Debugging & Bug-finding

http://d3s.mff.cuni.cz

e s Pavel Parizek
Dependable
parizek@d3s.mff.cuni.cz

FACULTY
OF MATHEMATICS

AND PHYSICS
Charles University




Motivation

* When some test fails
= You know there is a bug in the program code
= You do not know the root cause of the bug

* Testing detects presence of bugs in the code
= But you still have to find them and eliminate properly
= Writing tests for smaller units of code does not help

®* Too much work with a little benefit (bad “cost-effect” ratio)

® Solution: debugging, automated bug-finders

Software Development Tools Debugging 2



Debugging

°* Manual process
= Monitoring execution of a given program
" |nspecting and updating the current state

* Tool support
= Stop and restart program execution
= [Manage breakpoints (set, delete)

= |nspect and update memory content
°* e.g., the current values of program variables

= Attach debugger to a running program

Software Development Tools Debugging 3



Important concepts

®* Breakpoint

= Source code location where the program execution is
stopped intentionally

= Additional conditions may have to be also satisfied
* total number of hits, the current value of a program variable

= Types: HW (CPU, fast, limited), SW (interrupt, slow)

® Core dump

= Full memory image of the crashed process
* heap objects and fields, registers, stack trace of each thread

= Records the full program state upon crash

Software Development Tools Debugging 4



Basic approaches

® Printing debug messages

= Add many print statements into your code

e System.out.println (Y [DEBUG] MyObj.doSmth: argl =
\\ + argl + \\, V — \\ _|_ V + \\, data — \\ _I_
this.data) ;

= Read huge log files (search for text patterns)
= Useful when you need lot of data at the same time

® [nteractive “online” debuggers

= Control program execution and inspect current state
= Basic tools: GDB, DDD, jdb, JPDA, WinDbg, KD, CDB
= |DE support: Visual Studio, Eclipse, NetBeans, IDEA

°* Thorough explanation of your code to friends/colleagues
= Approach works surprisingly well in practice

Software Development Tools Debugging 5



The [complete] process of debugging

Six Steps of Debugging

Debugging bothers 1. That can't happen.

more th an COd ' ng. y 2. That doesn’t happen on my machine.
3. That shouldn't happen.

4. Why does that happen?
5. Oh, | see.

6. How did it ever work???

Software Development Tools Debugging 6



Motivation to use debuggers

* John Carmack: Best programming setup and
IDE | Lex Fridman Podcast Clips

= https://www.youtube.com/watch?v=tzr7hRXcwkw

= Length around 15 minutes

Software Development Tools Debugging 7


https://www.youtube.com/watch?v=tzr7hRXcwkw

GNU Debugger (GDB)

Software Development Tools Debugging 8



GNU Debugger (GDB)

® User interface: command-line

* Intended for Unix-like systems

= Low-level system software written in C/C++
* Examples: utilities, web server, operating system kernel

e Supports many Ianguages
* C, C++, Rust, Ada, Go, Objective-C, ...

°* Web site
" http://www.sourceware.org/gdb/

Software Development Tools Debugging 9


http://www.sourceware.org/gdb/

Running program with GDB

® Start GDB for a given program
gdb <program>

® Start program with arguments

gdb —--args <program> <argl> ... <argN>
® Run program again inside GDB
(gdb) run [<argl> ... <argN>]

* Exit the debugged program
Ctrl+d (EOF)

® End the GDB session
(gdb) quit

Software Development Tools Debugging 10



Breakpoints

* Define breakpoint
(gdb) break <function name>
(gdb) break <line number>
(gdb) break <filename>:<line>

®* Continue execution
(gdb) continue
= Shortcut: (gdb) c

Software Development Tools Debugging 11



Breakpoints

® List of breakpoints
(gdb) 1info breakpoints

® Disable breakpoint
(gdb) disable <num>

®* Enable breakpoint
(gdb) enable <num>

® Delete breakpoint
(gdb) delete <num>

Software Development Tools Debugging 12



Single stepping

* Advance to the next source line
(gdb) step [count]
= Shortcut: (gdb) s

* Advance to the next line in the current scope
(gdb) next [count]
= Shortcut: (gdb) n

Software Development Tools Debugging 13



Information about the debugged program

® Source code lines

(gdb)
(gdb)

list
list

* Symbol table

Software Development Tools

info
info
info
info
info

<linenum>

scope <function name>
source

functions

variliables

locals

Debugging

14



Information about program variables

° Values
(gdb) print <expression>
= Example: (gdb) print argv[1l]
= Shortcut: (gdb) p

