible

Distributed

Private repositories (and branches) useful for
experimental development

Tools

Software Development Tools Distributed Version Control 4

Git

Mercurial

Bazaar

Git

Software Development Tools Distributed Version Control 5

Main features

Software Development Tools Distributed Version Control 6

Versions: snapshots of the project (working dir)

Committed revisions form a direct acyclic graph

Multiple “latest” versions (leaf nodes)

Each commit has an author and committer

Distributing changesets via patches (email)

Whole repository stored in .git (files, metadata)

Usage scenario

Software Development Tools Distributed Version Control 7

Picture taken from http://git-scm.com/book/

Necessary setup

Software Development Tools Distributed Version Control 8

Configure your identity
git config --global user.name

“<your full name>”

git config --global user.email

“<your email address>”

Stored in $HOME/.gitconfig

Basic commands

Software Development Tools Distributed Version Control 9

Help for specific command: git help <command>
Create repository in the current directory: git init

Print status of the working tree: git status

Start tracking new files: git add <work dir path>

Add files to the staging area: git add <path>

Commit staged modifications: git commit -m “...”

Print uncommitted unstaged changes: git diff

Print staged uncommitted changes:
git diff --staged

Automatically stage every tracked file and commit
git commit -a -m “...”

Revert modifications: git checkout -- <path>

Alternative: git restore <path>

File status lifecycle

Software Development Tools Distributed Version Control 10

Picture taken from http://git-scm.com/book/

Really basic actions

Software Development Tools Distributed Version Control 11

Create repository in a specific directory

Create some new files (e.g., hello world)

Print current status of your repository and
the working directory

Stage all the new files

Print current status

Modify one of the files

Print current status
Inspect differences from the previous invocation

Commit all staged modifications

Print current status

Managing files

Software Development Tools Distributed Version Control 12

Make the given file untracked

git rm <work dir path>

Renaming file (directory)

git mv <old path> <new path>

Pick your changes

Software Development Tools Distributed Version Control 13

Full interactive mode: git add -i

Select patch hunks: git add -p

Additional information with examples

https://git-scm.com/book/en/v2/Git-Tools-
Interactive-Staging

https://git-scm.com/book/en/v2/Git-Tools-Interactive-Staging

Project history

Software Development Tools Distributed Version Control 14

List all the commits

git log [-p] [-<N>] [--stat]

More options
[--pretty=oneline|short|full|fuller]

[--graph]

[--since=YYYY-MM-DD]

[--until=YYYY-MM-DD]

[--author=<name>]

Show author name and revision for modifications

git blame <file path>

Task

Software Development Tools Distributed Version Control 15

Try out file management commands (rm, mv)

Play with the “git log” command
Explore different parameters (-p, -<N>, --stat,
--pretty, --graph)

Run the program “gitk” and try it

Make some changes to a particular file and use
interactive staging

Using remote repositories

Software Development Tools Distributed Version Control 16

Clone a remote repository in the current local
directory: git clone <repo url>

Get recent changes in all branches from the
remote repository: git fetch origin

Get recent changes in the “master” branch and
merge into your working copy: git pull

Announcements via pull requests

Publish local changes in the remote repository:
git push origin master

Task

Software Development Tools Distributed Version Control 17

Create new repository in your personal space at
https://gitlab.mff.cuni.cz/

Try out important commands for manipulation
with remote repositories

clone, pull, push, fetch

How to set (new) remote for your local Git repo
git remote add origin <repo url>

Ask questions if something is not clear (!!)

https://gitlab.mff.cuni.cz/

Branches in Git

Software Development Tools Distributed Version Control 18

Branches in Git

Software Development Tools Distributed Version Control 19

Branch: pointer to a node in the revision DAG

Default branch: master

Commit: branch pointer moves forward

Picture taken from http://git-scm.com/book/

What happens after concurrent modification

Software Development Tools Distributed Version Control 20

Picture taken from http://git-scm.com/book/

Branches in Git: commands

Software Development Tools Distributed Version Control 21

Create new branch: git branch <name>

Switch to given branch: git checkout <name>

Shortcut: git checkout -b <name>

Alternative for creating new branch and switching
git switch <branch name>

git switch -c <new branch>

Merge branch into current working directory
git merge <branch name>

Deleting unnecessary branch
git branch -d <branch name>

List all branches: git branch [-a]

Current branch marked with *

Comparing branches

Software Development Tools Distributed Version Control 22

git diff <branch 1>..<branch 2>

Compare heads of the two branches

Note the characters ‘..’

git diff <branch 1>...<branch 2>

Print changes on the branch 2 (e.g., master) since
the branch 1 (feature) was created from it

Note the characters ‘...’

Three-way merge

Software Development Tools Distributed Version Control 23

Common ancestor

Target branch

Source branch

Conflicts happen also with Git
Standard markers <<<<<< ====== >>>>>>

Marking resolved files: git add

Graphical merging tool: git mergetool

Task

Software Development Tools Distributed Version Control 24

Create new branch B and switch to it

Modify some files and commit them

Switch back to the master branch

Modify some files and then commit

Merge your branch B into the master

Delete the now unnecessary branch

Try switching branches with uncommitted
changes in the working copy

Try graphical merging tool on some conflicts

Advanced features

Software Development Tools Distributed Version Control 25

Stashing

Undo

Rebase

“Squash”

Stashing

Software Development Tools Distributed Version Control 26

Using stack of unfinished changes
git stash [push]

git stash pop

git stash apply [<stash name>]

git stash list

“Undoing” changes

Software Development Tools Distributed Version Control 27

Symbolic names of versions
HEAD, HEAD~1, HEAD^2

How to undo some changes
git reset <commit>

Moves the branch HEAD to a given commit

Several variants
--soft: undo commit (just in history of revisions)

