
http://d3s.mff.cuni.cz

Performance Analysis

Pavel Parízek
parizek@d3s.mff.cuni.cz

Performance analysis

Software Development Tools Performance Analysis 2

Find where the program spends most time

Identify code that you should optimize for speed

Call graph: function names and spent time

Important performance characteristics

throughput, latency, maximal load, average request
processing time, ...

Main approaches

profiling, benchmarking, load testing

Profiling

Software Development Tools Performance Analysis 3

Tools measuring frequency and duration of
procedure calls during program execution

GProf, perf, OProfile, Valgrind, Intel VTune

Basic principles (how it works)

Sampling: results not precise for short time periods

Recording program counter (PC) at regular intervals

Program instrumented with profiling-related code

Getting information from HW performance counters

GProf

Software Development Tools Performance Analysis 4

GNU Profiler

Distributed as a part of binutils

Documentation

https://sourceware.org/binutils/docs/gprof/

https://sourceware.org/binutils/docs/gprof/

How to use GProf

Software Development Tools Performance Analysis 5

1) Build program with enabled profiling
gcc -g -pg -o program program.c

Instrumentation: code that collects raw timing data
added to the entry and exit points of each function

2) Execute the program normally
Raw profile data written to the file gmon.out

3) Generate statistics (tables with results)
gprof <options> program [gmon.out]

Output: flat profile, call graph

Flat profile

Software Development Tools Performance Analysis 6

How to get it
gprof -p program [gmon.out]

Excluding specific function
gprof -p -P<function_name> program

% cumulative self self total

time seconds seconds calls ms/call ms/call name

35.29 0.06 0.06 3 20.00 43.33 compute

32.35 0.12 0.06 14000896 0.00 0.00 S_n

17.65 0.14 0.03 3 10.00 53.33 get_msg

5.88 0.15 0.01 5000320 0.00 0.00 F

5.88 0.17 0.01 main

Example

Software Development Tools Performance Analysis 7

Basic features of GProf

Generating the flat profile

Excluding some functions

Subject program

http://d3s.mff.cuni.cz/files/teaching/nswi154/sha.tgz

Program has to run for a long time (at least few
seconds) to get useful results

Measurement results are invalid otherwise

http://d3s.mff.cuni.cz/files/teaching/nswi154/sha.tgz

Flat profile: source code lines

Software Development Tools Performance Analysis 8

How to get it
gprof -p -l program

Each sample counts as 0.01 seconds.

% cumulative self

time seconds seconds name

17.65 0.03 0.03 S_n (sha.c:18 @ 80485f9)

11.76 0.05 0.02 S_n (sha.c:17 @ 80485f0)

11.76 0.07 0.02 compute (sha.c:152 @ 804895b)

11.76 0.09 0.02 get_msg (sha.c:192 @ 8048baa)

Call graph

Software Development Tools Performance Analysis 9

How to get it
gprof -q program

index % time self children called name

0.03 0.13 3/3 main [1]

[2] 94.1 0.03 0.13 3 get_message_digest [2]

0.06 0.07 3/3 compute_digest [3]

0.00 0.00 3/3 get_padded_length [10]

0.00 0.00 3/3 padd_message [11]

0.06 0.07 3/3 get_message_digest [2]

[3] 76.5 0.06 0.07 3 compute_digest [3]

0.06 0.00 14000896/14000896 S_n [4]

0.01 0.01 5000320/5000320 F [5]

The perf utility

Software Development Tools Performance Analysis 10

Collects and presents various performance
data (metrics)

executed instructions, branches, page faults, ...

