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Address SpaceAddress Space
● Universal abstraction for accessing data (code is just a form of data)

– Physical memory
● Bytes, words, instructions (or similar)
● Software virtual memory / Device virtual memory

– Pages (or similar)

– I/O memory
● Bytes, words, ports (or similar)
● Can be embedded in physical memory (memory-mapped I/O)

– Permanent memory
● Blocks, pages (or similar)
● Can be combined with physical memory

– Object space
● Keys, capabilities (or similar)
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Physical Memory MythsPhysical Memory Myths
● Random access performance

– Seems to be O(1) in time units, but in reality it is closer to O(√n)
● Where n is the size of the working set
● Performance effects of the cache hierarchy

● Canonical physical address space
– Different views of the physical address space

● Local APIC and SMM on x86, secure/non-secure TrustZone on ARM
● Embedding of the I/O address space into the MMIO address space on x86

– Completely disjoint address spaces
● No central interconnect, but a network of nodes and address translations
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Non-Uniform Memory AccessNon-Uniform Memory Access
● Explicitly exposed hardware topology

– Processing units, cores, packages
– NUMA nodes (directly byte-addressable memory)
– Caches

● Transparent cache coherency (ccNUMA)
– MSI, MESI, MESIF, MOSI, MOESI, Dragon, Firefly protocols
– Directory-based cache coherency

– Buses and I/O devices
● Guiding heuristics for placing execution near its working set

– numactl, libnuma
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Device Virtual MemoryDevice Virtual Memory
● Mapping of device-visible addresses to bus-visible addresses

– Similar purpose to software virtual memory
● Isolation (i.e. safety, security)
● Mitigating fragmentation (i.e. scatter-gather functionality)
● Mitigating address range issues

– Integrated in the device DMA engine
● Graphics Address/Aperture Remapping Table

– Separate IOMMU
● Device memory paging
● Usually also implementing interrupt remapping
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IOMMUIOMMU
● AMD-Vi, ARM SMMU
● Intel VT-d

– Usually located in the peripheral interconnect (a.k.a. north bridge)
– Address space is usually associated with a protection domain

● Endpoint is usually associated with a source ID
● Data structure that maps source IDs to protection domains
● Memory mapping using hierarchical page tables

– First-stage translation page tables essentially equivalent to the CPU page tables
– Second-stage translation for hypervisor, with nested first & second-stage translation

● Device TLB for translation caching, other caches
– ACPI DMAR (DMA Remapping Reporting) table
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Physical Memory ManagementPhysical Memory Management

● Zones
– Continuous address ranges with specific properties

● Available, reserved, firmware, kernel code/data, etc.
● Logical properties

– E.g. < 1 MiB, < 16 MiB, < 4 GiB on x86

● Allocations
– Tracking of used frames and their owner
– Bitmaps, free lists, buddy allocation, etc.
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CapabilitiesCapabilities

● Motivation
– Universal and pure kernel mechanism for resource management

● No specific management policy in the kernel
● Policy decision delegated to user space
● Delegation (granting) of authority over resources from the original 

owner to other parties
– Including granting revocation
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CapabilitiesCapabilities
● Typical terminology

– Capability
● Object instance representing (identifying) a specific resource

– Kernel object representing a kernel-managed resource
– Kernel proxy object identifying a user-managed resource
– User space object representing a user space resource

– Capability reference
● Unforgeable identifier (handle) to a capability

– Possibility to restrict permissions (e.g. permissible operations) and identify ownership

– Capability space
● Address space of capability references

– Typically associated with a task
● Capabilities as local identifiers within their namespace
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Capabilities Put SimplyCapabilities Put Simply

kernel space

user space

read(0, ...);

0 1 2 3 file descriptor table
(capability space)

file descriptor
(capability reference)

vfs_file_t open file
(capability)
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Capability OperationsCapability Operations
● Actions performed with capabilities

– Can be restricted by the capability reference
● Multiple capability references can point to the same capability

– Invoke
● Execute a “business logic” method on the target object

– Clone / Mint
● Create a duplicate capability reference (possibly with restricted permissions)

– Delegate / Grant
● Pass a duplicate capability reference (possibly with restricted permissions) to a different capability space
● In case of granting, the original ownership is kept
● Only once or recursively

– Revoke
● Forcefully removing and granted capability reference from other capability spaces
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Capability DelegationCapability Delegation

kernel space
user space

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// SCM_RIGHTS ancillary message type ...

memmove(CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

0 1 2 3

vfs_file_t

0 1 2 3

task 1: task 2:
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Capability DelegationCapability Delegation

kernel space
user space

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// SCM_RIGHTS ancillary message type ...

memmove(CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

0 1 2 3

vfs_file_t

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// ...

recvmsg(socket, &msg, 0);

int fd;
memmove(&fd, CMSG_DATA(cmsg), sizeof(fd));

0 1 2 3 4

task 1: task 2:
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Physical Memory ManagementPhysical Memory Management
● Representing physical memory as capabilities

– Chicken & egg problem: Capabilities, capability spaces, page tables and other 
bookkeeping structures require memory for storage (i.e. capabilities)

– Recursive solution: Type hierarchy of capabilities
● Untyped memory capability type

– Representing a range of physical memory
– Initially a single capability representing the entire physical memory
– Untyped capabilities be derived ...

● … into multiple untyped capabilities (recursively splitting the physical memory)
● … into capabilities of other types

● Providing the memory for capability storage and bookkeeping
● Providing memory for other kernel objects
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Capability Derivation TreeCapability Derivation Tree
untyped
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cap

untyped
cap

untyped
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untyped
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untyped
cap

cnode
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thread 
cap
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1 page1 page

1 page 1 page2 pages 6 pages
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Capability References and SpacesCapability References and Spaces
● Naked capabilities

– Capability references identify capabilities directly
● E.g. physical memory addresses identifying untyped memory capabilities

● Encapsulated capabilities
– Capability references need to be mapped to capabilities
– Mapping database of capability space

● Fast lookup of capability references (most frequent operation)
● Reasonably fast creation / removal of capability references
● Low memory overhead and fragmentation (sparse capability space)
● Additional metadata (permissions, delegation, granting)
● Possibility for in-line storage of actual kernel objects (up to a certain size)
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Capability References and SpacesCapability References and Spaces
● Capability space (cspace)

– Directed graph of capability nodes
● Can be implicit (no explicit object representation)

● Capability node (cnode)
– Array of capability slots

● Empty slot
● Slot pointing to a specific capability
● Slot pointing to a cnode

– Hierarchical organization of capability nodes
– Radix tree indexing
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Hierarchical Capability Mapping DatabaseHierarchical Capability Mapping Database

kernel space

user space

00 01 11

cnode_t (10 bit index)
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cnode
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cnode
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Capabilities Example: seL4Capabilities Example: seL4
● Kernel objects

– UntypedObject (physical memory range)
– TCBObject (thread)
– EndpointObject (IPC calls destination)
– AsyncEndpointObject (signal recipient)
– CapTableObject (array of capabilities)
– X86_4K (4 KiB frame)
– X86_4M (4 MiB frame)
– X86_PageTableObject (2nd level page table)
– X86_PageDirectoryObject (1st level page table)
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Capabilities Example: seL4Capabilities Example: seL4

● Capability derivation
seL4_X86_Untyped_Retype(cnode_selector(phys_addr), seL4_X86_4K, ..., ..., ..., ...,
  phys_addr >> FRAME_WIDTH, 1);

seL4_X86_Untyped_Retype(cnode_selector(pt_phys_addr), seL4_X86_PageTableObject, ..., ..., ..., ...,
  pt_phys_addr >> FRAME_WIDTH, 1);

seL4_X86_Untyped_Retype(cnode_selector(pd_phys_addr), seL4_X86_PageDirectoryObject, ..., ..., ..., ...,
  pd_phys_addr >> FRAME_WIDTH, 1);

seL4_X86_PageTable_Map(cnode_selector(pt_phys_addr), cnode_selector(pd_phys_addr), virt_addr,
  seL4_X86_Default_VMAttributes);

seL4_X86_Page_Map(cnode_selector(phys_addr), cnode_selector(pd_phys_addr), virt_addr, seL4_AllRights,
  seL4_X86_Default_VMAttributes);
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Capabilities Example: seL4Capabilities Example: seL4

Source: Gernot Heiser: Introduction: Using seL4
Courtesy of Gernot Heiser, UNSW Sydney, CC BY 4.0
http://www.cse.unsw.edu.au/~cs9242/22/lectures/01b-sel4.pdf

http://www.cse.unsw.edu.au/~cs9242/22/lectures/01b-sel4.pdf
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ComparisonComparison

● Traditional
– Straightforward API
– High-level abstraction
– Portable
– Implicit policy
– Accounting out of scope
– Delegation out of scope

● Capability-based
– No implicit policy (policy set 

completely by the client)
– Accounting and delegation 

within the scope
– Low-level API
– Potential abstraction inversion
– Non-portable
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Note on Memory AccountingNote on Memory Accounting
● Strict memory reservation

– Sum of virtual memory sizes <
Sum of physical memory sizes

● Swap space counted as physical 
memory

– In-bound out-of-memory condition
– More predictable
– Potential inefficient resource usage

