Summer Semester 2022/2023

Martin Décky

3

Memory and
1/0

Address Space

Universal abstraction for accessing data (code is just a form of data)

Physical memory
* Bytes, words, instructions (or similar)

* Software virtual memory / Device virtual memory
- Pages (or similar)

I/O memory
* Bytes, words, ports (or similar)

* Can be embedded in physical memory (memory-mapped I/O)

Permanent memory
* Blocks, pages (or similar)

* Can be combined with physical memory

Object space

* Keys, capabilities (or similar)

D3$
Physical Memory Myths

Random access performance

- Seems to be O(1) in time units, but in reality it is closer to O(+/n)
* Where n is the size of the working set

* Performance effects of the cache hierarchy

Canonical physical address space

- Different views of the physical address space

* Local APIC and SMM on x86, secure/non-secure TrustZone on ARM

* Embedding of the I/O address space into the MMIO address space on x86
— Completely disjoint address spaces

* No central interconnect, but a network of nodes and address translations

D3$
Non-Uniform Memory Access

Explicitly exposed hardware topology
- Processing units, cores, packages
- NUMA nodes (directly byte-addressable memory)

- Caches

* Transparent cache coherency (ccNUMA)
- MSI, MESI, MESIF, MOSI, MOESI, Dragon, Firefly protocols
- Directory-based cache coherency

- Buses and I/O devices

Guiding heuristics for placing execution near its working set

— numactl, 1libnuma

Machine (1487GE total)

Package L#0

L3 (2BMEB)

Groupd
MemCache (96GB)

MUMANode L#0 PED (3T0GE)

ooo
10x total

Groupl
MemCache (96GB)

NUMANode L#1 P#2 (372GE)

ooo
10x total

PU L#18
P#36

Package L#1

L3 (28M

Groupl

MemCache (96GE)

NUMANode L#2 P#1 (372GE)

10w total

Caore L#20 Caore L#21

Groupl

MemCache (36GB)

NUMANode L#3 P#3 (372GE)

Core L#29

D3$
Device Virtual Memory

Mapping of device-visible addresses to bus-visible addresses

= Similar purpose to software virtual memory
* Isolation (i.e. safety, security)
* Mitigating fragmentation (i.e. scatter-gather functionality)

* Mitigating address range issues

- Integrated in the device DMA engine
* Graphics Address/Aperture Remapping Table

- Separate IOMMU
* Device memory paging

* Usually also implementing interrupt remapping

IOMMU

AMD-Vi, ARM SMMU
Intel VT-d

— Usually located in the peripheral interconnect (a.k.a. north bridge)

- Address space is usually associated with a protection domain
* Endpoint is usually associated with a source ID
* Data structure that maps source IDs to protection domains

* Memory mapping using hierarchical page tables
- First-stage translation page tables essentially equivalent to the CPU page tables
- Second-stage translation for hypervisor, with nested first & second-stage translation

* Device TLB for translation caching, other caches

- ACPI DMAR (DMA Remapping Reporting) table

Physical Memory Management

Zones

— Continuous address ranges with specific properties
* Available, reserved, firmware, kernel code/data, etc.
* Logical properties
- E.g. <1 MiB, < 16 MiB, < 4 GiB on x86

Allocations

— Tracking of used frames and their owner

- Bitmaps, free lists, buddy allocation, etc.

D3
Capabilities

Motivation

— Universal and pure kernel mechanism for resource management
* No specific management policy in the kernel
* Policy decision delegated to user space

* Delegation (granting) of authority over resources from the original
owner to other parties

- Including granting revocation

10

Capabilities

Typical terminology
- Capability
* Object instance representing (identifying) a specific resource
- Kernel object representing a kernel-managed resource

- Kernel proxy object identifying a user-managed resource
- User space object representing a user space resource

- Capability reference
* Unforgeable identifier (handle) to a capability
- Possibility to restrict permissions (e.g. permissible operations) and identify ownership
- Capability space
* Address space of capability references
- Typically associated with a task

* Capabilities as local identifiers within their namespace

11

D3$
Capabilities Put Simply

. file descriptor
Pead(@’ Tt) ? (capability reference)

user space

kernel space

2 3 file descriptor table
(capability space)
Ld ﬁl
vfs_file_t open
- - (capability)

Capability Operations

Actions performed with capabilities

Can be restricted by the capability reference
* Multiple capability references can point to the same capability
Invoke
* Execute a “business logic” method on the target object
Clone / Mint
* Create a duplicate capability reference (possibly with restricted permissions)
Delegate / Grant
* Pass a duplicate capability reference (possibly with restricted permissions) to a different capability space
* In case of granting, the original ownership is kept
* Only once or recursively
Revoke

* Forcefully removing and granted capability reference from other capability spaces

13

Capability Delegation

task 1:

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// SCM_RIGHTS ancillary message type ...

memmove (CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

vfs file t

task 2:

user space

kernel space

14

Capability Delegation

task 1:

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// SCM_RIGHTS ancillary message type ...

memmove (CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

task 2:

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
/...

recvmsg(socket, &msg, 0);

int fd;
memmove (&Fd, CMSG_DATA(cmsg), sizeof(fd));

user space

‘\ kernel space

vfs file t

15

Physical Memory Management

Representing physical memory as capabilities

— Chicken & egg problem: Capabilities, capability spaces, page tables and other
bookkeeping structures require memory for storage (i.e. capabilities)

— Recursive solution: Type hierarchy of capabilities
* Untyped memory capability type
- Representing a range of physical memory

- Initially a single capability representing the entire physical memory

- Untyped capabilities be derived ...
* ... into multiple untyped capabilities (recursively splitting the physical memory)

... into capabilities of other types
* Providing the memory for capability storage and bookkeeping
* Providing memory for other kernel objects

16

Capability Derivation Tree

untyped 10 pages
cap

untyped 2 pages untyped 6 pages untyped 1 page
cap cap cap
untyped untyped
1

cnode thread
cap cap

untyped e
cap

17

Capability References and Spaces

Naked capabilities

— Capability references identify capabilities directly

E.g. physical memory addresses identifying untyped memory capabilities

Encapsulated capabilities

— Capability references need to be mapped to capabilities

- Mapping database of capability space

Fast lookup of capability references (most frequent operation)
Reasonably fast creation / removal of capability references

Low memory overhead and fragmentation (sparse capability space)
Additional metadata (permissions, delegation, granting)

Possibility for in-line storage of actual kernel objects (up to a certain size)

18

Capability References and Spaces

Capability space (cspace)
— Directed graph of capability nodes

* Can be implicit (no explicit object representation)
Capability node (cnode)

- Array of capability slots
* Empty slot
* Slot pointing to a specific capability
* Slot pointing to a cnode

- Hierarchical organization of capability nodes
- Radix tree indexing

19

Hierarchical Capability Mapping Database

d’cyped

cap

thread
cap

page
cap

untyped
cap

00 01 11 cref_t
user space
""" . kernel space
cnode_t (10 bit index) |
cap
K cnode | untyped cnode_t (10 bit index)
cap cap -

cnode_t (12 bitindex)

. S p—

mem_region_t

resource

D3

20

Capabilities Example: selL4

Kernel objects

UntypedObject (physical memory range)
TCBObject (thread)

EndpointObject (IPC calls destination)
AsyncEndpointObject (signal recipient)
CapTableObject (array of capabilities)

X86_4K (4 KiB frame)

X86_4M (4 MiB frame)

X86_PageTableObject (2" level page table)
X86_PageDirectoryObject (1%t level page table)

21

D3
Capabilities Example: selL4

Capability derivation

seL4 X86 Untyped Retype(cnode_selector(phys addr), selL4 X86 4K, ...,
phys_addr >> FRAME_WIDTH, 1);

seL4 X86 Untyped Retype(cnode_selector(pt phys addr), seL4 X86 PageTableObject,
pt_phys addr >> FRAME_WIDTH, 1);

° oy o oy ° o oy ° o oy

seL4 X86_Untyped Retype(cnode_selector(pd phys addr), selL4 X86 PageDirectoryObject,
pd_phys addr >> FRAME_WIDTH, 1);

seL4 X86 PageTable Map(cnode_selector(pt_phys addr), cnode selector(pd phys addr), virt addr,
seL4_X86_Default VMAttributes);

seL4 X86 Page Map(cnode_selector(phys_addr), cnode_selector(pd _phys addr), virt addr, selL4 AllRights,
seL4 X86 Default VMAttributes);

22

D3
Capabilities Example: selL4

© Strong isolation,
m No shared
Space ~ kernel resources |

‘ Addr Addr

Resources fully
delegated, allows
autonomous
operation

\ Resource Manager Resource Manager

RM
Data

init Task = Global Resource Manager

Space Space

Source: Gernot Heiser: Introduction: Using selL.4
Courtesy of Gernot Heiser, UNSW Sydney, CC BY 4.0
http://www.cse.unsw.edu.au/~cs9242/22/lectures/01b-sel4.pdf

23

http://www.cse.unsw.edu.au/~cs9242/22/lectures/01b-sel4.pdf

Comparison

Traditional

Straightforward API
High-level abstraction
Portable

Implicit policy
Accounting out of scope

Delegation out of scope

Capability-based

No implicit policy (policy set
completely by the client)

Accounting and delegation
within the scope

Low-level API
Potential abstraction inversion

Non-portable

24

Note on Memory Accounting

Strict memory reservation

Sum of virtual memory sizes <
Sum of physical memory sizes

* Swap space counted as physical
memory

In-bound out-of-memory condition
More predictable

Potential inefficient resource usage

Memory overcommit

— Sum of resident memory sizes < Sum of
physical memory sizes

* Decoupling memory mapping from
memory allocation

— Support for large sparse virtual address
spaces

* Potentially more efficient resource usage
— Out-of-bound out-of-memory condition
* Victim finding

