
http://d3s.mff.cuni.cz

Debugging & Bug-finding

Pavel Parízek
parizek@d3s.mff.cuni.cz



Motivation

Software Development Tools Debugging 2

When some test fails

You know there is a bug in the program code

You do not know the root cause of the bug

Testing detects presence of bugs in the code

But you still have to find them and eliminate properly

Writing tests for smaller units of code does not help

Too much work with a little benefit (bad “cost-effect” ratio)

Solution: debugging, automated bug-finders



Debugging

Software Development Tools Debugging 3

Manual process
Monitoring execution of a given program

Inspecting and updating the current state

Tool support
Stop and restart program execution

Manage breakpoints (set, delete)

Inspect and update memory content 
e.g., the current values of program variables

Attach debugger to a running program



Important concepts

Software Development Tools Debugging 4

Breakpoint
Source code location where the program execution is 
stopped intentionally

Additional conditions may have to be also satisfied
total number of hits, the current value of a program variable

Types: HW (CPU, fast, limited), SW (interrupt, slow)

Core dump
Full memory image of the crashed process

heap objects and fields, registers, stack trace of each thread

Records the full program state upon crash



Basic approaches

Software Development Tools Debugging 5

Printing debug messages
Add many print statements into your code

System.out.println(“[DEBUG] MyObj.doSmth: arg1 = 
“ + arg1 + “, v = “ + v + “, data = “ + 
this.data);

Read huge log files (search for text patterns)
Useful when you need lot of data at the same time

Interactive “online” debuggers
Control program execution and inspect current state
Basic tools: GDB, DDD, jdb, JPDA, WinDbg, KD, CDB
IDE support: Visual Studio, Eclipse, NetBeans, IDEA

Thorough explanation of your code to friends/colleagues
Approach works surprisingly well in practice



The [complete] process of debugging

Software Development Tools Debugging 6



Motivation to use debuggers

Software Development Tools Debugging 7

John Carmack: Best programming setup and 
IDE | Lex Fridman Podcast Clips

https://www.youtube.com/watch?v=tzr7hRXcwkw

Length around 15 minutes

https://www.youtube.com/watch?v=tzr7hRXcwkw


GNU Debugger (GDB)

Software Development Tools Debugging 8



GNU Debugger (GDB)

Software Development Tools Debugging 9

User interface: command-line

Intended for Unix-like systems
Low-level system software written in C/C++

Examples: utilities, web server, operating system kernel

Supports many languages
C, C++, Rust, Ada, Go, Objective-C, ...

Web site
http://www.sourceware.org/gdb/

http://www.sourceware.org/gdb/


Running program with GDB

Software Development Tools Debugging 10

Start GDB for a given program
gdb <program>

Start program with arguments
gdb --args <program> <arg1> ... <argN>

Run program again inside GDB
(gdb) run [<arg1> ... <argN>]

Exit the debugged program
Ctrl+d (EOF)

End the GDB session
(gdb) quit



Breakpoints

Software Development Tools Debugging 11

Define breakpoint
(gdb) break <function name>

(gdb) break <line number>

(gdb) break <filename>:<line>

Continue execution
(gdb) continue

Shortcut: (gdb) c



Breakpoints

Software Development Tools Debugging 12

List of breakpoints
(gdb) info breakpoints

Disable breakpoint
(gdb) disable <num>

Enable breakpoint
(gdb) enable <num>

Delete breakpoint
(gdb) delete <num>



Single stepping

Software Development Tools Debugging 13

Advance to the next source line
(gdb) step [count]

Shortcut: (gdb) s

Advance to the next line in the current scope
(gdb) next [count]

Shortcut: (gdb) n



Information about the debugged program

Software Development Tools Debugging 14

Source code lines
(gdb) list

(gdb) list <linenum>

Symbol table
(gdb) info scope <function name>

(gdb) info source

(gdb) info functions

(gdb) info variables

(gdb) info locals



Information about program variables

Software Development Tools Debugging 15

Values
(gdb) print <expression>

Example: (gdb) print argv[1]