Linux (user space and kernel)

Resources
https://perfwiki.github.io/main/

https://perfwiki.github.io/main/top-down-analysis/

https://perfwiki.github.io/main/tutorial/

https://perfwiki.github.io/main/
https://perfwiki.github.io/main/top-down-analysis/
https://perfwiki.github.io/main/tutorial/

Performance analysis

Software Development Tools Performance Analysis 11

It is hard and tricky
Profiling results not 100% precise

Statistical approximation is used

Many things influence performance
Resource sharing (caches), garbage collection

Even harder for programs in JVM / .NET CLR

Recommended practice
Use profilers only to identify parts of your program
that are much slower than others

VisualVM

Software Development Tools Performance Analysis 12

GUI profiler for Java (heap, CPU)

Documentation
https://visualvm.github.io/

Important features

Heap dump

CPU sampling

http://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/index.html

Visual Studio profiling

Software Development Tools Performance Analysis 13

Available tools

CPU usage, memory usage, and many others

Web (documentation, tutorials)
https://learn.microsoft.com/en-us/visualstudio/profiling/?view=vs-2022

https://learn.microsoft.com/en-us/visualstudio/profiling/?view=vs-2022

Other profiling tools

Software Development Tools Performance Analysis 14

YourKit
Powerful profiler for Java and .NET
http://yourkit.com/home/index.jsp
Many advanced features (see web)
Handles also very large applications

dotTrace
Target platform: C#, .NET applications
https://www.jetbrains.com/profiler/

PerfView
https://github.com/microsoft/perfview

http://yourkit.com/home/index.jsp
https://www.jetbrains.com/profiler/
https://github.com/microsoft/perfview

Other profiling tools

Software Development Tools Performance Analysis 15

Valgrind

Supported tools: Cachegrind, Callgrind, Massif, DHAT, …

Running: --tool=<cachegrind | callgrind | massif>

Inspecting results: cg_annotate,
callgrind_annotate, ms_print

Demo: using tools on some program

Intel VTune

https://www.intel.com/content/www/us/en/developer/
tools/oneapi/vtune-profiler.html

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

Performance measurements – literature

Software Development Tools Performance Analysis 16

John Ousterhout. Always Measure One Level
Deeper. Communications of the ACM, July
2018, Vol. 61 No. 7

https://cacm.acm.org/magazines/2018/7/229031
-always-measure-one-level-deeper/fulltext

Describes common mistakes and suggestions how
engineers should do measurements of software
performance (methodology, infrastructure, hints)

https://cacm.acm.org/magazines/2018/7/229031-always-measure-one-level-deeper/fulltext

Load testing

Software Development Tools Performance Analysis 17

Generating specific (heavy) load for server
applications (WWW, email, database)

Target URL and payload

Number of threads (clients)

Frequency of requests

JMeter (http://jmeter.apache.org/)
supports: GUI, command-line, distributed mode

Netling (https://github.com/hallatore/Netling)

http://jmeter.apache.org/
https://github.com/hallatore/Netling

Coverage

Software Development Tools Performance Analysis 18

Metrics

Statement coverage

Branch coverage

Control-flow paths

Tools

GCov (https://gcc.gnu.org/onlinedocs/gcc/Gcov.html)

JCov (https://wiki.openjdk.java.net/display/CodeTools/jcov)

JaCoCo (http://www.jacoco.org/jacoco/)

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://wiki.openjdk.java.net/display/CodeTools/jcov
http://www.jacoco.org/jacoco/

Measuring coverage with GCov

Software Development Tools Performance Analysis 19

Build program with special options
gcc -fprofile-arcs -ftest-coverage
-o program program.c

Execute the program normally

Run the gcov tool on source code files
gcov program.c

Open the file program.c.gcov

With branch and block statistics
gcov -b program.c

Related tools

Software Development Tools Performance Analysis 20

Compiler Explorer

https://godbolt.org/

https://godbolt.org/

Related courses

Software Development Tools Performance Analysis 21

NSWI131: Vyhodnocování výkonnosti
počítačových systémů

Topics: benchmarking, experimental evaluation,
statistical analysis, modeling, simulation

NSWI126: Pokročilé nástroje pro vývoj a
monitorování software

Topics: other profilers and performance analyzers

ZS 2025/2026

Homework

Software Development Tools Performance Analysis 22

Assignment

ReCodEx: group associated with this course

Web: http://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

Deadline

7.5.2025

http://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