- Less predictable

25

Note on Caches

Separate instruction and data caches
- Self-modifying code (N.B.: including code loading)

Virtually-indexed caches
- Mostly used for L1 instruction caches nowadays

— Cache homonyms (same VPN referring to different PFN)
* Flush on each address space switch costly
* Distinct virtual addresses unpractical

* ASID tagging (ASID management by operating system)
— Cache synonyms (different VPN referring to same PFN)

* Shared memory or multiple mappings leading to stale data
* Synonym detection, cache coloring

* Hardware synonym detection

26

Non-Volatile Memory

Historically biased towards rotational media
- Cylinder / Head / Sector - Linear (Logical) Block Addressing

* Originally interface abstraction not very high
- Hard sectored - Soft sectored (with remapping)

* 512 B blocks = 4096 B blocks (floppy/hard drives)
e 2048 B blocks (optical drives), 2353 B blocks (raw optical drives)

— Latency several orders of magnitude larger than volatile memory

* Originally interface I/O efficiency not very important
- Single tenant
- Single request stream

27

Non-Volatile Memory

* Historically biased towards rotational media

cylinders
(tracks)

heads

sectors & interleaving

28

Non-Volatile Memory

Historically biased towards rotational media
- Multi-tenant performance dominated by physical seek time

— Still mostly via single request stream
* Software I/O scheduling (shortest seek first, elevator/sweep, shortest
deadline first, etc.)
- Might not have the most accurate physical storage information (i.e. remapping)

* |/O command batching (queuing)
- Leaving the optimal I/O order (within the batch) to hardware
- Incorporates interrupt coalescing

29

Non-Volatile Memory

Solid-state drives

- Differing characteristics from rotational drives
* Physical characteristics mostly unimportant

* Addressing characteristics

- Different native read/write and erase blocks
* Write amplification

- Physical addressing more like volatile memory

Latency much closer to volatile memory
- Performance dominated by interface I/O efficiency

High degree of internal parallelism

* Unique wear characteristics

30

Non-Volatile Memory

Solid-state drives
- Reflection in the I/O interface (e.g. NVMe)

* Generally provides the common LBA abstraction
— Wear leveling, block remapping and garbage collection in hardware Flash Transition Layer (FTL)
* Frequently implemented as multi-level log-based storage
* Software trim hint to indicate unused (erased) blocks
* Trade-offs between write amplification, performance, idle characteristics
* Low latency and parallel access
- “Unlimited” request queues with lock-less access
= “Unlimited” command queuing
— Interrupt coalescing & multiple interrupt groups
- Full-duplex scatter-gather DMA

31

Non-Volatile Memory

Solid-state drives

- Exposing more of the hardware architecture to software

* Addressing

- Open-channel SSD

- NVMe Zoned Namespace

* Note: Zones also useful for Shingled Magnetic Recording (SMR)

* Compute off-loading

- Basic NVMe I/O commands: Compare, Write Zeroes, Copy

- NVMe Key Value command set

- Near data computing (proposed)

32

Storage Near Data Computing

Off-loading computation to storage controller

- Decrease latency, improve throughput, decrease energy consumption

- Improve performance

* Trade-off: Lower performance of embedded cores
- Still a performance boost when compute cores are already loaded

Conv
Biscuit I Query 1

Conv +
Biscuit [Query 2
0 100 200 300 400 500

Figure 8. Performan

Execution time [sec]

ce of SQL queries on lineitem table.

Source: Gu B, Yoon A. S., Bae D.-H., Jo I., Lee ., Yoon J., Kang J.-U., Kwon M., Yoon C., Cho S,,
Jeong J., Chang D.: Biscuit: A Framework for Near-Data Processing of Big Data Workloads,
in Proceedings of 43 Annual International Symposium on Computer Architecture,
ACM/IEEE, 2016

33

Memory Near Data Computing

address >l

RAS =l
CAS =l

WE =P

2160] |043U0d

19p0od3ap
MO

memory
matrix

-]

A

Y

34

Memory Near Data Computing

address >l

RAS =l
CAS =l

WE =P

2160] |043U0d

19p0od3ap
MO

memory
matrix

A

* opcode

Y

filtering / computing

B5

Memory Near Data Computing

address >l

RAS =l
CAS =l

WE =P

2160] |043U0d

19p0od3ap
MO

memory
matrix

opcode

v ¥ vy

sense amps
with gates

36

Generic Near Data Computing

Processing

Memory In-Memory
(Pl M)

In-Storage
Computing
(ISC)

Storage

On-Stream
Network processing

(OSP)

37

Generic Near Data Computing

Challenges
- Universal open interface standard
* Currently extensions of existing I/O interfaces

— Universal programming model
* Stream / flow processing

* Association of compute units with data

= Universal compute model
* ISA

* Safety, security considerations

- Off-loading vs. distributed computing

38

Thank youl!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

