
http://d3s.mff.cuni.cz

Build Automation Tools
(Automatizace sestavování)

Pavel Parízek
parizek@d3s.mff.cuni.cz



What is “build automation”

Software Development Tools Build Automation 2

Software building

Transforming source code (tree of files) into 
executable binary code

C/C++, C# ➔Win32 exe, Linux elf

Java, Scala➔ class files (bytecode)

Other transformations

LaTeX source files ➔ PDF documents

Automating various processes

test execution, packaging, deployment, …



Other “automatable” processes

Software Development Tools Build Automation 3

Packaging (distribution)

generated binary files, metadata, documentation

Running selected unit tests

Generating documentation



Popular tools

Software Development Tools Build Automation 4

Unix (C/C++): Make, Autotools, CMake

Java/JVM world: Ant, Maven, Gradle

Windows & .NET/C#: MSBuild, (GUI)



General principles

Software Development Tools Build Automation 5

Configuration file (script)

Declarative specification what should be done

Commands to realize specific actions (“how”)

Ensuring that output (result) matches the 
most recent available input

Dependencies (source → binary)

Timestamps (last modification)



Desired features (requirements)

Software Development Tools Build Automation 6

Automation
Minimal interaction with the developer

Portability
Support for multiple platforms

Efficiency
Process each input (source code) file once
Reuse previously built (processed) objects

Robustness
Try processing as much input as possible

Generality
Not only for a particular application

Easy to use
Writing and understanding the build scripts



Challenges

Software Development Tools Build Automation 7

Dependencies
Processing files (building modules) in the correct order

first binary object files (.o) from source code and then executable 

Recompile the affected code after modification
header file (.h) ➔ source code file (.c, .cpp)
class definition (Java, C#) ➔ all files (modules) where it is used

How to identify them properly
Pre-processor directives (“#include” in C)
Source code analysis (bytecode for Java) 
Metadata and debug symbols in binaries

Correct build order
Logical dependencies between source code files (.c) and 
intermediate results (.o)
Logical dependencies between modules (JARs, assemblies)



Make

Software Development Tools Build Automation 8



Make

Software Development Tools Build Automation 9

Standard build automation tool in the Unix 
and Linux world

Used mainly for programs that use C/C++ and 
scripting languages (bash, Awk)

Many derivatives exist

GNU Make, BSD Make, qmake, NMake, ...

Build script: Makefile



Key concepts

Software Development Tools Build Automation 10

Target
Entity to be built: executable program, object file (.o), 
distribution package (.tgz)

Action to be done: clean, build all, prepare something

Prerequisite
Entity that must be available and up-to-date before the 
associated target is fulfilled during the build process

Rules
Dependencies between targets and prerequisites

Commands that fulfill targets (build entities, ...)



Makefile: structure and syntax

Software Development Tools Build Automation 11

all: progname

# comment

progname: obj1.o obj2.o

<TAB> gcc -o progname obj1.o obj2.o

obj1.o: main.c config.h

gcc -c main.c

target prerequisite

dependency

recipe

rule



Build process with Make

Software Development Tools Build Automation 12

Running
make target

make // default target

Two steps

Construction of the build tree

Root node: target given by the user

Leaf nodes: available prerequisites

Processing rules in the tree



Example: the “sockets” program

Software Development Tools Build Automation 13

Simple network client and server 
Both have an UDP and TCP variant 

Select using the parameter “-u”

http://d3s.mff.cuni.cz/files/teaching/nswi154/sockets.tgz

Source code written in C++
Rather old version of the language

Script build.sh
Commands that can be used to compile source files with GCC

Script clean.sh
Commands to remove binaries and intermediate object files

http://d3s.mff.cuni.cz/files/teaching/nswi154/sockets.tgz


Task

Software Development Tools Build Automation 14

Step 1: basic naive Makefile for “sockets”

What it has to specify

Few useful targets
all, clean, program binaries, object files (.o)