● Memory overcommit
– Sum of resident memory sizes < Sum of 

physical memory sizes
● Decoupling memory mapping from 

memory allocation
– Support for large sparse virtual address 

spaces
● Potentially more efficient resource usage

– Out-of-bound out-of-memory condition
● Victim finding

– Less predictable
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Note on CachesNote on Caches
● Separate instruction and data caches

– Self-modifying code (N.B.: including code loading)
● Virtually-indexed caches

– Mostly used for L1 instruction caches nowadays
– Cache homonyms (same VPN referring to different PFN)

● Flush on each address space switch costly
● Distinct virtual addresses unpractical
● ASID tagging (ASID management by operating system)

– Cache synonyms (different VPN referring to same PFN)
● Shared memory or multiple mappings leading to stale data
● Synonym detection, cache coloring
● Hardware synonym detection
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Non-Volatile MemoryNon-Volatile Memory
● Historically biased towards rotational media

– Cylinder / Head / Sector  Linear (Logical) Block Addressing
● Originally interface abstraction not very high

– Hard sectored  Soft sectored (with remapping)
● 512 B blocks  4096 B blocks (floppy/hard drives)
● 2048 B blocks (optical drives), 2353 B blocks (raw optical drives)

– Latency several orders of magnitude larger than volatile memory
● Originally interface I/O efficiency not very important

– Single tenant
– Single request stream
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Non-Volatile MemoryNon-Volatile Memory

● Historically biased towards rotational media

heads cylinders
(tracks) sectors & interleaving
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Non-Volatile MemoryNon-Volatile Memory

● Historically biased towards rotational media
– Multi-tenant performance dominated by physical seek time
– Still mostly via single request stream

● Software I/O scheduling (shortest seek first, elevator/sweep, shortest 
deadline first, etc.)

– Might not have the most accurate physical storage information (i.e. remapping)
● I/O command batching (queuing)

– Leaving the optimal I/O order (within the batch) to hardware
– Incorporates interrupt coalescing
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Non-Volatile MemoryNon-Volatile Memory
● Solid-state drives

– Differing characteristics from rotational drives
● Physical characteristics mostly unimportant
● Addressing characteristics

– Different native read/write and erase blocks
● Write amplification

– Physical addressing more like volatile memory
● Latency much closer to volatile memory

– Performance dominated by interface I/O efficiency
● High degree of internal parallelism
● Unique wear characteristics
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Non-Volatile MemoryNon-Volatile Memory
● Solid-state drives

– Reflection in the I/O interface (e.g. NVMe)
● Generally provides the common LBA abstraction

– Wear leveling, block remapping and garbage collection in hardware Flash Transition Layer (FTL)
● Frequently implemented as multi-level log-based storage
● Software trim hint to indicate unused (erased) blocks
● Trade-offs between write amplification, performance, idle characteristics

● Low latency and parallel access
– “Unlimited” request queues with lock-less access
– “Unlimited” command queuing
– Interrupt coalescing & multiple interrupt groups
– Full-duplex scatter-gather DMA
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Non-Volatile MemoryNon-Volatile Memory

● Solid-state drives
– Exposing more of the hardware architecture to software

● Addressing
– Open-channel SSD
– NVMe Zoned Namespace

● Note: Zones also useful for Shingled Magnetic Recording (SMR)
● Compute off-loading

– Basic NVMe I/O commands: Compare, Write Zeroes, Copy
– NVMe Key Value command set
– Near data computing (proposed)
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Storage Near Data ComputingStorage Near Data Computing

● Off-loading computation to storage controller
– Decrease latency, improve throughput, decrease energy consumption
– Improve performance

● Trade-off: Lower performance of embedded cores
– Still a performance boost when compute cores are already loaded

Source: Gu B., Yoon A. S., Bae D.-H., Jo I., Lee J., Yoon J., Kang J.-U., Kwon M., Yoon C., Cho S., 
Jeong J., Chang D.: Biscuit: A Framework for Near-Data Processing of Big Data Workloads, 
in Proceedings of 43rd Annual International Symposium on Computer Architecture, 
ACM/IEEE, 2016
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Memory Near Data ComputingMemory Near Data Computing
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Memory Near Data ComputingMemory Near Data Computing
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Memory Near Data ComputingMemory Near Data Computing
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Generic Near Data ComputingGeneric Near Data Computing

Host

Memory
Processing
In-Memory

(PIM)

Storage In-Storage 
Computing

(ISC)

Network On-Stream
Processing

(OSP)
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Generic Near Data ComputingGeneric Near Data Computing
● Challenges

– Universal open interface standard
● Currently extensions of existing I/O interfaces

– Universal programming model
● Stream / flow processing
● Association of compute units with data

– Universal compute model
● ISA
● Safety, security considerations

– Off-loading vs. distributed computing



 

Thank you!
Questions?
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