Performance Analysis

http://d3s.mff.cuni.cz

e s Pavel Parizek
Dependable
parizek@d3s.mff.cuni.cz

FACULTY
OF MATHEMATICS

AND PHYSICS
Charles University

Performance analysis

®* Find where the program spends most time

= |dentify code that you should optimize for speed
* Call graph: function names and spent time
°* Important performance characteristics

= throughput, latency, maximal load, average request
processing time, ...

®* Main approaches
= profiling, benchmarking, load testing

Software Development Tools Performance Analysis 2

Profiling

®* Tools measuring frequency and duration of
procedure calls during program execution

= GProf, perf, OProfile, Valgrind, Intel VTune

® Basic principles (how it works)
= Sampling: results not precise for short time periods
= Recording program counter (PC) at regular intervals
= Program instrumented with profiling-related code
= Getting information from HW performance counters

Software Development Tools Performance Analysis

GProf

®* GNU Profiler
= Distributed as a part of binutils

®* Documentation
= https://sourceware.org/binutils/docs/gprof/

Software Development Tools Performance Analysis 4

https://sourceware.org/binutils/docs/gprof/

How to use GProf

1) Build program with enabled profiling
gcc —-g -pg —O program program.c

= |Instrumentation: code that collects raw timing data
added to the entry and exit points of each function

2) Execute the program normally
= Raw profile data written to the file gmon . out

3) Generate statistics (tables with results)
gprof <options> program [gmon.out]

®* Qutput: flat profile, call graph

Software Development Tools Performance Analysis 5

Flat profile

°* How to get it
= gprof -p program [gmon.out]

= Excluding specific function

e gprof -p -P<function name> program

% cumulative self self total
time seconds seconds calls ms/call ms/call name
35.29 0.06 0.06 3 20.00 43.33 compute
32.35 0.12 0.06 14000896 0.00 0.00 S n
17.65 0.14 0.03 3 10.00 53.33 get msg
5.88 0.15 0.01 5000320 0.00 0.00 F

5.88 0.17 0.01 main

Software Development Tools Performance Analysis 6

Example

® Basic features of GProf
= Generating the flat profile
= Excluding some functions

® Subject program
= http://d3s.mff.cuni.cz/files/teaching/nswil54/sha.tgz

® Program has to run for a long time (at least few
seconds) to get useful results

= Measurement results are invalid otherwise

Software Development Tools Performance Analysis 7

http://d3s.mff.cuni.cz/files/teaching/nswi154/sha.tgz

Flat profile: source code lines

°* How to get it
= gprof -p -1 program

Each sample counts as 0.01 seconds.

% cumulative self
time seconds seconds name

17.65 0.03 0.03 S n (sha.c:18 @ 80485f9)
11.76 0.05 0.02 S n (sha.c:17 @ 80485£0)
11.76 0.07 0.02 compute (sha.c:152 @ 804895b)
11.76 0.09 0.02 get msg (sha.c:192 @ 8048baa)

Software Development Tools Performance Analysis 8

Call graph

°* How to get it
"= gprof -g program

index % time self children called name
0.03 0.13 3/3 main [1]
[2] 94 .1 0.03 0.13 3 get message digest [2]
0.06 0.07 3/3 compute digest [3]
0.00 0.00 3/3 get padded length [10]
0.00 0.00 3/3 padd message [11]
0.06 0.07 3/3 get message digest [2]
[3] 76.5 0.06 0.07 3 compute digest [3]
0.06 0.00 14000896/14000896 S n [4]
0.01 0.01 5000320/5000320 F [5]

Software Development Tools Performance Analysis 9

The perf utility

® Collects and presents various performance
data (metrics)
= executed instructions, branches, page faults, ...
" Linux (user space and kernel)

® Resources
" https://perfwiki.github.io/main/
" https://perfwiki.github.io/main/top-down-analysis/
" https://perfwiki.github.io/main/tutorial/

Software Development Tools Performance Analysis 10

https://perfwiki.github.io/main/
https://perfwiki.github.io/main/top-down-analysis/
https://perfwiki.github.io/main/tutorial/

Performance analysis

° |tis hard and tricky
= Profiling results not 100% precise
= Statistical approximation is used

= Many things influence performance
* Resource sharing (caches), garbage collection

= Even harder for programs in JVM / .NET CLR

* Recommended practice

= Use profilers only to identify parts of your program
that are much slower than others

Software Development Tools Performance Analysis 11

VisualVM

° GUI profiler for Java (heap, CPU)

* Documentation
= https://visualvm.github.io/

°* Important features
= Heap dump
= CPU sampling

Software Development Tools Performance Analysis 12

http://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/index.html

Visual Studio profiling

* Available tools

= CPU usage, memory usage, and many others

°* Web (documentation, tutorials)

= https://learn.microsoft.com/en-us/visualstudio/profiling/?view=vs-2022

Software Development Tools Performance Analysis 13

https://learn.microsoft.com/en-us/visualstudio/profiling/?view=vs-2022

Other profiling tools

® YourKit
= Powerful profiler for Java and .NET
= http://yourkit.com/home/index.jsp
= Many advanced features (see web)
= Handles also very large applications

* dotTrace
= Target platform: C#, .NET applications
= https://www.jetbrains.com/profiler/

® PerfView
= https://github.com/microsoft/perfview

Software Development Tools Performance Analysis 14

http://yourkit.com/home/index.jsp
https://www.jetbrains.com/profiler/
https://github.com/microsoft/perfview

Other profiling tools

® Valgrind
= Supported tools: Cachegrind, Callgrind, Massif, DHAT, ...
" Running: --tool=<cachegrind | callgrind | massif>

= |nspecting results: cg _annotate,
callgrind annotate, ms_print

"= Demo: using tools on some program

® |Intel VTune

= https://www.intel.com/content/www/us/en/developer/
tools/oneapi/vtune-profiler.html

Software Development Tools Performance Analysis 15

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

Performance measurements — literature

* John Ousterhout. Always Measure One Level
Deeper. Communications of the ACM, July
2018, Vol. 61 No. 7

" https://cacm.acm.org/magazines/2018/7/229031
-always-measure-one-level-deeper/fulltext

= Describes common mistakes and suggestions how
engineers should do measurements of software
performance (methodology, infrastructure, hints)

Software Development Tools Performance Analysis 16

https://cacm.acm.org/magazines/2018/7/229031-always-measure-one-level-deeper/fulltext

Load testing

°* Generating specific (heavy) load for server
applications (WWW, email, database)

= Target URL and payload
= Number of threads (clients)
" Frequency of requests

° JMeter (http://imeter.apache.org/)
= supports: GUl, command-line, distributed mode

°* Netling (https://github.com/hallatore/Netling)

Software Development Tools Performance Analysis 17

http://jmeter.apache.org/
https://github.com/hallatore/Netling

Coverage

® Metrics

= Statement coverage
= Branch coverage
= Control-flow paths

* Tools
= GCov (https://gcc.gnu.org/onlinedocs/gcc/Geov.html)

" JCov (https://wiki.openjdk.java.net/display/CodeTools/jcov)

= JaCoCo (http://www.jacoco.org/jacoco/)

Software Development Tools Performance Analysis 18

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://wiki.openjdk.java.net/display/CodeTools/jcov
http://www.jacoco.org/jacoco/

Measuring coverage with GCov

* Build program with special options

m gcc -fprofile-arcs -ftest-coverage
-0 program program.c

* Execute the program normally

®* Run the gcov tool on source code files
= gcov program.c

®* Open the file program.c.gcov

* With branch and block statistics
= gcov -b program.c

Software Development Tools Performance Analysis 19

Related tools

®* Compiler Explorer
= https://godbolt.org/

Software Development Tools Performance Analysis 20

https://godbolt.org/

Related courses

°* NSWI131: Vyhodnocovani vykonnosti
pocitaCovych systému

= Topics: benchmarking, experimental evaluation,
statistical analysis, modeling, simulation

* NSWI126: Pokrocilé nastroje pro vyvoj a
monitorovani software

= Topics: other profilers and performance analyzers
= 7S5 2025/2026

Software Development Tools Performance Analysis 21

Homework

® Assignment
= ReCodEx: group associated with this course

= Web: http://d3s.mff.cuni.cz/files/teaching/nswil54/ukoly/

® Deadline
= 7.5.2025

Software Development Tools Performance Analysis 22

http://d3s.mff.cuni.cz/files/teaching/nswi154/ukoly/