--mixed (default): undo commit and changes in staging area

--hard: undo everything (commit, staging area, working dir)

“Undoing” changes – basic scenarios

Software Development Tools Distributed Version Control 28

Drop modifications just in the working directory (before commit)
git checkout -- <path>

git restore <path>

Remove the last commit (not yet pushed to remote) in your local
repository and put the changes back to the working directory

git reset –mixed HEAD~

Want to undo commits already pushed to the public shared repo ?
NEVER EVER drop commits in the public repo (branches) !!!
Make another commit that “restores” the original state (as if the
particular commit never happened)
git revert <commit ID>

git revert <oldest commit>..<latest commit>

Task

Software Development Tools Distributed Version Control 29

Try some approaches to “undoing” changes
on your local repo and working directory

Use git status and git diff to observe the
state of both working directory and staging area

Rebasing

Software Development Tools Distributed Version Control 30

Command: git rebase
Replaying changes done in some branch onto another branch
Very powerful command but also tricky (be really careful !!)
Usage: git rebase <source branch> in target branch

Modifying committed history
e.g., commit messages (git commit --amend)

Interactive rebase
Command: git rebase -i <after commit>

Purpose: reordering commits, editing commit messages
https://git-scm.com/docs/git-rebase#_interactive_mode

https://git-scm.com/docs/git-rebase#_interactive_mode

Advanced features

Software Development Tools Distributed Version Control 31

Ignoring certain files

List patterns in the file .gitignore

Tagging: git tag

Bare repository

No working copy

Merging: recommended practice

Software Development Tools Distributed Version Control 32

Keep linear history

Rebase your branch on "main" just before merge

Sometimes you want to "squash" multiple
commits into one before merge

Why: eliminate work-in-progress commits from
the final history ("cleaning")

Commands: git reset --soft HEAD~N,
followed by git commit

Mercurial

Software Development Tools Distributed Version Control 33

Basic principles: like Git

Simpler learning curve

Commands very similar

init, clone, add, commit, merge, push, pull

Work-flow models (cooperation)

Software Development Tools Distributed Version Control 34

Work-flow models (cooperation)

Software Development Tools Distributed Version Control 35

Anything possible technically with DVCS
“Network of trust” between developers

Examples of possible organizations
Single “central” repository (branch)
Multiple release repositories (branches)
Many public repositories
Total anarchy

Different workflow models
especially regarding branches

Git workflow models

Software Development Tools Distributed Version Control 36

Centralized (and comparison)
https://www.atlassian.com/git/tutorials/comparing-workflows

Feature branch
https://www.atlassian.com/git/tutorials/comparing-
workflows/feature-branch-workflow

Trunk-based
https://www.atlassian.com/continuous-delivery/continuous-
integration/trunk-based-development

Forking
https://www.atlassian.com/git/tutorials/comparing-
workflows/forking-workflow

https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development
https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow

Single “central” repository (branch)

Software Development Tools Distributed Version Control 37

Central
Repository

(branch)

Privileged
Developer
Repository

Normal
Developer
Repository

(branch)

Privileged
Developer
Repository

Normal
Developer
Repository

(branch)

Multiple release repositories (branches)

Software Development Tools Distributed Version Control 38

Main
Repository

(branch)
development

Developer
Repository

GUI branch

Release 1
Repository

(branch)

Developer
Repository

DB branch

Release 2
Repository

(branch)

Release 3
Repository

(branch)

Many public repositories or branches

Software Development Tools Distributed Version Control 39

Linux kernel

Official
Release

Main
Development

integration

Module
Development

experiments

Module
Development

experiments

Module
Development

experiments

Module
Development

experiments

Vendor
Release Vendor

Release

Total anarchy

Software Development Tools Distributed Version Control 40

Repository
(branch)

no. 5

Repository
(branch)

no. 1

Repository
(branch)

no. 3

Repository
(branch)

no. 2

Repository
(branch)

no. 4

Organization policy

Software Development Tools Distributed Version Control 41

Organization

project, company, team

Relevant aspects

Commit messages

Names of branches

Contributing to [open-source] projects

Software Development Tools Distributed Version Control 42

Typical scenario

Project hosted on some public repository server

Write access to official repository is not possible

Important concepts

Forking of the official repository

Publishing via pull requests

Contributing to [open-source] projects

Software Development Tools Distributed Version Control 43

Official central repository (upstream)
https://github.com/projectname

Fork on the same server
https://github.com/user/projectname

Clone to local repository
From https://github.com/user/projectname to
$HOME/projectname

Synchronizing fork with official repository
git fetch upstream

git merge upstream/master

Publishing changes to the upstream repository
Creating pull requests (processed later by maintainer)

https://github.com/projectname
https://github.com/user/projectname
https://github.com/user/projectname

Links

Software Development Tools Distributed Version Control 44

Git documentation
http://git-scm.com/doc

Mercurial
http://www.mercurial-scm.org/, http://hgbook.red-bean.com/

Repository servers
https://github.com/
https://bitbucket.org/
https://gitlab.com/

Tools
Git for Windows (http://msysgit.github.io/), TortoiseGit (Win),
SmartGit (http://www.syntevo.com/smartgit/)
TortoiseHg (Mercurial GUI, Windows)
SourceTree (https://www.sourcetreeapp.com/, Git and Mercurial)

Homework

Software Development Tools Distributed Version Control 45

Assignment

ReCodEx: group associated with this course

Web: https://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

Deadline

5.3.2025

https://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