Shortcut: (gdb) p

Types
(gdb) whatis <variable name>

(gdb) ptype <variable name>



Inspecting the call stack frames

Software Development Tools Debugging 16

Print call stack
(gdb) backtrace

Shortcut: (gdb) bt

Including local variables
(gdb) bt full

Selecting frames

Move frame up: (gdb) up [n]

Move down: (gdb) down [n]



Changing expression values

Software Development Tools Debugging 17

Make changes
(gdb) set var <expr> = <new value>

(gdb) print <expr> = <new value>

Watch for changes (data breakpoint)
(gdb) watch <expression>

List all watchpoints
(gdb) info watchpoints



Core dumps

Software Development Tools Debugging 18

Set maximum size of core files
ulimit -c unlimited

Analyze the core dump file (“core”)
gdb <program binary> <core dump>

Attach to already running process
gdb <program binary> <process ID>



Advanced features of GDB

Software Development Tools Debugging 19

Calling functions and jumps

Breakpoint command list

Support for multi-threading

Reverse execution

Record and replay

Remote debugging

GUI frontend: DDD
http://www.gnu.org/software/ddd

http://www.gnu.org/software/ddd


Concurrency

Software Development Tools Debugging 20

Debuggers support multi-threaded programs

Including GDB

Problems

Programs behave differently when running in the 
debugger than in normal execution

Different internal timing of concurrent events

It is hard to find concurrency bugs with debuggers



Debugging tools for Windows/.NET

Software Development Tools Debugging 21

Visual Studio debugger
Supported languages: C#, Visual Basic, ASP .NET
Advanced features: edit & continue, attach to running process, 
scriptability (reproduction of errors)
No support for debugging kernel space code

Other tools
Windows debuggers (Windows SDK, WDK)

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-
operation-win8

Tools: WinDbg, KD, CDB, Psscor4, various utilities

GDB-based: Visual Studio GDB Debugger, Visual GDB

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-operation-win8


Exercise

Software Development Tools Debugging 22

Example
http://d3s.mff.cuni.cz/files/teaching/nswi154/sudoku.tgz

Build with Make (sets flags “-g -Wall -O0”)

Run via the command ./sudoku vstup.txt

Try basic features
Running the program in debugger

Management of breakpoints

Single stepping commands

Printing information about the program and variables

Inspecting the call stack and switching frames

Changing values of selected program variables

http://d3s.mff.cuni.cz/files/teaching/nswi154/sudoku.tgz


Automated run-time checking

Software Development Tools Debugging 23

Idea: search for bugs during program execution

Main approaches
Replacing libraries with debugging versions

Program linked with special versions of some library functions

Library functions (malloc, free, ...) perform runtime checks

Force program to crash upon a detected memory access error

Supported errors: buffer overflows, leaks, using freed memory

Tools: Dmalloc, DUMA

Monitoring execution of an instrumented program and 
looking for specific errors

Tools: Valgrind



Valgrind

Software Development Tools Debugging 24

Generic framework for creating runtime 
checkers (error detectors)

Supported platforms
Linux: x86, x86-64, PowerPC

Android (x86, ARM), OS X

Basic principle: dynamic binary instrumentation

Includes several tools
MemCheck: detects memory management errors

Helgrind: detects errors in thread synchronization



Running

Software Development Tools Debugging 25

Command line:
valgrind <program> <arguments>

Recommended compiler flags to use
-g -O0 -Wall -fno-inline

Avoid optimizations (-O1,-O2) when using 
Valgrind to detect errors in your program



MemCheck

Software Development Tools Debugging 26

Running
valgrind [--tool=memcheck] <program>

Supported errors
Accessing freed memory blocks

Reading uninitialized variables

Double-freeing of heap blocks

Memory leaks (missing “free”)

How to enable leak detection
valgrind --leak-check=yes <program>



MemCheck: output

Software Development Tools Debugging 27

Buffer overflow
== 2456 == Invalid write of size 4

== 2456 == at 0x204A68D: myfunc (myprog.c:95)

== 2456 == at 0x204A120: main (myprog.c:14)

== 2456 == Address 0x2684FF0 is 8 bytes after a block of

size 64 alloc’d

== 2456 == at 0x2684FA8: malloc (vg_replace_malloc.c:130)

