Functional Testing

(Testovani funkcnosti)

http://d3s.mff.cuni.cz

e s Pavel Parizek
Dependable
parizek@d3s.mff.cuni.cz

FACULTY
OF MATHEMATICS

- AND PHYSICS
Charles University




Software testing

® Purpose

= Checking whether a given program satisfies certain
requirements and expectations about its behavior

® Basicidea
= Pick specific inputs (a set of values)
= Run the program for each input
= |Inspect the output and final state

®* Shows only presence of errors
= You can try just few selected input values

Software Development Tools Functional Testing 2



Terminology

® Test case
= Checks single requirement on the program behavior
= Defines test input and expected output (final state)

® Test suite
= Collection of related test cases

* Fixture
= Common environment for test cases in a given suite

* Test oracle
= Determines whether the program behaves correctly
= “Oracle problem”: complex apps, user interface, automation

Software Development Tools Functional Testing 3



When to run tests

®* Development
1) Write code and some tests
2) Run all tests and find bugs
3) Fix bugs detected by tests
4) Go to step 1 until deadline

® Regressions
= Execute all passed tests after every modification

* bug fix, refactoring, new unrelated feature, optimization

" Goal: check whether everything still works then

Software Development Tools Functional Testing 4



Testing on different levels

® Unit testing
= Small components (method, class)
= Automatic easily repeatable tests
= Provides clear answer (pass or fail)

® |Integration testing
= Checking interaction between components

* System testing (end-to-end)
= Whole system in a target environment
= Requirements specified by customers

Software Development Tools Functional Testing 5



Unit testing

°* Developers write code that
= Specifies test inputs and required properties

= Checks whether all tests successfully passed

°* Comparing expected outputs (and program state) with
actual outputs

® Frameworks

= JUnit, TestNG, PyUnit, CPPUnit, Google Test,
MSTest, NUnit, xUnit, and many others

Software Development Tools Functional Testing 6



JUnit

* Unit testing framework for Java
= https://github.com/junit-team/junit/wiki
= http://junit.org/junit5/

* Key features
= Test cases are normal Java methods
= Test suites are normal Java classes
= Results analyzed in an automated way

®* \Versions
= JUnit 3.8.x: fixed method names, reflection
= JUnit 4.x/5.x: annotations

Software Development Tools Functional Testing 7


https://github.com/junit-team/junit/wiki
http://junit.org/junit5/

Simple test case

s ® s © 5. © s
import java.util.*;

import org.junit.jupiter.api.Test;
import static org.junit.juplter.apl.Assertions.?*;

public class TestArraylList {

@Test
public void add() {
List al = new ArrayList();
int origSz = al.size();
al.add ("abc") ;
int newSz = al.size();
assertEquals (origSz+1l, newSz, "new != orig+l");

assertTrue (al.contains ("abc"));

Software Development Tools Functional Testing 8



Assert statements

public static void assertXY ([message], ...)

assertEquals(T expected, T actual)
assertArrayEquals(T[] expected, T[] actual)
assertSame(Object expected, Object actual)
assertTrue(boolean condition)
assertFalse(boolean condition)
assertNull(Object obj)

assertNotNull(Object obj)

fail([String message])

Software Development Tools Functional Testing 9



Running tests

°* Many options
" Command line (java -cp ... <test runner>y)
= Build tools (Ant, Maven, Gradle, ...)

= Popular IDEs (Eclipse, NetBeans, IntelliJ IDEA)

®* Warning: make sure you have a proper setup (various
caches, libraries, classpath, ...)

* |Information

" https://junit.org/junit5/docs/current/user-
guide/#running-tests

Software Development Tools Functional Testing 10


https://junit.org/junit5/docs/current/user-guide/#running-tests

What you should test

* Method contracts (API)
® All branches in the code
* All control-flow paths

® Special (corner) cases
= “off by one”, bad inputs

® Positive testing
®* Negative testing

® Regressions
" |Inputs triggering previously discovered bugs

Software Development Tools Functional Testing 11



Task

®* Unit tests for java.util.ArraylList

= Selected methods: add(o), get(i), remove(i), remove(o),
clear(), size(), contains(o)

°* Try different assert statements

®* Consider also some failing tests

° C#/.NET variant

= ArraylList from the namespace System.Collections
5 List<T> from System.Collections.Generic

Software Development Tools Functional Testing 12



Fixture

®* Goal: prepare objects in a known state
= Set up a fixed environment for each test cases

