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Address Space

Universal abstraction for accessing data (code is just a form of data)

Physical memory
* Bytes, words, instructions (or similar)

* Software virtual memory / Device virtual memory
- Pages (or similar)

I/O memory
* Bytes, words, ports (or similar)

* Can be embedded in physical memory (memory-mapped I/O)

Permanent memory
* Blocks, pages (or similar)

* Can be combined with physical memory

Object space

* Keys, capabilities (or similar)



D3$
Physical Memory Myths

Random access performance

- Seems to be O(1) in time units, but in reality it is closer to O(+/n)
* Where n is the size of the working set

* Performance effects of the cache hierarchy

Canonical physical address space

- Different views of the physical address space

* Local APIC and SMM on x86, secure/non-secure TrustZone on ARM

* Embedding of the I/O address space into the MMIO address space on x86
— Completely disjoint address spaces

* No central interconnect, but a network of nodes and address translations



D3$
Non-Uniform Memory Access

Explicitly exposed hardware topology
- Processing units, cores, packages
- NUMA nodes (directly byte-addressable memory)

- Caches

* Transparent cache coherency (ccNUMA)
- MSI, MESI, MESIF, MOSI, MOESI, Dragon, Firefly protocols
- Directory-based cache coherency

- Buses and I/O devices

Guiding heuristics for placing execution near its working set

— numactl, 1libnuma
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D3$
Device Virtual Memory

Mapping of device-visible addresses to bus-visible addresses

= Similar purpose to software virtual memory
* Isolation (i.e. safety, security)
* Mitigating fragmentation (i.e. scatter-gather functionality)

* Mitigating address range issues

- Integrated in the device DMA engine
* Graphics Address/Aperture Remapping Table

- Separate IOMMU
* Device memory paging

* Usually also implementing interrupt remapping



IOMMU

AMD-Vi, ARM SMMU
Intel VT-d

— Usually located in the peripheral interconnect (a.k.a. north bridge)

- Address space is usually associated with a protection domain
* Endpoint is usually associated with a source ID
* Data structure that maps source IDs to protection domains

* Memory mapping using hierarchical page tables
- First-stage translation page tables essentially equivalent to the CPU page tables
- Second-stage translation for hypervisor, with nested first & second-stage translation

* Device TLB for translation caching, other caches

- ACPI DMAR (DMA Remapping Reporting) table



Physical Memory Management

Zones

— Continuous address ranges with specific properties
* Available, reserved, firmware, kernel code/data, etc.
* Logical properties
- E.g. <1 MiB, < 16 MiB, < 4 GiB on x86

Allocations

— Tracking of used frames and their owner

- Bitmaps, free lists, buddy allocation, etc.



D3
Capabilities

Motivation

— Universal and pure kernel mechanism for resource management
* No specific management policy in the kernel
* Policy decision delegated to user space

* Delegation (granting) of authority over resources from the original
owner to other parties

- Including granting revocation
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Capabilities

Typical terminology
- Capability
* Object instance representing (identifying) a specific resource
- Kernel object representing a kernel-managed resource

- Kernel proxy object identifying a user-managed resource
- User space object representing a user space resource

- Capability reference
* Unforgeable identifier (handle) to a capability
- Possibility to restrict permissions (e.g. permissible operations) and identify ownership
- Capability space
* Address space of capability references
- Typically associated with a task

* Capabilities as local identifiers within their namespace
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D3$
Capabilities Put Simply

. file descriptor
Pead(@’ Tt ) ? (capability reference)

user space

kernel space

2 3 file descriptor table
(capability space)
Ld ﬁl
vfs_file_t open
- - (capability)




Capability Operations

Actions performed with capabilities

Can be restricted by the capability reference
* Multiple capability references can point to the same capability
Invoke
* Execute a “business logic” method on the target object
Clone / Mint
* Create a duplicate capability reference (possibly with restricted permissions)
Delegate / Grant
* Pass a duplicate capability reference (possibly with restricted permissions) to a different capability space
* In case of granting, the original ownership is kept
* Only once or recursively
Revoke

* Forcefully removing and granted capability reference from other capability spaces
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Capability Delegation

task 1:

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// SCM_RIGHTS ancillary message type ...

memmove (CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

vfs file t

task 2:

user space

kernel space
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Capability Delegation

task 1:

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
// SCM_RIGHTS ancillary message type ...

memmove (CMSG_DATA(cmsg), &fd, sizeof(fd));
sendmsg(socket, &msg, 0);

task 2:

struct msghdr msg;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
/...