== 2456 == by 0x204A0E8: main(myproc.c:10)

Memory leak
== 1789 == 32 bytes in 1 blocks are definitely lost in loss 

record 1 of 1

== 1789 == at 0x2F4482D: malloc (vg_replace_malloc.c:130)

== 1789 == at 0x204A692: myfunc (myprog.c:112)

== 1789 == at 0x204A130: main (myprog.c:20)

PID

kind of error
stacktrace
identifies the
point where the
error occurred

description of the memory address
involved in the error



Issues

Software Development Tools Debugging 28

Performance
Instrumented program runs 5-30 times slower 
than normal and uses much more memory

Missed errors
Cannot detect off-by-one errors in the use of data 
allocated statically or on the stack

Optimizations
Does not work well with -O1 and -O2



Exercise

Software Development Tools Debugging 29

Try using Valgrind (MemCheck) on programs 
in the Linux distribution (ls, cat, ...) and on 
your simple programs in C/C++

Inspect reported warnings



Advanced topics

Software Development Tools Debugging 30

Suppressions
Ignoring reported false positives and errors found in 
system libraries

Useful options
--read-var-info=yes

Information about variables (name, type, location)

--track-origins=yes

Shows where the uninitialized variables come from

Connecting Valgrind with GDB



Links

Software Development Tools Debugging 31

GDB
http://www.sourceware.org/gdb

jdb: The Java Debugger
https://docs.oracle.com/en/java/javase/17/docs/specs/man/jdb.html

Dmalloc
http://dmalloc.com

DUMA
http://sourceforge.net/projects/duma

Valgrind
http://valgrind.org/

Sanitizers from Google (address, memory, leak, thread)
https://github.com/google/sanitizers

http://www.sourceware.org/gdb
https://docs.oracle.com/en/java/javase/17/docs/specs/man/jdb.html
http://dmalloc.com/
http://sourceforge.net/projects/duma
http://valgrind.org/
https://github.com/google/sanitizers


Static code analyzers

Software Development Tools Debugging 32

Automated search for common problems in 
source code at compile-time

bug patterns, suspicious constructs, bad practice

Focus on semantics (behavior)
Compiler has already checked the syntax

Modular analysis (each procedure separately)

Trade-off: precision versus performance
false alarms (positives), missed errors

Detect only simple bugs in the source code
but still very useful (highly recommended to use)



What the analyzers detect

Software Development Tools Debugging 33

Basic patterns
Possible null dereferences

Comparing strings with ==

Ignoring result of method call
Example: InputStream.read()

Array index out of bounds

Wrong usage of API
Stream not closed when exception occurs

Memory usage errors
double free(), possible leaks



Tools

Software Development Tools Debugging 34

Java
SpotBugs (FindBugs), Jlint, PMD, Checkstyle, Error Prone, 
Checker Framework

C/C++
Clang, PREfast, Cppcheck

C#/.NET
StyleCop, FxCop, ReSharper, Roslynator
Microsoft Application Inspector

Other (including commercial products)
SonarQube



SpotBugs / FindBugs

Software Development Tools Debugging 35

Bug patterns detector for Java

Source code available (LGPL)

Historical context
FindBugs: original tool (research project), now abandoned
SpotBugs: recent fork, actively maintained, development

Usage: command line, GUI, Ant, Maven, Gradle

Integration with Eclipse (plugin)

https://spotbugs.github.io/
http://findbugs.sourceforge.net/

https://spotbugs.github.io/
http://findbugs.sourceforge.net/


Demo: SpotBugs (FindBugs)

Software Development Tools Debugging 36



SpotBugs: advanced features

Software Development Tools Debugging 37

Filtering bugs

Annotations

Data mining



Clang static analyzer

Software Development Tools Debugging 38

LLVM compiler infrastructure project

Clang front-end (C, C++, Objective-C)

Source code available (BSD-like license)

User interface: command-line

http://clang-analyzer.llvm.org/

http://clang-analyzer.llvm.org/


Demo: Clang

Software Development Tools Debugging 39

Command: scan-build
Intercepts standard build process (CC, CXX)

