Build Automation Tools

(Automatizace sestavovani)

http://d3s.mff.cuni.cz

e s Pavel Parizek
Dependable
parizek@d3s.mff.cuni.cz

FACULTY
1= OF MATHEMATICS
AND PHYSICS

) Charles University

What is “build automation”

* Software building

= Transforming source code (tree of files) into
executable binary code

° C/C++, CH =» Win32 exe, Linux elf
* Java, Scala = class files (bytecode)

= Other transformations

® LaTeX source files =» PDF documents

°* Automating various processes
= test execution, packaging, deployment, ...

Software Development Tools Build Automation 2

Other “automatable” processes

* Packaging (distribution)

= generated binary files, metadata, documentation

®* Running selected unit tests

°* Generating documentation

Software Development Tools Build Automation 3

Popular tools
s ® 5 0 5. © s
°* Unix (C/C++): Make, Autotools, CMake
* Java/IVM world: Ant, Maven, Gradle
°* Windows & .NET/C#: MSBuild, (GUI)

Zo. Yo J <)
4, " Z ONRL: @
Y%, ", % o % 7
vy %, % Yy

Software Development Tools Build Automation 4

General principles

* Configuration file (script)
= Declarative specification what should be done
= Commands to realize specific actions (“how”)

°* Ensuring that output (result) matches the
most recent available input

= Dependencies (source = binary)
" Timestamps (last modification)

Software Development Tools Build Automation 5

Desired features (requirements)

®* Automation
= Minimal interaction with the developer
* Portability
= Support for multiple platforms
* Efficiency
" Process each input (source code) file once
= Reuse previously built (processed) objects

® Robustness
= Try processing as much input as possible
* Generality
= Not only for a particular application
® Easyto use
= Writing and understanding the build scripts

Software Development Tools Build Automation 6

Challenges

®* Dependencies
= Processing files (building modules) in the correct order
* first binary object files (.0) from source code and then executable

= Recompile the affected code after modification
* header file (.h) = source code file (.c, .cpp)
* class definition (Java, C#) =» all files (modules) where it is used

= How to identify them properly
* Pre-processor directives (“#include” in C)
® Source code analysis (bytecode for Java)
* Metadata and debug symbols in binaries

® Correct build order

= Logical dependencies between source code files (.c) and
intermediate results (.0)

= Logical dependencies between modules (JARs, assemblies)

Software Development Tools Build Automation 7

Make

Software Development Tools Build Automation 8

Make

e Standard build automation tool in the Unix
and Linux world

* Used mainly for programs that use C/C++ and
scripting languages (bash, Awk)

°* Many derivatives exist
= GNU Make, BSD Make, gmake, NMake, ...

® Build script: Makefile

Software Development Tools Build Automation 9

Key concepts

* Target

= Entity to be built: executable program, object file (.0),
distribution package (.tgz)

= Action to be done: clean, build all, prepare something

®* Prerequisite

= Entity that must be available and up-to-date before the
associated target is fulfilled during the build process

®* Rules
= Dependencies between targets and prerequisites
= Commands that fulfill targets (build entities, ...)

Software Development Tools Build Automation 10

Makefile: structure and syntax

target prerequisite
\ 7’
\ 7

| -7

. A&
all: progname dependency

comment I
‘progname: objl.o obj2. o

_-— s s o - ———————————————————-l————————————.

<TAB>|gCC -0 progname objl.o objZ. O!
objl.o: main.c config.h

gcc —C maln.c
| recipe

Software Development Tools Build Automation 11

Build process with Make

® Running
" make target

= make // default target

®* Two steps

= Construction of the build tree
®* Root node: target given by the user
* Leaf nodes: available prerequisites

= Processing rules in the tree

Software Development Tools Build Automation 12

Example: the “sockets” program

* Simple network client and server

® Both have an UDP and TCP variant
= Select using the parameter “-u”

¢ http://d3s.mff.cuni.cz/files/teaching/nswil54/sockets.tgz

® Source code written in C++
= Rather old version of the language

® Scriptbuild.sh
= Commands that can be used to compile source files with GCC

® Scriptclean.sh
= Commands to remove binaries and intermediate object files

Software Development Tools Build Automation 13

http://d3s.mff.cuni.cz/files/teaching/nswi154/sockets.tgz

Task

® Step 1: basic naive Makefile for “sockets”

* What it has to specify

= Few useful targets
e all, clean, program binaries, object files (.0)

= Dependencies between entities
° .0 => binary, .cpp =2 .0, etc

Software Development Tools Build Automation 14

Variables

objects = objl.o obj2.0 main.o \

utils.o network.o gui.o
all : progname

progname: $ (objects)

gcc —o prog $(objects) -lcommon

Note: wildcard expansion is quite tricky (manual, section 4.4)

https://www.gnu.org/software/make/manual/htm|l node/Wildcard-Examples.html

Software Development Tools Build Automation 15

https://www.gnu.org/software/make/manual/html_node/Wildcard-Examples.html

Phony targets

°* When the target does not represent any file

.PHONY : clean

clean

rm *.0O

Software Development Tools Build Automation 16

Guidelines

® Use built-in variables

= CC // C compiler (gcc)
= CFLAGS // C compiler flags
= CXX // C++ compiler (g++)

s CXXFLAGS // C++ compiler flags

= ... and many more

® Use standard targets

m g11,clean,distclean, 1install

Software Development Tools Build Automation

17

How to use built-in variables

* Define recipes properly
S(CC) S(CFLAGS) -c main.c

* Set flags when running Make
CFLAGS=-02 make

Software Development Tools Build Automation 18

Static pattern rules

objects = main.o util.o network.o

S (objects): %.0 : %.cC
S(CC) —-c S(CFLAGS) S< -o s@

Software Development Tools Build Automation 19

Implicit rules

target pattern N
| prerequisite pattern

-
1 _ -
1 . ="
-
' - "
-
- "
-

o
2 .0

o\°
@)
|'N

S(CC) —-c S(CFLAGS) S< -o s@
A 4 <

source file name /

target file name

Software Development Tools Build Automation 20

Task

® Step 2: improve Makefile for “sockets”

* Eliminate duplication using these features:
= Variables (built-in, custom)
= Implicit rules
= Static patterns

°* Use dependencies between targets properly
°* Respect common guidelines (best practices)

Software Development Tools Build Automation 21

Recursive invocations (subdirectories)

SUBDIRS = src doc
.PHONY: subdirs $ (SUBDIRS)
subdirs: $ (SUBDIRS)

S (SUBDIRS) :
$ (MAKE) -C $d@

Software Development Tools Build Automation 22

Two flavors of variables

* Recursively expanded

objects = S (core objs) 5 (server objs)
core objs = tcp.o udp.o

server objs = srv/main.o

objs = $(objs) main.o

* Simply expanded
S (core objs) := tcp.o udp.o

objects := $(core objs) srv/main.o

Software Development Tools Build Automation 23

Substitutions

sources := maln.c client.c server.cC

S (sources:.c=.0)

OR

S (sources:%.cC

objects :

objects : %.0)

Software Development Tools Build Automation 24

Operations with variables and values

°* Appending
objects = main.o util.o
objects += network.o

® Functions
S (subst from, to, text)
S (patsubst pattern, replacement text)

(
S(filter patternl ... patternN, text)
S(dir pathl ... pathN)
S (basename pathl ... pathN)
S(suffix pathl ... pathN)

Software Development Tools Build Automation 25

Automatic variables

®* Target: $(

® First prerequisite: $<

* All prerequisites: $°

Software Development Tools Build Automation 26

Other advanced features

®* Order-only prerequisites

* Automated generating of files that capture
prerequisites (suffix . d)

= Good support by compilers
= Fallback: makedepend tool

® Parallel execution
® Conditional directives

® ...and many more

® See the documentation for GNU Make

Software Development Tools Build Automation 27

Limitations

* Portability over different Unix-like systems
" Library functions in C (issues with compatibility)
= Environment: shell, utilities (Awk, sed, grep, ...)

® Hard to maintain complex Makefiles
* Writing rules by hand can be tedious

® Solution: GNU build system (Autotools)

= Tools: Autoconf, Automake, Libtool, gettext

= Previous standard in the open-source world (C/C++)
./configure ; make ; make install

® Solution: CMake
" The current standard in open-source projects (C++)

Software Development Tools Build Automation 28

Links

* Make

" http://www.gnu.org/software/make/

= http://www.gnu.org/software/make/manual/

* NMake

" https://learn.microsoft.com/en-
us/cpp/build/reference/nmake-
reference?view=msvc-170

Software Development Tools Build Automation 29

http://www.gnu.org/software/make/
http://www.gnu.org/software/make/manual/
https://learn.microsoft.com/en-us/cpp/build/reference/nmake-reference?view=msvc-170

Build scripts — practice

* Core infrastructure of your project

°* Treat in the same way as code

= readability, modularity

* Possibly very complex

Software Development Tools Build Automation 30

Homework

® Assignment
= ReCodEx: group associated with this course

= Web: https://d3s.mff.cuni.cz/files/teaching/nswil54/ukoly/

® Deadline
= 12.3.2025

Software Development Tools Build Automation 31

https://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