* Types
(gdb) whatis <variable name>

(gdb) ptype <variable name>

Software Development Tools Debugging 15



Inspecting the call stack frames

* Print call stack
(gdb) backtrace
= Shortcut: (gdb) bt

= |Including local variables
(gdb) bt full

* Selecting frames
= Move frame up: (gdb) up [n]
= Move down: (gdb) down [n]

Software Development Tools Debugging 16



Changing expression values

* Make changes
(gdb) set var <expr> = <new value>

(gdb) print <expr> = <new value>

* Watch for changes (data breakpoint)
(gdb) watch <expression>

* List all watchpoints
(gdb) 1info watchpoints

Software Development Tools Debugging 17



Core dumps

® Set maximum size of core files

ulimit -c¢ unlimited

°* Analyze the core dump file (“core”
gdb <program binary> <core dump>

* Attach to already running process
gdb <program binary> <process ID>

Software Development Tools Debugging 18



Advanced features of GDB

* Calling functions and jumps
®* Breakpoint command list

® Support for multi-threading
®* Reverse execution

®* Record and replay

°* Remote debugging

°* GUI frontend: DDD
" http://www.gnu.org/software/ddd

Software Development Tools Debugging 19


http://www.gnu.org/software/ddd

Concurrency

°* Debuggers support multi-threaded programs
= |Including GDB

® Problems

= Programs behave differently when running in the
debugger than in normal execution

* Different internal timing of concurrent events

= |t is hard to find concurrency bugs with debuggers

Software Development Tools Debugging 20



Debugging tools for Windows/.NET

® Visual Studio debugger
= Supported languages: C#, Visual Basic, ASP .NET

= Advanced features: edit & continue, attach to running process,
scriptability (reproduction of errors)

= No support for debugging kernel space code

® QOther tools
= Windows debuggers (Windows SDK, WDK)

® https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/

® https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-
operation-win8

* Tools: WinDbg, KD, CDB, Psscor4, various utilities

® GDB-based: Visual Studio GDB Debugger, Visual GDB

Software Development Tools Debugging 21


https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-operation-win8

Exercise
s 5 0 5 ® o

°* Example
= http://d3s.mff.cuni.cz/files/teaching/nswil54/sudoku.tgz
= Build with Make (sets flags “-g -Wall -00")
" Runviathe command . /sudoku vstup.txt

°* Try basic features
" Running the program in debugger
= Management of breakpoints
= Single stepping commands
" Printing information about the program and variables
= |nspecting the call stack and switching frames
" Changing values of selected program variables

Software Development Tools Debugging 22


http://d3s.mff.cuni.cz/files/teaching/nswi154/sudoku.tgz

Automated run-time checking

* |dea: search for bugs during program execution

® Main approaches

= Replacing libraries with debugging versions
* Program linked with special versions of some library functions
* Library functions (malloc, free, ...) perform runtime checks
® Force program to crash upon a detected memory access error

* Supported errors: buffer overflows, leaks, using freed memory
® Tools: Dmalloc, DUMA

= Monitoring execution of an instrumented program and
looking for specific errors

® Tools: Valgrind

Software Development Tools Debugging 23



Valgrind

* Generic framework for creating runtime
checkers (error detectors)

= Supported platforms
® Linux: x86, x86-64, PowerPC
* Android (x86, ARM), OS X

= Basic principle: dynamic binary instrumentation

° |Includes several tools
= MemCheck: detects memory management errors
= Helgrind: detects errors in thread synchronization

Software Development Tools Debugging 24



Running

® Command line:

valgrind <program> <arguments>

* Recommended compiler flags to use
-g -00 -Wall -fno-inline
= Avoid optimizations (-01,-02) when using
Valgrind to detect errors in your program

Software Development Tools Debugging 25



MemCheck

® Running

valgrind [—--tool=memcheck] <program>

® Supported errors
= Accessing freed memory blocks
= Reading uninitialized variables
= Double-freeing of heap blocks
= Memory leaks (missing “free”)

