Building Large
Programs

(Sestavovani velkych aplikaci)

http://d3s.mff.cuni.cz

Ditibutad and Pavel Parizek

Dependable
parizek@d3s.mff.cuni.cz

FACULTY
OF MATHEMATICS

~ AND PHYSICS
Charles University

Outline

® General introduction

* Specific tools
= Ant (Java)
= Maven (Java)
= MSBuild (C#/.NET)
= Gradle (Java, Android)
= CMake (C++)

Software Development Tools Building Large Programs

Key topics
s ® s © 5. © s
* Recommended practice and workflow

* Avoiding cyclic dependencies

* How to create modular build scripts

Software Development Tools Building Large Programs 3

Ant

Software Development Tools Building Large Programs 4

Ant

® Build tool mostly for Java projects

= Wide support of tools and frameworks common in the Java
world (JUnit, JSP/Servlets, EJB, ...)

e Web: http://ant.apache.org/
= Docs: http://ant.apache.org/manual/index.html

* Highly extensible
= Plug-ins written in Java

® \ery portable scripting

® Scripts written in XML
= Default file name: build.xml

Software Development Tools Building Large Programs 5

http://ant.apache.org/
http://ant.apache.org/manual/index.html

Build file structure

<project name="MyProject" default="dist" basedir=".">
<property name="src.dir" wvalue="./src"/>
<property name="build.dir" wvalue="./build"/>

<target name="init">
<mkdir dir="${build.dir}"/>
</target>

<target name="compile" depends="init">
<javac srcdir="${src.dir}" destdir="${build.dir}"/>
</target>

<target name="clean'">
<delete dir="S${build.dir}"/>
</target>
</project>

Software Development Tools Building Large Programs 6

Terminology

® Task

= Specific action to be performed during the build process
® execute the Java compiler, create new directory

* Target

= Goal required for building (compilation, packaging, running tests,
generating documentation)

= One phase of the whole process of building your project
= Set of tasks that must be executed to fulfill the goal
= May have dependencies on (multiple) other targets

®* Project
= Set of targets relevant for the application

®* Property
= name-value pair (strings)
= usage: S{prop.name}

Software Development Tools Building Large Programs 7

Basic tasks

* Compilation of Java source files

<javac srcdir="S${src.dir}" destdir="./build"
debug="on" deprecation="on"/>

® Running an external Java program
<java classname="myapp.Main" fork="true">
<arg value="nswil54"/>
<jvmarg value="-Xmx512m" />
</java>

* Packaging class files in JAR archive
<jar destfile="myapp.jar" basedir="./build">
<manifest>
<attribute name="Main-Class" wvalue="..."/>
</manifest>
</jar>

Software Development Tools Building Large Programs 8

Usage

* Typical content of the build script

= Compilation
® All source code files written in Java

= Packaging
® Creating the JAR archive for distribution
= Execution of tests

®* Good practice

= Use properties where it makes sense, typical directory
layout (. /src, . /build), and standard targets (compile,
build, init, clean, dist)

= Specify reasonable dependencies between targets

® Running Ant
= Command-line: ant <target name>

Software Development Tools Building Large Programs 9

Dependencies between targets

® Build script
<target name=“A"/>
<target name=“B” depends=“A"/>
<target name=“C” depends=“B”/>
<target name="“D" depends=“A,C”/>
<target name=“E” depends=“D,C,A”/>

® Execution order
E=> D,CAE
D,C,ALE= ACD,CA,E
A CD,C,AE=> AB,CD,CA,E
A B,C,D,CA,E=> A ABCD,CA,E
A AB,CD,CAE=> AABCDA,B,CA,LE
A AB,CD,AB,CAE=> AB,CD,E

Software Development Tools Building Large Programs 10

Path-like structures

<path 1d="myapp.classpath">
<pathelement path="${classpath}"/>
<fileset dir="1ib">
<include name="**/*_jar"/>
</fileset>
<pathelement location="classes"/>
<dirset dir="S{build.dir}">
<include name="apps/**/classes"/>
<exclude name="apps/**/*Test*"/>
</dirset>
<pathelement location="third party/util.jar"/>
</path>

<javac ...>
<classpath refid="myapp.classpath"/>
</javac>

This is a modified version of an example from the Apache Ant documentation

Software Development Tools Building Large Programs 11

Properties defined externally

°* Createthefilebuild.properties

src.dir=./src
build.dir=./build
lib.dir=./11b

° ...andinclude the fileinbuild.xml
<property file="build.properties"/>

Software Development Tools Building Large Programs 12

Dependencies between source files

* Recompile everything from scratch

= We can probably recommend this approach

°* Use task <depend>

= Deletes all obsolete .class files (modified sources)
= Re-use of some previously compiled class files
= |imitation: cannot discover some dependencies

= Example
<depend srcdir="./src" destdir="${build.dir}"/>

Software Development Tools Building Large Programs 13

Ant — final remarks

°* Examples of build.xml
= https://github.com/apache/ant/

= https://github.com/javapathfinder/jpf-
core/tree/JPF-8.0

Software Development Tools Building Large Programs 14

https://github.com/apache/ant/
https://github.com/javapathfinder/jpf-core/tree/JPF-8.0