recvmsg(socket, &msg, 0);

int fd;
memmove (&Fd, CMSG_DATA(cmsg), sizeof(fd));

user space

‘\ kernel space

vfs file t
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Physical Memory Management

Representing physical memory as capabilities

— Chicken & egg problem: Capabilities, capability spaces, page tables and other
bookkeeping structures require memory for storage (i.e. capabilities)

— Recursive solution: Type hierarchy of capabilities
* Untyped memory capability type
- Representing a range of physical memory

- Initially a single capability representing the entire physical memory

- Untyped capabilities be derived ...
* ... into multiple untyped capabilities (recursively splitting the physical memory)

... into capabilities of other types
* Providing the memory for capability storage and bookkeeping
* Providing memory for other kernel objects
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Capability Derivation Tree

untyped 10 pages
cap

untyped 2 pages untyped 6 pages untyped 1 page
cap cap cap
untyped untyped
1

cnode thread
cap cap

untyped e
cap
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Capability References and Spaces

Naked capabilities

— Capability references identify capabilities directly

E.g. physical memory addresses identifying untyped memory capabilities

Encapsulated capabilities

— Capability references need to be mapped to capabilities

- Mapping database of capability space

Fast lookup of capability references (most frequent operation)
Reasonably fast creation / removal of capability references

Low memory overhead and fragmentation (sparse capability space)
Additional metadata (permissions, delegation, granting)

Possibility for in-line storage of actual kernel objects (up to a certain size)
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Capability References and Spaces

Capability space (cspace)
— Directed graph of capability nodes

* Can be implicit (no explicit object representation)
Capability node (cnode)

- Array of capability slots
* Empty slot
* Slot pointing to a specific capability
* Slot pointing to a cnode

- Hierarchical organization of capability nodes
- Radix tree indexing
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Hierarchical Capability Mapping Database

d’cyped

cap

thread
cap

page
cap

untyped
cap

00 01 11 cref_t
user space
""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" . kernel space
cnode_t (10 bit index) |
cap
K cnode | untyped cnode_t (10 bit index)
cap cap -

cnode_t (12 bitindex)

. S p—

mem_region_t

resource

D3
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Capabilities Example: selL4

Kernel objects

UntypedObject (physical memory range)
TCBObject (thread)

EndpointObject (IPC calls destination)
AsyncEndpointObject (signal recipient)
CapTableObject (array of capabilities)

X86_4K (4 KiB frame)

X86_4M (4 MiB frame)

X86_PageTableObject (2" level page table)
X86_PageDirectoryObject (1%t level page table)
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D3
Capabilities Example: selL4

Capability derivation

seL4 X86 Untyped Retype(cnode_selector(phys addr), selL4 X86 4K, ...,
phys_addr >> FRAME_WIDTH, 1);

seL4 X86 Untyped Retype(cnode_selector(pt phys addr), seL4 X86 PageTableObject,
pt_phys addr >> FRAME_WIDTH, 1);

° oy o oy ° o oy ° o oy

seL4 X86_Untyped Retype(cnode_selector(pd phys addr), selL4 X86 PageDirectoryObject,
pd_phys addr >> FRAME_WIDTH, 1);

seL4 X86 PageTable Map(cnode_selector(pt_phys addr), cnode selector(pd phys addr), virt addr,
seL4_X86_Default VMAttributes);

seL4 X86 Page Map(cnode_selector(phys_addr), cnode_selector(pd _phys addr), virt addr, selL4 AllRights,
seL4 X86 Default VMAttributes);
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D3
Capabilities Example: selL4

© Strong isolation,
m No shared
Space ~ kernel resources |

‘ Addr Addr

Resources fully
delegated, allows
autonomous
operation

\ Resource Manager Resource Manager

RM
Data

init Task = Global Resource Manager

Space  Space

Source: Gernot Heiser: Introduction: Using selL.4
Courtesy of Gernot Heiser, UNSW Sydney, CC BY 4.0
http://www.cse.unsw.edu.au/~cs9242/22/lectures/01b-sel4.pdf
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http://www.cse.unsw.edu.au/~cs9242/22/lectures/01b-sel4.pdf

Comparison

Traditional

Straightforward API
High-level abstraction
Portable

Implicit policy
Accounting out of scope

Delegation out of scope

Capability-based

No implicit policy (policy set
completely by the client)

Accounting and delegation
within the scope

Low-level API
Potential abstraction inversion

Non-portable
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Note on Memory Accounting