Dependencies between entities

.o ➔ binary, .cpp➔ .o, etc



Variables

Software Development Tools Build Automation 15

Note: wildcard expansion is quite tricky (manual, section 4.4)
https://www.gnu.org/software/make/manual/html_node/Wildcard-Examples.html

objects = obj1.o obj2.o main.o \

utils.o network.o gui.o

all : progname

progname: $(objects)

gcc -o prog $(objects) -lcommon

https://www.gnu.org/software/make/manual/html_node/Wildcard-Examples.html


Phony targets

Software Development Tools Build Automation 16

When the target does not represent any file

.PHONY : clean

clean :

rm *.o



Guidelines

Software Development Tools Build Automation 17

Use built-in variables

CC // C compiler (gcc)

CFLAGS // C compiler flags

CXX // C++ compiler (g++)

CXXFLAGS // C++ compiler flags

... and many more

Use standard targets

all, clean, distclean, install



How to use built-in variables

Software Development Tools Build Automation 18

Define recipes properly

$(CC) $(CFLAGS) -c main.c

Set flags when running Make

CFLAGS=-O2 make



Static pattern rules

Software Development Tools Build Automation 19

objects = main.o util.o network.o

$(objects): %.o : %.c

$(CC) -c $(CFLAGS) $< -o $@



Implicit rules

Software Development Tools Build Automation 20

%.o : %.c

$(CC) -c $(CFLAGS) $< -o $@

target pattern
prerequisite pattern

source file name

target file name



Task

Software Development Tools Build Automation 21

Step 2: improve Makefile for “sockets”

Eliminate duplication using these features:

Variables (built-in, custom)

Implicit rules

Static patterns

Use dependencies between targets properly

Respect common guidelines (best practices)



Recursive invocations (subdirectories)

Software Development Tools Build Automation 22

SUBDIRS = src doc

.PHONY: subdirs $(SUBDIRS)

subdirs: $(SUBDIRS)

$(SUBDIRS):

$(MAKE) -C $@



Two flavors of variables

Software Development Tools Build Automation 23

Recursively expanded
objects = $(core_objs) $(server_objs)

core_objs = tcp.o udp.o

server_objs = srv/main.o

objs = $(objs) main.o

Simply expanded
$(core_objs) := tcp.o udp.o

objects := $(core_objs) srv/main.o



Substitutions

Software Development Tools Build Automation 24

sources := main.c client.c server.c

objects := $(sources:.c=.o)

OR
objects := $(sources:%.c=%.o)



Operations with variables and values

Software Development Tools Build Automation 25

Appending
objects = main.o util.o

objects += network.o

Functions
$(subst from,to,text)

$(patsubst pattern,replacement text)

$(filter pattern1 ... patternN,text)

$(dir path1 ... pathN)

$(basename path1 ... pathN)

$(suffix path1 ... pathN)



Automatic variables

Software Development Tools Build Automation 26

Target: $@

First prerequisite: $<

All prerequisites: $^



Other advanced features

Software Development Tools Build Automation 27

Order-only prerequisites
Automated generating of files that capture 
prerequisites (suffix .d)

Good support by compilers
Fallback: makedepend tool

Parallel execution
Conditional directives

... and many more

See the documentation for GNU Make



Limitations

Software Development Tools Build Automation 28

Portability over different Unix-like systems
Library functions in C (issues with compatibility)
Environment: shell, utilities (Awk, sed, grep, …)

Hard to maintain complex Makefiles
Writing rules by hand can be tedious

Solution: GNU build system (Autotools)
Tools: Autoconf, Automake, Libtool, gettext
Previous standard in the open-source world (C/C++)
./configure ; make ; make install

Solution: CMake
The current standard in open-source projects (C++)



Links

Software Development Tools Build Automation 29

Make

http://www.gnu.org/software/make/

http://www.gnu.org/software/make/manual/

NMake

https://learn.microsoft.com/en-
us/cpp/build/reference/nmake-
reference?view=msvc-170

http://www.gnu.org/software/make/
http://www.gnu.org/software/make/manual/
https://learn.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=msvc-170


Build scripts – practice

Software Development Tools Build Automation 30

Core infrastructure of your project

Treat in the same way as code

readability, modularity

Possibly very complex



Homework

Software Development Tools Build Automation 31

Assignment

ReCodEx: group associated with this course

Web: https://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

Deadline

12.3.2025

https://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