* How to enable leak detection

valgrind --leak-check=yes <program>

Software Development Tools Debugging 26



MemCheck: output

_kind of error

* Buffer overflow stacktrace
L A identifies the
== 2456 =='%ﬂYﬁiﬁﬁ,ﬂi&Eﬁngf,iéfﬁzﬁ; ____________ _~"point where the
== Eééé == |at 0x204A68D: myfunc (myprog.c: 95) error occurred
=124561= | tat 0x204A120: main (myprog.c:l4) ;'
PID '”':: éﬁ%%‘== \Address 0x2684FF0 is 8 bytes after a block of |
| size 64 alloc’d !
== 2456 == : at 0x2684FA8: malloc (vg_replace_malloc.c:130):
—= 2456 == 1 Dby 0x204A0E8: main (myproc.c:10) !

description of the memory address
involved in the error

== 1789 == 32 bytes in 1 blocks are'dgﬁgga@g}y_}ggtnln loss
record 1 of 1

== 1789 == at Ox2F4482D: malloc (vg replace malloc.c:130)

== 1789 == at 0x204A692: myfunc (myprog.c:112)

== 1789 == at 0x204A130: main (myprog.c:20)

Software Development Tools Debugging 27



Issues

® Performance

= |nstrumented program runs 5-30 times slower
than normal and uses much more memory

* Missed errors

= Cannot detect off-by-one errors in the use of data
allocated statically or on the stack

®* Optimizations
= Does not work well with -O1 and -02

Software Development Tools Debugging 28



Exercise

° Try using Valgrind (MemCheck) on programs
in the Linux distribution (1s, cat, ...) and on
your simple programs in C/C++

= |nspect reported warnings

Software Development Tools Debugging 29



Advanced topics

® Suppressions

= |gnoring reported false positives and errors found in
system libraries

® Useful options
—-—read-var-info=yes
* Information about variables (name, type, location)
—-—track-origins=yes
* Shows where the uninitialized variables come from

®* Connecting Valgrind with GDB

Software Development Tools Debugging 30



Links

e GDB
= http://www.sourceware.org/gdb

® jdb: The Java Debugger
= https://docs.oracle.com/en/java/javase/17/docs/specs/man/jdb.html

* Dmalloc
= http://dmalloc.com
° DUMA

= http://sourceforge.net/projects/duma

* Valgrind
= http://valgrind.org/

* Sanitizers from Google (address, memory, leak, thread)
m https://github.com/google/sanitizers

Software Development Tools Debugging 31


http://www.sourceware.org/gdb
https://docs.oracle.com/en/java/javase/17/docs/specs/man/jdb.html
http://dmalloc.com/
http://sourceforge.net/projects/duma
http://valgrind.org/
https://github.com/google/sanitizers

Static code analyzers

°* Automated search for common problems in
source code at compile-time

= bug patterns, suspicious constructs, bad practice

®* Focus on semantics (behavior)
= Compiler has already checked the syntax

* Modular analysis (each procedure separately)

* Trade-off: precision versus performance
= false alarms (positives), missed errors

®* Detect only simple bugs in the source code
= but still very useful (highly recommended to use)

Software Development Tools Debugging 32



What the analyzers detect

® Basic patterns
= Possible null dereferences
= Comparing strings with ==
= |gnoring result of method call
® Example: InputStream.read ()

= Array index out of bounds

°* Wrong usage of API

= Stream not closed when exception occurs

°* Memory usage errors
= double free (), possible leaks

Software Development Tools Debugging

33



Tools

® Java

= SpotBugs (FindBugs), Jlint, PMD, Checkstyle, Error Prone,
Checker Framework

° C/C++
= Clang, PREfast, Cppcheck

° CH/.NET

= StyleCop, FxCop, ReSharper, Roslynator
= Microsoft Application Inspector

® Other (including commercial products)
= SonarQube

Software Development Tools Debugging 34



SpotBugs / FindBugs

®* Bug patterns detector for Java
® Source code available (LGPL)

® Historical context
= FindBugs: original tool (research project), now abandoned
= SpotBugs: recent fork, actively maintained, development

® Usage: command line, GUI, Ant, Maven, Gradle
® |ntegration with Eclipse (plugin)

e https://spotbugs.github.io/
¢ http://findbugs.sourceforge.net/

Software Development Tools Debugging 35


https://spotbugs.github.io/
http://findbugs.sourceforge.net/

Demo: SpotBugs (FindBugs)

Software Development Tools Debugging 36



SpotBugs: advanced features

°* Filtering bugs
* Annotations

®* Data mining

Software Development Tools Debugging 37



Clang static analyzer

°* LLVM compiler infrastructure project
* Clang front-end (C, C++, Objective-C)