Strict memory reservation

Sum of virtual memory sizes <
Sum of physical memory sizes

* Swap space counted as physical
memory

In-bound out-of-memory condition
More predictable

Potential inefficient resource usage

Memory overcommit

— Sum of resident memory sizes < Sum of
physical memory sizes

* Decoupling memory mapping from
memory allocation

— Support for large sparse virtual address
spaces

* Potentially more efficient resource usage
— Out-of-bound out-of-memory condition
* Victim finding

- Less predictable
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Note on Caches

Separate instruction and data caches
- Self-modifying code (N.B.: including code loading)

Virtually-indexed caches
- Mostly used for L1 instruction caches nowadays

— Cache homonyms (same VPN referring to different PFN)
* Flush on each address space switch costly
* Distinct virtual addresses unpractical

* ASID tagging (ASID management by operating system)
— Cache synonyms (different VPN referring to same PFN)

* Shared memory or multiple mappings leading to stale data
* Synonym detection, cache coloring

* Hardware synonym detection
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Non-Volatile Memory

Historically biased towards rotational media
- Cylinder / Head / Sector - Linear (Logical) Block Addressing

* Originally interface abstraction not very high
- Hard sectored - Soft sectored (with remapping)

* 512 B blocks = 4096 B blocks (floppy/hard drives)
e 2048 B blocks (optical drives), 2353 B blocks (raw optical drives)

— Latency several orders of magnitude larger than volatile memory

* Originally interface I/O efficiency not very important
- Single tenant
- Single request stream
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Non-Volatile Memory

* Historically biased towards rotational media

cylinders
(tracks)

heads

sectors & interleaving
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Non-Volatile Memory

Historically biased towards rotational media
- Multi-tenant performance dominated by physical seek time

— Still mostly via single request stream
* Software I/O scheduling (shortest seek first, elevator/sweep, shortest
deadline first, etc.)
- Might not have the most accurate physical storage information (i.e. remapping)

* |/O command batching (queuing)
- Leaving the optimal I/O order (within the batch) to hardware
- Incorporates interrupt coalescing
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Non-Volatile Memory

Solid-state drives

- Differing characteristics from rotational drives
* Physical characteristics mostly unimportant

* Addressing characteristics

- Different native read/write and erase blocks
* Write amplification

- Physical addressing more like volatile memory

Latency much closer to volatile memory
- Performance dominated by interface I/O efficiency

High degree of internal parallelism

* Unique wear characteristics
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Non-Volatile Memory

Solid-state drives
- Reflection in the I/O interface (e.g. NVMe)

* Generally provides the common LBA abstraction
— Wear leveling, block remapping and garbage collection in hardware Flash Transition Layer (FTL)
* Frequently implemented as multi-level log-based storage
* Software trim hint to indicate unused (erased) blocks
* Trade-offs between write amplification, performance, idle characteristics
* Low latency and parallel access
- “Unlimited” request queues with lock-less access
= “Unlimited” command queuing
— Interrupt coalescing & multiple interrupt groups
- Full-duplex scatter-gather DMA
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Non-Volatile Memory

Solid-state drives

- Exposing more of the hardware architecture to software

* Addressing

- Open-channel SSD

- NVMe Zoned Namespace

* Note: Zones also useful for Shingled Magnetic Recording (SMR)

* Compute off-loading

- Basic NVMe I/O commands: Compare, Write Zeroes, Copy

- NVMe Key Value command set

- Near data computing (proposed)
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Storage Near Data Computing

Off-loading computation to storage controller

- Decrease latency, improve throughput, decrease energy consumption

- Improve performance

* Trade-off: Lower performance of embedded cores
- Still a performance boost when compute cores are already loaded

Conv
Biscuit I Query 1

Conv +
Biscuit [ Query 2
0 100 200 300 400 500

Figure 8. Performan

Execution time [sec]

ce of SQL queries on lineitem table.

Source: Gu B, Yoon A. S., Bae D.-H., Jo I., Lee ., Yoon J., Kang J.-U., Kwon M., Yoon C., Cho S,,
Jeong J., Chang D.: Biscuit: A Framework for Near-Data Processing of Big Data Workloads,
in Proceedings of 43 Annual International Symposium on Computer Architecture,
ACM/IEEE, 2016
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Memory Near Data Computing
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Memory Near Data Computing
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Memory Near Data Computing

address >l
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Generic Near Data Computing

Processing

Memory In-Memory
(Pl M)

In-Storage
Computing
(ISC)

Storage

On-Stream
Network  processing

(OSP)
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Generic Near Data Computing

Challenges
- Universal open interface standard
* Currently extensions of existing I/O interfaces

— Universal programming model
* Stream / flow processing

* Association of compute units with data

= Universal compute model
* ISA

* Safety, security considerations

- Off-loading vs. distributed computing

38



Thank youl!
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