Maven

Software Development Tools Building Large Programs 15

Maven

®* Project management and building tool
"= mainly for Java

* Typical usage scenarios made simpler for users

®* Encourages best-practices and conventions
= Directory layout
= Naming of tests

® Web: http://maven.apache.org/

Software Development Tools Building Large Programs 16

http://maven.apache.org/

Best-practice guidelines

* Directory tree (layout)

my-app
-- pom.xml
-- src
-- main
-- Jjava
T -- com
" -- mycompany
-- app :
-- App.Jjava
" -- resources
T -- test
" -- Jjava
T -- com
" -- mycompany
-~ app :
-- AppTest. java
" -- target
"-- classes

® Test case names

**/*Test.java, **/Test*.java
Example taken from http://maven.apache.org/

guides/getting-started/maven-in-five-minutes.html

Software Development Tools Building Large Programs 17

Key concepts

* Goal

= Single action to be executed
® Construction of directory layout
®* Compilation of Java sources

= Similar to task in Ant

® Phase

= Step in the build lifecycle

® generate-sources, compile, deploy
= Sequence of goals
= Similar to target in Ant

* Build lifecycle
= QOrdered sequence of phases
= Similar to dependencies between targets in Ant

Software Development Tools Building Large Programs 18

Typical build lifecycle
e
. validate
. compile
. test
. package
. Integration-test
. verify

cinstall to local repository

O N O U1 B~ WDN B

. deploy

Software Development Tools Building Large Programs 19

Project Object Model (POM)

® Project’s configuration (build script)
= Stored in the pom. xml file

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>com.mycompany.app</groupIld>
<artifactId>my-app</artifactId>
<packaging>jar</packaging>
<version>1.0-SNAPSHOT</version>
<name>Maven Quick Start Archetype</name>
<url>http://maven.apache.org</url>
<dependencies>
<dependency>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<version>4.8.2</version>

<scope>test</scope>
</dependency>
</dependencies> Example taken from http://maven.apache.org/
</ p I"Oj ect> guides/getting-started/maven-in-five-minutes.html

Software Development Tools Building Large Programs 20

Usage

® Project setup

mvn archetype:generate \
-DarchetypeArtifactId=maven-archetype-quickstart \
-DgroupId=com.mycompany.app -DartifactId=my-app

® Build lifecycle: mvn <name of a phase>
" Compilation: mvn compile
= Packaging: mvn package
= Web-site generation: mvn site
= Rebuild into local repository: mvn clean install

* Default remote repository (central)
= https://repol.maven.org/maven2/

Software Development Tools Building Large Programs 21

https://repo1.maven.org/maven2/

Advanced features

® Creating local repositories

* Creating packages with metadata
= To be stored into repository

* Modifications of standard workflow
* Modules and project inheritance

* Extensibility via plugins
= Each plugin implements a set of related goals
= Core: http://maven.apache.org/plugins/index.html
" Mojohaus: https://www.mojohaus.org/plugins.html

Software Development Tools Building Large Programs

22

http://maven.apache.org/plugins/index.html
https://www.mojohaus.org/plugins.html

Selected plugins

* JAR

= https://maven.apache.org/plugins/maven-jar-plugin/

® Clean

= https://maven.apache.org/plugins/maven-clean-plugin/

® Exec

= https://www.mojohaus.org/exec-maven-plugin/

Software Development Tools Building Large Programs 23

https://maven.apache.org/plugins/maven-jar-plugin/
https://maven.apache.org/plugins/maven-clean-plugin/
https://www.mojohaus.org/exec-maven-plugin/

Examples

e http://d3s.mff.cuni.cz/files/teaching/nswil54/ma
ven-ex.tgz

= DSI Utilities: original sources, build.xml, pom.xml
" Project home page: http://dsiutils.di.unimi.it/

® Maven itself
= https://github.com/apache/maven-parent
* Shared global declarations

= https://github.com/apache/maven (core)
* Hierarchy of modules (pom.xml files): api, impl

= https://maven.apache.org/scm.html
= https://github.com/apache/maven-sources

Software Development Tools Building Large Programs 24

http://d3s.mff.cuni.cz/files/teaching/nswi154/maven-ex.tgz
https://github.com/apache/maven-parent
https://github.com/apache/maven
https://maven.apache.org/scm.html
https://github.com/apache/maven-sources

Want to know more about Maven ?