* Source code available (BSD-like license)
® User interface: command-line

* http://clang-analyzer.llvm.org/

Software Development Tools Debugging 38


http://clang-analyzer.llvm.org/

Demo: Clang

® Command: scan-build
= |Intercepts standard build process (CC, CXX)
" Runs compiler and then static code analyzer

® How to use it
= scan-build <your build command>

= Examples
e scan-build ./configure ; make
e scan—-build gcc test.c mylib.c

® Qutput: HTML files (bug reports)

Software Development Tools Debugging 39



Clang: options

® List all available checkers
" Command: scan-build -h

* Enabling some checker

" scan-builld —-enable-checker [name]

Software Development Tools Debugging 40



Exercise

®* SpotBugs
= Download and unpack
® https://spotbugs.readthedocs.io/en/stable/
" How torunit
® Linux/Windows: bin/spotbugs

® Other options (e.g., heap size)
= https://spotbugs.readthedocs.io/en/stable/running.html

* (Clang static analyzer

®* Target programs
= Your own (e.g., individual software projects)
= Widely known open source software packages

Software Development Tools Debugging 41


https://spotbugs.readthedocs.io/en/stable/
https://spotbugs.readthedocs.io/en/stable/running.html

Literature & additional information

®* The Debugging Book
= https://www.debuggingbook.org/
= Basic introduction (overview)

= Few selected advanced topics
® Locating root causes of errors
* Automatic repair (bugfixes)

®* Diomidis Spinellis. Modern Debugging: The Art of Finding a
Needle in a Haystack. Communications of the ACM,
November 2018

= https://cacm.acm.org/magazines/2018/11/232215-modern-
debugging/

= Guides on how to debug programs effectively and efficiently
= Key point: use systematic approach instead of guessing
= Key point: use advanced features of debugger tools (IDE)

Software Development Tools Debugging 42


https://www.debuggingbook.org/
https://cacm.acm.org/magazines/2018/11/232215-modern-debugging/

Related courses

* Tools for detecting complicated bugs
= concurrency (deadlocks, data races), assertions
= NSWI101: Modely a verifikace chovani systému
= NSWI132: Analyza programu a verifikace kodu

Software Development Tools Debugging 43



Links (other tools)

® Cppcheck: http://cppcheck.sourceforge.net/

e PMD: http://pmd.github.io/

® Checkstyle: https://checkstyle.sourceforge.io/

® Error Prone: http://errorprone.info/

® FxCop: https://docs.microsoft.com/en-us/previous-
versions/dotnet/netframework-3.0/bb429476(v=vs.80)

® ReSharper: https://www.jetbrains.com/resharper/

® SonarQube: https://www.sonarqube.org/

®* Microsoft Application Inspector

= https://www.microsoft.com/security/blog/2020/01/16/introducing-microsoft-
application-inspector/

Software Development Tools Debugging 44


http://cppcheck.sourceforge.net/
http://pmd.github.io/
https://checkstyle.sourceforge.io/
http://errorprone.info/
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-3.0/bb429476(v=vs.80)
https://www.jetbrains.com/resharper/
https://www.sonarqube.org/
https://www.microsoft.com/security/blog/2020/01/16/introducing-microsoft-application-inspector/

Roslynator

* Extensible static analysis tool for C#

e Additional information

= https://www.infog.com/news/2020/01/roslynator
-analyzers-231/

= https://github.com/JosefPihrt/Roslynator

= https://devblogs.microsoft.com/dotnet/write-
better-code-faster-with-roslyn-analyzers/

= https://learn.microsoft.com/en-
gb/visualstudio/code-quality/roslyn-analyzers-
overview?view=vs-2019

Software Development Tools Debugging 45


https://www.infoq.com/news/2020/01/roslynator-analyzers-231/
https://github.com/JosefPihrt/Roslynator
https://devblogs.microsoft.com/dotnet/write-better-code-faster-with-roslyn-analyzers/
https://learn.microsoft.com/en-gb/visualstudio/code-quality/roslyn-analyzers-overview?view=vs-2019

Checker Framework

* Extends type system of Java
® Source code annotations

®* Compiler plugins (“checkers”)
= Responsible for type checking and inference

®* Detects many kinds of bugs
= null pointer exceptions, array index out of bounds, ...

e \Web: https://checkerframework.org/

Software Development Tools Debugging 46


https://checkerframework.org/

Homework

® Assignment
= ReCodEx: group associated with this course

= Web: http://d3s.mff.cuni.cz/files/teaching/nswil54/ukoly/

® Deadline
= 16.4.2025

Software Development Tools Debugging 47


http://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