Runs compiler and then static code analyzer

How to use it
scan-build <your build command>

Examples
scan-build ./configure ; make

scan-build gcc test.c mylib.c

Output: HTML files (bug reports)



Clang: options

Software Development Tools Debugging 40

List all available checkers

Command: scan-build -h

Enabling some checker
scan-build -enable-checker [name]



Exercise

Software Development Tools Debugging 41

SpotBugs
Download and unpack

https://spotbugs.readthedocs.io/en/stable/

How to run it
Linux/Windows: bin/spotbugs
Other options (e.g., heap size)

https://spotbugs.readthedocs.io/en/stable/running.html

Clang static analyzer

Target programs
Your own (e.g., individual software projects)
Widely known open source software packages

https://spotbugs.readthedocs.io/en/stable/
https://spotbugs.readthedocs.io/en/stable/running.html


Literature & additional information

Software Development Tools Debugging 42

The Debugging Book
https://www.debuggingbook.org/
Basic introduction (overview)
Few selected advanced topics

Locating root causes of errors
Automatic repair (bugfixes)

Diomidis Spinellis. Modern Debugging: The Art of Finding a 
Needle in a Haystack. Communications of the ACM, 
November 2018

https://cacm.acm.org/magazines/2018/11/232215-modern-
debugging/
Guides on how to debug programs effectively and efficiently
Key point: use systematic approach instead of guessing
Key point: use advanced features of debugger tools (IDE)

https://www.debuggingbook.org/
https://cacm.acm.org/magazines/2018/11/232215-modern-debugging/


Related courses

Software Development Tools Debugging 43

Tools for detecting complicated bugs

concurrency (deadlocks, data races), assertions

NSWI101: Modely a verifikace chování systémů

NSWI132: Analýza programů a verifikace kódu



Links (other tools)

Software Development Tools Debugging 44

Cppcheck: http://cppcheck.sourceforge.net/

PMD: http://pmd.github.io/

Checkstyle: https://checkstyle.sourceforge.io/

Error Prone: http://errorprone.info/

FxCop: https://docs.microsoft.com/en-us/previous-
versions/dotnet/netframework-3.0/bb429476(v=vs.80)

ReSharper: https://www.jetbrains.com/resharper/

SonarQube: https://www.sonarqube.org/

Microsoft Application Inspector
https://www.microsoft.com/security/blog/2020/01/16/introducing-microsoft-
application-inspector/

http://cppcheck.sourceforge.net/
http://pmd.github.io/
https://checkstyle.sourceforge.io/
http://errorprone.info/
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-3.0/bb429476(v=vs.80)
https://www.jetbrains.com/resharper/
https://www.sonarqube.org/
https://www.microsoft.com/security/blog/2020/01/16/introducing-microsoft-application-inspector/


Roslynator

Software Development Tools Debugging 45

Extensible static analysis tool for C#

Additional information
https://www.infoq.com/news/2020/01/roslynator
-analyzers-231/

https://github.com/JosefPihrt/Roslynator

https://devblogs.microsoft.com/dotnet/write-
better-code-faster-with-roslyn-analyzers/

https://learn.microsoft.com/en-
gb/visualstudio/code-quality/roslyn-analyzers-
overview?view=vs-2019

https://www.infoq.com/news/2020/01/roslynator-analyzers-231/
https://github.com/JosefPihrt/Roslynator
https://devblogs.microsoft.com/dotnet/write-better-code-faster-with-roslyn-analyzers/
https://learn.microsoft.com/en-gb/visualstudio/code-quality/roslyn-analyzers-overview?view=vs-2019


Checker Framework

Software Development Tools Debugging 46

Extends type system of Java

Source code annotations

Compiler plugins (“checkers”)

Responsible for type checking and inference

Detects many kinds of bugs

null pointer exceptions, array index out of bounds, ...

Web: https://checkerframework.org/

https://checkerframework.org/


Homework

Software Development Tools Debugging 47

Assignment

ReCodEx: group associated with this course

Web: http://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

Deadline

16.4.2025

http://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