* Read the guide
= http://maven.apache.org/guides/

°* Try it yourself
= Create new project
= Add source files
= Run compilation

Software Development Tools Building Large Programs 25

http://maven.apache.org/guides/

Evaluation: Ant versus Maven

* Ant

= Very flexible, gives you control over the build
= Better for small/student projects (less overhead)

* Maven
= Quite heavy, enforces lot of best practices
= Good for large SW projects (enterprise-level)

= Support for modular build scripts is nice
* Pitfalls: cyclic dependencies between modules

Software Development Tools Building Large Programs 26

MSBuild

Software Development Tools Building Large Programs 27

MSBuild

° XML syntax of build scripts (“Makefiles”)
* Used internally by Visual Studio 20xx-22
* Syntax evolving (non-trivial differences)

* Familiar concepts: task, target, property

* Homepage

= https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild?view=vs-2022

Software Development Tools Building Large Programs 28

https://learn.microsoft.com/en-us/visualstudio/msbuild/msbuild?view=vs-2022

NuGet

® Package manager for .NET

® Similar concepts to Maven

® |ntegration to Visual Studio

® Web: https://www.nuget.org/

® Docs: https://learn.microsoft.com/en-us/nuget/

Software Development Tools Building Large Programs 29

https://www.nuget.org/
https://learn.microsoft.com/en-us/nuget/

.NET Core Templates

® Support for project templates
= |Implementing best & recommended practices

® Additional information
= https://learn.microsoft.com/en-us/dotnet/core/tools/custom-templates
= https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-new

°* Template engine
= https://github.com/dotnet/templating/

* Available templates
= https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new

Software Development Tools Building Large Programs 30

https://learn.microsoft.com/en-us/dotnet/core/tools/custom-templates
https://learn.microsoft.com/en-us/dotnet/core/tools/dotnet-new
https://github.com/dotnet/templating/
https://github.com/dotnet/templating/wiki/Available-templates-for-dotnet-new

Gradle

Software Development Tools Building Large Programs 31

Gradle

°* Another popular general-purpose build tool

= Java, Scala, C, C++, Android
°* Encourages best practices (like Maven)
* Script language (DSL) based on Groovy

° Web: https://gradle.org/

Software Development Tools Building Large Programs 32

https://gradle.org/

Gradle — example build script

® Structure of the script file build.gradle

plugins {
id 'application’ // 'java-library’, 'java’

}

java {
toolchain {
languageVersion = JavalanguageVersion.of(11)

}
}

sourceSets { ... }
dependencies { ... }

// other custom tasks

Software Development Tools Building Large Programs 33

Gradle — example build script

* Fragments of the build script (configuration)

sourceSets {
main {
java {
srcDirs = ['src’]
}
}
}

dependencies {
implementation files('lib/commons-logging-1.0.3.jar’)
implementation fileTree(dir: 'lib', include: '**/*.jar’)

}

Software Development Tools Building Large Programs 34

Gradle — example build script

°* Fragments of the build script (actions, custom tasks)

tasks.register('initDirs"') {
doLast {
mkdir "build"

}
}

tasks.named('clean’) {
delete "build"

}

tasks.register('copyJar', Copy) {
from layout.buildDirectory.dir("libs/junit.jar")
into "dist"

}

task copyJarToBin(type: Copy) {
from 'build/libs/GradleJarProject.jar’
into "/usr/bin"

}

Software Development Tools Building Large Programs 35

Gradle — usage

® Running
= gradle clean build
= gradle run

* Project template for Java
= gradle init --type java-application

°* Wrapper script: gradlew.{bat,sh}
" Highly recommended to provide for customers

* Additional information

= https://docs.gradle.org/current/userguide/tutorial using tasks.html
= https://docs.gradle.org/current/userguide/building java projects.html

Software Development Tools Building Large Programs 36

https://docs.gradle.org/current/userguide/tutorial_using_tasks.html
https://docs.gradle.org/current/userguide/building_java_projects.html

CMake

Software Development Tools Building Large Programs 37

CMake

* Cross-platform free and open-source build management application
* Very popular (usage) for programs in C++

* Compiler-independent tool
= Supports various native build systems (make, Xcode, MS Visual Studio)

e Web: https://www.cmake.org/

* Two phases of the build process

= Generate native build scripts from platform-independent
configuration (CMakeLists.txt)

= Run target platform’s native tool for the actual build

Software Development Tools Building Large Programs 38

https://www.cmake.org/

CMake - build script

cmake_minimum_required(VERSION 3.10)
project(myapp)

add_executable(myapp myapp.cpp myapp gui.cpp)
target _include directories(myapp include)
add_library(mylib mylib core.cpp mylib utils.cpp)
add_subdirectory(mylib)

target link libraries(myapp mylib)

find_package(solver REQUIRED)
target link libraries(myapp ${Solver LIBS})

Software Development Tools Building Large Programs 39

Other build tools

° |vy
= https://ant.apache.org/ivy/

® Scons
= http://www.scons.org/

°® Bazel
= http://bazel.io/

® Cake
= https://cakebuild.net/

Software Development Tools Building Large Programs 40

https://ant.apache.org/ivy/
http://www.scons.org/
http://bazel.io/
https://cakebuild.net/

Useful skills

°* Experience with build scripts for some tools

= Creating new scripts from scratch for your own
small projects

= Editing some parts of already existing scripts and
configurations

® Recommendations

= L earn some tools that are new for you (“broaden
your horizons”)

= Ability to modify large scripts is really important

Software Development Tools Building Large Programs 41

Homework

® Assignment
= ReCodEx: group associated with this course

= Web: http://d3s.mff.cuni.cz/files/teaching/nswil54/ukoly

® Deadline
= 19.3.2025

Software Development Tools Building Large Programs 42

http://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly

