

Advanced Operating Systems
Summer Semester 2022/2023

Martin Děcký

Memory and
I/O

3

 3

Address SpaceAddress Space
● Universal abstraction for accessing data (code is just a form of data)

– Physical memory
● Bytes, words, instructions (or similar)
● Software virtual memory / Device virtual memory

– Pages (or similar)

– I/O memory
● Bytes, words, ports (or similar)
● Can be embedded in physical memory (memory-mapped I/O)

– Permanent memory
● Blocks, pages (or similar)
● Can be combined with physical memory

– Object space
● Keys, capabilities (or similar)

 4

Physical Memory MythsPhysical Memory Myths
● Random access performance

– Seems to be O(1) in time units, but in reality it is closer to O(√n)
● Where n is the size of the working set
● Performance effects of the cache hierarchy

● Canonical physical address space
– Different views of the physical address space

● Local APIC and SMM on x86, secure/non-secure TrustZone on ARM
● Embedding of the I/O address space into the MMIO address space on x86

– Completely disjoint address spaces
● No central interconnect, but a network of nodes and address translations

 5

Non-Uniform Memory AccessNon-Uniform Memory Access
● Explicitly exposed hardware topology

– Processing units, cores, packages
– NUMA nodes (directly byte-addressable memory)
– Caches

● Transparent cache coherency (ccNUMA)
– MSI, MESI, MESIF, MOSI, MOESI, Dragon, Firefly protocols
– Directory-based cache coherency

– Buses and I/O devices
● Guiding heuristics for placing execution near its working set

– numactl, libnuma

 7

Device Virtual MemoryDevice Virtual Memory
● Mapping of device-visible addresses to bus-visible addresses

– Similar purpose to software virtual memory
● Isolation (i.e. safety, security)
● Mitigating fragmentation (i.e. scatter-gather functionality)
● Mitigating address range issues

– Integrated in the device DMA engine
● Graphics Address/Aperture Remapping Table

– Separate IOMMU
● Device memory paging
● Usually also implementing interrupt remapping

 8

IOMMUIOMMU
● AMD-Vi, ARM SMMU
● Intel VT-d

– Usually located in the peripheral interconnect (a.k.a. north bridge)
– Address space is usually associated with a protection domain

● Endpoint is usually associated with a source ID
● Data structure that maps source IDs to protection domains
● Memory mapping using hierarchical page tables

– First-stage translation page tables essentially equivalent to the CPU page tables
– Second-stage translation for hypervisor, with nested first & second-stage translation

● Device TLB for translation caching, other caches
– ACPI DMAR (DMA Remapping Reporting) table

 9

Physical Memory ManagementPhysical Memory Management

● Zones
– Continuous address ranges with specific properties

● Available, reserved, firmware, kernel code/data, etc.
● Logical properties

– E.g. < 1 MiB, < 16 MiB, < 4 GiB on x86

● Allocations
– Tracking of used frames and their owner
– Bitmaps, free lists, buddy allocation, etc.

 10

CapabilitiesCapabilities

● Motivation
– Universal and pure kernel mechanism for resource management

● No specific management policy in the kernel
● Policy decision delegated to user space
● Delegation (granting) of authority over resources from the original

owner to other parties
– Including granting revocation

 11

CapabilitiesCapabilities
● Typical terminology

– Capability
● Object instance representing (identifying) a specific resource

– Kernel object representing a kernel-managed resource
– Kernel proxy object identifying a user-managed resource
– User space object representing a user space resource

– Capability reference
● Unforgeable identifier (handle) to a capability

– Possibility to restrict permissions (e.g. permissible operations) and identify ownership

– Capability space
● Address space of capability references

– Typically associated with a task
● Capabilities as local identifiers within their namespace

 12

Capabilities Put SimplyCapabilities Put Simply

kernel space

user space

read(0, ...);

0 1 2 3 file descriptor table
(capability space)

file descriptor
(capability reference)

vfs_file_t open file
(capability)

 13

Capability OperationsCapability Operations
● Actions performed with capabilities

– Can be restricted by the capability reference
● Multiple capability references can point to the same capability

– Invoke
● Execute a “business logic” method on the target object

– Clone / Mint
● Create a duplicate capability reference (possibly with restricted permissions)

– Delegate / Grant
● Pass a duplicate capability reference (possibly with restricted permissions) to a different capability space
● In case of granting, the original ownership is kept
● Only once or recursively

– Revoke
● Forcefully removing and granted capability reference from other capability spaces

 14

Capability DelegationCapability Delegation

kernel space
user space

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// SCM_RIGHTS ancillary message type ...

memmove(CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

0 1 2 3

vfs_file_t

0 1 2 3

task 1: task 2:

 15

Capability DelegationCapability Delegation

kernel space
user space

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// SCM_RIGHTS ancillary message type ...

memmove(CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

0 1 2 3

vfs_file_t

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// ...

recvmsg(socket, &msg, 0);

int fd;
memmove(&fd, CMSG_DATA(cmsg), sizeof(fd));

0 1 2 3 4

task 1: task 2:

 16

Physical Memory ManagementPhysical Memory Management
● Representing physical memory as capabilities

– Chicken & egg problem: Capabilities, capability spaces, page tables and other
bookkeeping structures require memory for storage (i.e. capabilities)

– Recursive solution: Type hierarchy of capabilities
● Untyped memory capability type

– Representing a range of physical memory
– Initially a single capability representing the entire physical memory
– Untyped capabilities be derived ...

● … into multiple untyped capabilities (recursively splitting the physical memory)
● … into capabilities of other types

● Providing the memory for capability storage and bookkeeping
● Providing memory for other kernel objects

 17

Capability Derivation TreeCapability Derivation Tree
untyped

cap

untyped
cap

untyped
cap

untyped
cap

untyped
cap

untyped
cap

untyped
cap

cnode
cap

thread
cap

L1 PT
cap

L2 PT
cap

1 page1 page

1 page 1 page2 pages 6 pages

10 pages

 18

Capability References and SpacesCapability References and Spaces
● Naked capabilities

– Capability references identify capabilities directly
● E.g. physical memory addresses identifying untyped memory capabilities

● Encapsulated capabilities
– Capability references need to be mapped to capabilities
– Mapping database of capability space

● Fast lookup of capability references (most frequent operation)
● Reasonably fast creation / removal of capability references
● Low memory overhead and fragmentation (sparse capability space)
● Additional metadata (permissions, delegation, granting)
● Possibility for in-line storage of actual kernel objects (up to a certain size)

 19

Capability References and SpacesCapability References and Spaces
● Capability space (cspace)

– Directed graph of capability nodes
● Can be implicit (no explicit object representation)

● Capability node (cnode)
– Array of capability slots

● Empty slot
● Slot pointing to a specific capability
● Slot pointing to a cnode

– Hierarchical organization of capability nodes
– Radix tree indexing

 20

Hierarchical Capability Mapping DatabaseHierarchical Capability Mapping Database

kernel space

user space

00 01 11

cnode_t (10 bit index)

cnode_t (10 bit index)

thread
cap cnode_t (12 bit index)

mem_region_t

cspace

cref_t

resource

page
cap

untyped
cap

untyped
cap

untyped
cap

cnode
cap

cnode
cap

 21

Capabilities Example: seL4Capabilities Example: seL4
● Kernel objects

– UntypedObject (physical memory range)
– TCBObject (thread)
– EndpointObject (IPC calls destination)
– AsyncEndpointObject (signal recipient)
– CapTableObject (array of capabilities)
– X86_4K (4 KiB frame)
– X86_4M (4 MiB frame)
– X86_PageTableObject (2nd level page table)
– X86_PageDirectoryObject (1st level page table)

 22

Capabilities Example: seL4Capabilities Example: seL4

● Capability derivation
seL4_X86_Untyped_Retype(cnode_selector(phys_addr), seL4_X86_4K, ..., ..., ..., ...,
 phys_addr >> FRAME_WIDTH, 1);

seL4_X86_Untyped_Retype(cnode_selector(pt_phys_addr), seL4_X86_PageTableObject, ..., ..., ..., ...,
 pt_phys_addr >> FRAME_WIDTH, 1);

seL4_X86_Untyped_Retype(cnode_selector(pd_phys_addr), seL4_X86_PageDirectoryObject, ..., ..., ..., ...,
 pd_phys_addr >> FRAME_WIDTH, 1);

seL4_X86_PageTable_Map(cnode_selector(pt_phys_addr), cnode_selector(pd_phys_addr), virt_addr,
 seL4_X86_Default_VMAttributes);

seL4_X86_Page_Map(cnode_selector(phys_addr), cnode_selector(pd_phys_addr), virt_addr, seL4_AllRights,
 seL4_X86_Default_VMAttributes);

 23

Capabilities Example: seL4Capabilities Example: seL4

Source: Gernot Heiser: Introduction: Using seL4
Courtesy of Gernot Heiser, UNSW Sydney, CC BY 4.0
http://www.cse.unsw.edu.au/~cs9242/22/lectures/01b-sel4.pdf

http://www.cse.unsw.edu.au/~cs9242/22/lectures/01b-sel4.pdf

 24

ComparisonComparison

● Traditional
– Straightforward API
– High-level abstraction
– Portable
– Implicit policy
– Accounting out of scope
– Delegation out of scope

● Capability-based
– No implicit policy (policy set

completely by the client)
– Accounting and delegation

within the scope
– Low-level API
– Potential abstraction inversion
– Non-portable

 25

Note on Memory AccountingNote on Memory Accounting
● Strict memory reservation

– Sum of virtual memory sizes <
Sum of physical memory sizes

● Swap space counted as physical
memory

– In-bound out-of-memory condition
– More predictable
– Potential inefficient resource usage

● Memory overcommit
– Sum of resident memory sizes < Sum of

physical memory sizes
● Decoupling memory mapping from

memory allocation
– Support for large sparse virtual address

spaces
● Potentially more efficient resource usage

– Out-of-bound out-of-memory condition
● Victim finding

– Less predictable

 26

Note on CachesNote on Caches
● Separate instruction and data caches

– Self-modifying code (N.B.: including code loading)
● Virtually-indexed caches

– Mostly used for L1 instruction caches nowadays
– Cache homonyms (same VPN referring to different PFN)

● Flush on each address space switch costly
● Distinct virtual addresses unpractical
● ASID tagging (ASID management by operating system)

– Cache synonyms (different VPN referring to same PFN)
● Shared memory or multiple mappings leading to stale data
● Synonym detection, cache coloring
● Hardware synonym detection

 27

Non-Volatile MemoryNon-Volatile Memory
● Historically biased towards rotational media

– Cylinder / Head / Sector  Linear (Logical) Block Addressing
● Originally interface abstraction not very high

– Hard sectored  Soft sectored (with remapping)
● 512 B blocks  4096 B blocks (floppy/hard drives)
● 2048 B blocks (optical drives), 2353 B blocks (raw optical drives)

– Latency several orders of magnitude larger than volatile memory
● Originally interface I/O efficiency not very important

– Single tenant
– Single request stream

 28

Non-Volatile MemoryNon-Volatile Memory

● Historically biased towards rotational media

heads cylinders
(tracks) sectors & interleaving

 29

Non-Volatile MemoryNon-Volatile Memory

● Historically biased towards rotational media
– Multi-tenant performance dominated by physical seek time
– Still mostly via single request stream

● Software I/O scheduling (shortest seek first, elevator/sweep, shortest
deadline first, etc.)

– Might not have the most accurate physical storage information (i.e. remapping)
● I/O command batching (queuing)

– Leaving the optimal I/O order (within the batch) to hardware
– Incorporates interrupt coalescing

 30

Non-Volatile MemoryNon-Volatile Memory
● Solid-state drives

– Differing characteristics from rotational drives
● Physical characteristics mostly unimportant
● Addressing characteristics

– Different native read/write and erase blocks
● Write amplification

– Physical addressing more like volatile memory
● Latency much closer to volatile memory

– Performance dominated by interface I/O efficiency
● High degree of internal parallelism
● Unique wear characteristics

 31

Non-Volatile MemoryNon-Volatile Memory
● Solid-state drives

– Reflection in the I/O interface (e.g. NVMe)
● Generally provides the common LBA abstraction

– Wear leveling, block remapping and garbage collection in hardware Flash Transition Layer (FTL)
● Frequently implemented as multi-level log-based storage
● Software trim hint to indicate unused (erased) blocks
● Trade-offs between write amplification, performance, idle characteristics

● Low latency and parallel access
– “Unlimited” request queues with lock-less access
– “Unlimited” command queuing
– Interrupt coalescing & multiple interrupt groups
– Full-duplex scatter-gather DMA

 32

Non-Volatile MemoryNon-Volatile Memory

● Solid-state drives
– Exposing more of the hardware architecture to software

● Addressing
– Open-channel SSD
– NVMe Zoned Namespace

● Note: Zones also useful for Shingled Magnetic Recording (SMR)
● Compute off-loading

– Basic NVMe I/O commands: Compare, Write Zeroes, Copy
– NVMe Key Value command set
– Near data computing (proposed)

 33

Storage Near Data ComputingStorage Near Data Computing

● Off-loading computation to storage controller
– Decrease latency, improve throughput, decrease energy consumption
– Improve performance

● Trade-off: Lower performance of embedded cores
– Still a performance boost when compute cores are already loaded

Source: Gu B., Yoon A. S., Bae D.-H., Jo I., Lee J., Yoon J., Kang J.-U., Kwon M., Yoon C., Cho S.,
Jeong J., Chang D.: Biscuit: A Framework for Near-Data Processing of Big Data Workloads,
in Proceedings of 43rd Annual International Symposium on Computer Architecture,
ACM/IEEE, 2016

 34

Memory Near Data ComputingMemory Near Data Computing

memory
matrix

row

decoder ⁞

control logic sense amps

.........

address

data

Y-gating

.........

Y

RAS

CAS

WE

 35

Memory Near Data ComputingMemory Near Data Computing

memory
matrix

row

decoder ⁞

control logic sense amps

.........

address

data

filtering / computing

.........

opcode

RAS

CAS

WE

 36

Memory Near Data ComputingMemory Near Data Computing

memory
matrix

row

decoder ⁞

control logic

sense amps
with gates

.........

address

data

Y-gating

.........

Y

RAS

CAS

WE

opcode

 37

Generic Near Data ComputingGeneric Near Data Computing

Host

Memory
Processing
In-Memory

(PIM)

Storage In-Storage
Computing

(ISC)

Network On-Stream
Processing

(OSP)

 38

Generic Near Data ComputingGeneric Near Data Computing
● Challenges

– Universal open interface standard
● Currently extensions of existing I/O interfaces

– Universal programming model
● Stream / flow processing
● Association of compute units with data

– Universal compute model
● ISA
● Safety, security considerations

– Off-loading vs. distributed computing

Thank you!
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