® Reset before each test case = isolated tests

® |nitialization
= @BeforeEach
= @BeforeAll
®* Clean-up
= @AfterEach
= @AfterAll

Software Development Tools Functional Testing 13



Test case with a simple fixture

import org.junit.jupiter.api.*;

public class TestArrayList {
private List al;

@BeforeEach
public void setUp() {
al = new ArrayList();

al.add ("abc") ;
}

@AfterEach

public void tearDown () {
al = null;

}

@Test

public void add() { ... }

}

14

Software Development Tools Functional Testing



Expected exceptions

@Test
public void testSomething () {
assertThrows (MyEx.class, () —->

doSomeUnsafeOperation()) ;

Software Development Tools Functional Testing 15



Task

°* Extend your tests for ArrayList

® Practice defining of common fixtures

= Extract duplicate initialization code

* Test against expected exceptions
= get(i): IndexOutOfBoundsException

Software Development Tools Functional Testing 16



Recommended practice

* Place tests in the same package as target classes
= Directory layout

src/main/cz/cuni/mff/myapp/MyClass.java

src/tests/cz/cuni/mff/myapp/TestMyClass.java

* Define single assertion in each test method
= JUnit reports only the first failed assert in a test case
= Multiple assertions = some failures possibly missed
= Drawback: you need to write/produce lot more code

Software Development Tools Functional Testing 17



Parameterized tests

public class TestSquareRoot {

public static Stream<Arguments> testData () {

return Stream.of (
arguments(1,1),
arguments (4, 2)

) ;

@QParameterizedTest
@MethodSource (“testData”)

public void test(int expOutput,
assertEquals (expOutput, Math.sqgrt (vallnput)):;

int vallInput) {

18

Software Development Tools Functional Testing



Task

® Practice writing of some parameterized tests

* Try different ways how to specify test data

" https://junit.org/junit5/docs/current/user-
guide/#writing-tests-parameterized-tests

Software Development Tools Functional Testing 19


https://junit.org/junit5/docs/current/user-guide/#writing-tests-parameterized-tests

Advanced features of JUnit (4)

* Matchers
= gssertThat

® Assumptions

®* Rules
= TemporaryFolder
= ErrorCollector

® Categories

® Further information
= https://github.com/junit-team/junit/wiki

Software Development Tools Functional Testing 20


https://github.com/junit-team/junit/wiki

JUnit 5 — new features

®* Framework decomposed into several modules
® Distributed through Maven central repository

®* User guide
= https://junit.org/junit5/docs/current/user-guide/

®* New syntax of annotations
= @BeforeEach vs @Before, @AfterEach vs @After
= @BeforeAll vs @BeforeClass, @AfterAll

® New modern API
= Classes and interfaces => different imports
= Named assertions, grouping via assertAll
= Syntax for parameterized tests (data source)

Software Development Tools Functional Testing 21


https://junit.org/junit5/docs/current/user-guide/

Testing methods

* Black-box testing
= Zero knowledge about the implementation (no access)
= Tests based only on specification and interfaces (API)
= Checking outputs against expectations for input values

* White-box testing
= Full knowledge of the implementation (access to code)
= Tester can modify the system a little bit for easy testing

®* Grey-box testing
= Tester knows the system (code), but cannot modify it

Software Development Tools Functional Testing 22



Dependencies among objects

® Units typically have dependencies
= Very hard to test such units in full isolation
= Approach: complex fixtures and test cases

= Example
@BeforeEach
public void setUp () {
java.sql.Connection db = ... // complex init
PersistenceMngr pm = new MyPersistenceMngr (db) ;

® Possible solutions
= dummy objects, fake, stubs, mock objects

Software Development Tools Functional Testing 23



Dependencies among objects

* Dummy objects
= Passed around but never used (e.g., parameter list)

°* Fake
= Working simpler implementation (e.g., in-memory DB)

® Stub

= “empty” implementation with predefined responses to
method calls

* Mock object

Software Development Tools Functional Testing 24



Testing with mock objects

* Mock object

= Stub that also checks whether it is used correctly by the
object under test = “behavior verification”

®* Frameworks
" EasyMock (https://easymock.org/)
" Mockito (https://site.mockito.org/)
" Moq (https://github.com/deviooped/moq)
= Rhino Mocks (https://hibernatingrhinos.com/oss/rhino-mocks)

= Microsoft Fakes in Visual Studio

® Only stubs, not full mocks

e https://learn.microsoft.com/en-us/visualstudio/test/isolating-
code-under-test-with-microsoft-fakes?view=vs-2022

Software Development Tools Functional Testing 25


https://easymock.org/
https://site.mockito.org/
https://github.com/devlooped/moq
https://hibernatingrhinos.com/oss/rhino-mocks
https://learn.microsoft.com/en-us/visualstudio/test/isolating-code-under-test-with-microsoft-fakes?view=vs-2022

Concurrency

* Testing does not work for concurrency

= Programs with multiple threads

°* Huge number of thread schedules
°* Non-deterministic behavior
® Errors are hard to reproduce

Software Development Tools Functional Testing 26



Other artifacts and processes

* Configuration
* Userinterfaces

°* Complete user scenarios (end-to-end)

Software Development Tools Functional Testing 27



Unit testing for C#/.NET/Windows

°* MSTest (Visual Studio)
= Annotations: [TestClass], [TestMethod ]
" Fixture: [TestInitialize], [TestCleanup]

= Basic assertion statements
°* Assert.AreEqual(Object, Object, String)
° IsTrue, IsNotNull, IsInstanceOfType, Fail, ...

= More advanced: StringAssert, CollectionAssert
= Parameterized tests: [DataRow]

® Other frameworks
= NUnit: http://nunit.org/, https://github.com/nunit
= xUnit.net: https://xunit.net/

Software Development Tools Functional Testing 28


http://nunit.org/
https://github.com/nunit
https://xunit.net/

Automation

®* Generating tests with dynamic symbolic analysis
= Manual writing of tests is very tedious
= KLEE: http://klee.github.io/

= |ntelliTest: https://learn.microsoft.com/en-
us/visualstudio/test/intellitest-manual/?view=vs-2022

® Fuzzing techniques and tools

Software Development Tools Functional Testing 29


http://klee.github.io/
https://learn.microsoft.com/en-us/visualstudio/test/intellitest-manual/?view=vs-2022

Fuzzing

® Search for inputs that may trigger some errors
= Generating inputs [semi-] randomly (with constraints)
= Visible failures: program crash, wrong output

® Useful for security bugs (critically important, hard-to-find)

® Interesting tools

= SAGE & DART
® |nformation and links: https://patricegodefroid.github.io/

= AFL++ (Americal Fuzzy Loop): https://aflplus.plus/
= JDart: https://github.com/psycopaths/jdart
m  OSS-Fuzz: https://github.com/google/oss-fuzz

® Literature
= The Fuzzing Book (https://www.fuzzingbook.org/)

= Fuzzing: Hack, Art, and Science. Communications of the ACM, Feb 2020
® https://cacm.acm.org/research/fuzzing/

Software Development Tools Functional Testing 30


https://patricegodefroid.github.io/
https://aflplus.plus/
https://github.com/psycopaths/jdart
https://github.com/google/oss-fuzz
https://www.fuzzingbook.org/
https://cacm.acm.org/research/fuzzing/

Related courses

®* More general information about testing
= NTINO70: Testovani software (ZS)

®* But you can do better than simple unit testing ...

= NSWI126: Pokrocilé nastroje pro vyvoj a monitorovani
software (LS)

® ...and you can even model, analyze, and verify
program behavior

= NSWI101: Modely a verifikace chovani systému (ZS)
= NSWI132: Analyza programu a verifikace kédu (LS)

Software Development Tools Functional Testing 31



Links

°* JUnit
= https://github.com/junit-team/junit/wiki
= http://junit.org/junit5/

°* TestNG
= https://testng.org/doc/

®* MSTest
= https://learn.microsoft.com/en-us/visualstudio/test/unit-test-your-code?view=vs-2022
°* NUnit

= http://www.nunit.org
»  https://github.com/nunit/docs/wiki/NUnit-Documentation

® CPPUnit
= http://sourceforge.net/projects/cppunit
® (Catch2

=  https://github.com/catchorg/Catch?

®* Google Test
=  https://github.com/google/googletest

Software Development Tools Functional Testing 32


https://github.com/junit-team/junit/wiki
http://junit.org/junit5/
https://testng.org/doc/
https://learn.microsoft.com/en-us/visualstudio/test/unit-test-your-code?view=vs-2022
http://www.nunit.org/
https://github.com/nunit/docs/wiki/NUnit-Documentation
http://cppunit.sourceforget.net/
https://github.com/catchorg/Catch2
https://github.com/google/googletest

Homework

® Assignment
= ReCodEx: group associated with this course
= Web: http://d3s.mff.cuni.cz/files/teaching/nswil54/ukoly/

® Deadline
= 94.2025

® You are free to use any programming language
and testing framework

= Java with JUnit, C# with MSTest or xUnit, C++, Python

Software Development Tools Functional Testing 33


http://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

